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Abstract

Gol’dberg considered the class of functions analytic in the unit disc
with unequal positive numbers of zeros and ones there. The maximum
modulus of zero- and one-places in this class is non-trivially bounded from
below by the universal constant A2. This constant determines a funda-
mental limit of controller design in engineering, and has applications when
estimating covering regions for composites of fixed point free functions
with schlicht functions. The lower bound for A2 is improved in this note
by considering simultaneously the extremal functions f and 1−f together
with their reciprocals.
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1 Introduction

Landau showed in [11] that there exists a universal constant R = R(a0, a1) such
that all functions f(z) = a0+a1z+. . . analytic in the disc of radius R must attain
one of the values 0 and 1 in this disc. This result was generalised by Schottky
who showed in [15] that for an analytic function f(z) which omits 0 and 1 on
|z| = r < 1 there exists a modulus limit depending merely on f(0) and r.

It was Gol’dberg [6] who discussed the minimum maximum modulus problem
of zero- and one-places under the general form considered in this note. Given a
function f holomorphic inside the unit disc D. Let n0 := |{z ∈ D : f(z) = 0}| ,
n1 := |{z ∈ D : f(z) = 1}| . Denote the class of holomorphic functions f on D
such that 0 6= n0 6= n1 6= 0 by K2. Denote by r(f) the maximum modulus of the
zero- and one-places of f ∈ K2 . Denote by A2 the greatest lower bound for all
r(f) with f ∈ K2. Gol’dberg [6] showed that the universal constant A2 is strictly
positive, and proved the estimate

A2 > 0.0000038.
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An example is used in [6] to establish an upper bound to A2. Gol’dberg claims
that the example provides the upper bound

0.031 > A2.

Related results of Jenkins’ [10] imply that A2 > 0.00037, while Blondel, Rupp
and Shapiro [3] established

r(f) > exp

(
−(1 +

2

π · e
)
π2

N

)
, where N := N(f) := min{n0, n1}. (1)

The bound (1) improves on Jenkins’ bound for given f whenever f is such that
N ≥ 5.

The author established recently [1] that

A2 > 0.00075.

The quest for narrow bounds on the universal constant A2 can be motivated
by mathematical as well as engineering consequences. As Rupp [14] showed,
the composite of a normalized schlicht function with a fixed point free function
covers a disc dependent in radius on Gol’dberg’s constant A2. This quantity is
also of interest in the engineering context of stabilization.

The existence of certain stabilizing, time-invariant controllers (i.e. meromorphic
functions) may be shown to be equivalent to the existence of a function with
prescribed zeros and ones in a generalized circle. Several benchmark problems
were posed by Blondel in [4] relating controller design to the value distribution
of functions. For a reformulation of the control question in terms of the value
distribution of functions, see [3].

The known lower bound to A2 due to Gol’dberg as well as the one in [3] rely on
quantitative maximum modulus estimates in Schottky’s theorem in combination
with the Poisson-Jensen formula. In this note, we deviate from this approach
combining maximum modulus estimates with minimum modulus estimates on
parametrized circles.

The outline of this note is as follows. After a short overview on quantitative esti-
mates for Schottky’s theorem, a mapping κ from D to the annulus r < |z| < 1
(where r = r(f) is the maximum modulus of zero- and one-places of f ∈ K2) is
outlined. Using the composition of f ∈ K2 with this mapping |f(z)| and |1−f(z)|
are estimated on |z| =

√
r taking the following steps. On every circle of radius ρ,

where r < ρ <
√

r, there exists at least one point z̃ such that at least one of
the functions f, 1− f ∈ K2 takes a real value not exceeding 1/2. The zeros of f
give rise to a Blaschke product B unimodular on a circle of radius no less than√

r. The Hadamard-Borel-Carathéodory inequalities then allow us to estimate
from above the minimum modulus of f on |z| =

√
r considering 1/(f ·B) at the

point z̃.
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This yields a function value smaller in modulus than 1/2 on the outer radius
√

r.
Zhang’s sharp, quantitative version of Schottky’s theorem gives an improved
maximum modulus estimate for f(κ(·)), and hence for f inside an annulus.

The maximum modulus bound can be used to estimate the minimum modulus
from below via the Hadamard-Borel-Carathéodory inequalities for the product
of f with the zero-cancelling Blaschke product B. The lower bound for |f | and
|1−f | must be small as can be seen by an application of the argument principle.
A proper choice of parameters allows us to conclude that A2 > 0.0012.

2 Magnitude estimates via Schottky’s theorem

Quantitative versions of Schottky’s theorem have been sought for a long time.
Schottky [15] established the following fundamental result.

Theorem 1 Let g(z) = a0 +a1 · z +a2 · z2 + . . . be regular in |z| < r and unequal
to 0 or 1 in this circle. Then

| ln(g(z))| < 224

√
α

(
r

r − |z|

)4

,

where α := min
{
| ln a0|, | ln(1− a0)|, | ln a0−1

a0
|
}

.

Hayman [7] showed that under the assumptions of the preceeding theorem

|g(z)| < 1

16
(µeπ)

1+r
1−r for all z with |z| < r, where µ := max{|a0|, 1},

and moreover, that π may not be replaced by a smaller constant. Ostrowski
[12] had shown earlier that (1 + r)/(1 − r) is the precise asymptotic order for
|a0| → ∞. Several different ways to obtain estimates dependent on |a0| were
pursued by Hayman, Jenkins, Lai, Hempel and Zhang (cf. [8] for references).

As we wish to apply the modulus estimate to f and 1 − f simultaneously, we
consider Zhang’s version [16] of Schottky’s theorem which takes |a0| into account
even for small modulus (and slightly improves on [9]).

Theorem 2 Let g be a holomorphic function without zeros and ones inside the
unit disc. Then

|g(z)| ≤ K(a, |z|), for all z ∈ D, (2)

where K(a, |z|) :=
1

16
exp(

π2

ln(16/a + b)
· (1 + |z|)
(1− |z|)

), a := |g(0)|, b := eπ − 16.

In case that K = K(a, |z|) > 1, the right-hand side of inequality (2) can be
replaced by K(a, |z|)− b/16.
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Suppose the maximum modulus of the zero- and one-places of f is r. To employ
Schottky’s theorem it is useful to map the unit disc to the annulus

A := {z ∈ C : r < |z| < 1}

where f and 1 − f are zero-free. Following Gol’dberg (see also [3]) we map
D onto the annulus as follows. Map the unit disc via the logarithmic function
η(z) = i ln i1+z

1−z
to the infinite vertical strip S of width π centered at −π/2. The

strip S is mapped onto the annulus A by the power function ν(ξ) = r−(ξ/π). By
concatenation obtain the surjective mapping

κ : D → A, κ(z) := ν(η(z)).

The segment −π/2 + λi with −π2/| ln(r)| ≤ λ ≤ π2/| ln(r)| is mapped by ν to
the circle |z| =

√
r. The pre-image of the segment point ξ0 = −π/2 + λi ∈ S

under η has maximum modulus tanh λ/2. Hence, there exists a preimage of the
curve |z| =

√
r ⊂ D under the map κ bounded in modulus (see [6], p.205, or [3],

p.190, eqs.(1)-(5)) by

tanh(π2/2|ln(r)|). (3)

Compose κ with a function f unequal to zero or one in the annulus A to obtain
a mapping g(·) := f(κ(·)) satisfying the assumptions of Theorem 2. Modulus
estimates for g(0) = f(κ(0)) as required for numerical computations involving
Theorem 2 will be derived in the next section.

3 Limits to Minimum and Maximum Modulus

A function f in K2 has different positive winding numbers around 0 and 1 on
a circle |z| = ρ, r(f) < ρ < 1. Hence, with r := r(f), the image of every circle
|z| = ρ, r < ρ < 1 under f crosses the section between 0 and 1. This gives

min
|z|=ρ,r<ρ<1

{|f(z)|, |1− f(z)|} < 1. (4)

Moreover, on any circle |z| = ρ, r(f) = r < ρ < 1 we may choose (dependent on
ρ) fρ as one of the functions f and 1− f such that

∀ρ∈ (r,1) ∃z̃=ρeiφ ∃fρ∈{f,1−f} 0 < fρ(z̃) ≤ 1

2
. (5)

Especially for ρ =
√

r we obtain z̃ with |z̃| = ρ and |fρ(z̃)| ≤ 1/2. This estimate
is improved for r = 0.0012 using a vital source of Schottky’s theorem: functions
zero-free and bounded in a disc |z| <

√
r can be estimated on an interior circle

|z| = ρ, ρ <
√

r =: rext using Carathéodory’s improved formulation (first in [5])
of the Borel-Hadamard inequalities [13].
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Lemma 1 For a holomorphic function h unequal to zero in the disc |z| < rext,
and bounded there in modulus by Mh we have:

for all z with |z| ≤ ρ < rext :

∣∣∣∣h(0)

h(z)

∣∣∣∣ ≤ ∣∣∣∣ Mh

h(0)

∣∣∣∣ 2ρ
rext−ρ

; (6)

for all z with |z| ≤ ρ < rext :

∣∣∣∣h(z)

h(0)

∣∣∣∣ ≤ ∣∣∣∣ Mh

h(0)

∣∣∣∣ 2ρ
rext+ρ

. (7)

Assume w.l.o.g. that for f we have n0(f) < n1(f) (otherwise consider 1 − f
instead). Let the zeros z1, z2, . . . , zn0 of f ∈ K2 lying in |z| ≤ r(f) be given by

zj = γj · reiϑ0 , 0 ≤ γj ≤ 1, ϑj ∈ [0, 2π], r := r(f),

and consider the product of f(z) with Blaschke factors Bj(z) chosen as

Bj(z) :=

√
r −

√
rγje

−iϑj · z
z − γjreiϑj

.

Each Blaschke factor is unimodular on |z| =
√

r, and of modulus at most

√
r −

√
r
√

cr√
cr − r

for |z| =
√

cr, 0 < r < c < 1, (8)

as a discussion of the parameter γj shows.

Multiply the function f(z) by B(z) :=
∏n0

j=1 Bj(z) to cancel all roots inside the
unit disc. The analytic function f(z)B(z) is zero-free, hence we may apply the
upper estimate (7) to h(z) := 1/(f(z)B(z)) to estimate its minimum modulus.
First, from (7) we obtain the inequality∣∣∣∣ 1

f(z)B(z)

∣∣∣∣ ≤ ∣∣∣∣ 1

f(0)B(0)

∣∣∣∣
rext−ρ
rext+ρ

· max
|w|=rext

∣∣∣∣ 1

f(w)B(w)

∣∣∣∣ 2ρ
rext+ρ

, where |z| = ρ < rext.

Therefore, taking reciprocals,

|f(z)B(z)| ≥ |f(0)B(0)|
rext−ρ
rext+ρ · min

|w|=rext

|f(w)B(w)|
2ρ

rext+ρ , where |z| = ρ < rext.

Since B(z) is unimodular on |z| = rext =
√

r the following inequality holds for
an arbitrary z̃ of modulus ρ:

min
|z|=rext

|f(z)| ≤ |f(z̃)|
rext+ρ

2ρ max
|z|=ρ

|B(z)|
rext+ρ

2ρ

∣∣∣∣ 1

f(0)B(0)

∣∣∣∣
rext−ρ

2ρ

.

This implies, using the estimate (8) for the n0 factors of the Blaschke product
B(z), and the relation |1/B(0)| ≤ (

√
r)

n0 , that
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min
|z|=rext

|f(z)| ≤ |f(z̃)|
rext+ρ

2ρ

∣∣∣∣(√r −
√

r · ρ
ρ− r

)n0
∣∣∣∣

rext+ρ
2ρ

∣∣∣∣(√r)n0

f(0)

∣∣∣∣
rext−ρ

2ρ

. (9)

Put r := 0.0012 ∼ 10−2.92082, hence rext :=
√

r ∼ 10−1.46041. Choose an inter-
mediate value as ρ = 10−2.1601 ∼ 0.0069167. By (4), there exists z̃ on the circle
|z| = ρ such that |f(z̃)| ≤ 1. We may estimate the minimum modulus of f on
|z| =

√
r = rext distinguishing the following three cases.

1.) Assume |f(0)| > 0.96155. Then, from (9) (with |f(z̃)| ≤ 1) we get

min
|z|=rext

|f(z)| ≤
∣∣∣∣(√r −

√
r · ρ

ρ− r

)n0
∣∣∣∣

rext+ρ
2ρ

∣∣∣∣(√r)n0

f(0)

∣∣∣∣
rext−ρ

2ρ

≤ (6.0176872)3.004152

(
(10−1.46041)1

0.96155

)2.004151

≤ 0.2810411,

since the upper bound decreases with growing n0 ≥ 1.

2.) If |f(0)| < 0.5075, consider 1− f with modulus at the origin at least 0.4925,
and n1 ≥ 2 zeros. Using the inequality (9) with 1− f in place of f (for some z̃
with |1− f(z̃)| ≤ 1), and n1 in place of n0, we obtain

min
|z|=rext

|1− f(z)| ≤
∣∣∣∣(√r −

√
r · ρ

ρ− r

)n1
∣∣∣∣

rext+ρ
2ρ

∣∣∣∣ (
√

r)n1

1− f(0)

∣∣∣∣
rext−ρ

2ρ

≤ (36.2125592)3.004152

(
(10−1.46041)2

0.4925

)2.004151

≤ 0.279094,

since the upper bound decreases with growing n1 ≥ 2.

3.) Consider finally the case 0.5075 ≤ |f(0)| ≤ 0.96155. The function

F (z) := f(z) · (1− f(z))

has at least three zeros, while |F (0)| ≥ | 0.96155 · ( 1 − 0.96155 ) |. By (4),
it exists a point z̃ on the circle of radius ρ = 10−2.1601 such that |F (z̃)| ≤ 1/4.
Using this information in (9) with F in place of f (hence n0 = n0(F ) ≥ 3) we
obtain

min
|z|=rext

|F (z)| ≤ |1/4|
rext+ρ

2ρ max
|z|=ρ

∣∣∣∣∣
(√

r −
√

r · ρ
ρ− r

)n0+n1

∣∣∣∣∣
rext+ρ

2ρ ∣∣∣∣(√r)n0+n1

F (0)

∣∣∣∣
rext−ρ

2ρ

≤
(

(6.0176872)3

4

)3.004152 (
(10−1.46041)3

0.03697159

)2.004151

≤ 0.2021,

since the upper bound decreases with growing n0 + n1 ≥ 3.
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This estimate of |F (z)| = |f(z)(1−f(z))| implies that at least one of the functions
f and 1 − f is at one point of the circle |z| = rext no larger in modulus than
0.281042.

The three cases considered above allow us to conclude that for at least one
f̃ ∈ {f, 1− f} we have

min
|z|=rext

|f̃(z)| ≤ 0.281042 < 0.28105.

We may assume that g(·) = f̃(κ(·)) has modulus at most 0.28105 at the origin,
or else consider a suitable rotation of κ(·). This leads to the maximum modulus
estimate of f̃ ∈ {f, 1− f} on r < |z| <

√
r via (2) and (3) (with b := eπ − 16)

max
r<|z|<

√
r
|f̃(z)| ≤ 1

16
exp(

π2

ln( 16
0.28105

+ b)
exp(

π2

|ln(r)|
))− b

16
≤ 1844.702 =: M. (10)

With this bound for |f̃(z)| over r < |z| <
√

r, i.e. a bound for one of the
functions |f | and |1 − f |, we obtain a lower bound for the modulus of f on a
new circle |z| = ρ (where ρ ∈ (r,

√
r) will be specified later) via the following

estimate: inequality (6) for h(z) := f(z)B(z), rext =
√

r yields for z with |z| = ρ
that

|f(z)| ≥
(

max
|z|=ρ

|B(z)|
)−1

· |f(0)B(0)|
√

r+ρ√
r−ρ ·

(
max

|w|=rext

|B(w) · f(w)|
) −2ρ√

r−ρ

.

As B(w) is unimodular for |w| = rext =
√

r, we use (10) to obtain

|f(z)| ≥
(

max
|z|=ρ

|B(z)|
)−1

· |f(0)B(0)|
√

r+ρ√
r−ρ · (M + 1)

−2ρ√
r−ρ . (11)

With n0 ≥ 1 and |f(0)| ≥ 0.8985, the Blaschke factor estimate (8) in (11) yields
for all z with |z| = ρ the lower bound

|f(z)| ≥
(

ρ− r√
r −

√
r · ρ

)n0

·
[
0.8985 · ( 1√

r
)n0

]√r+ρ√
r−ρ

· (M + 1)
−2ρ√
r−ρ .

Choose the intermediate radius as ρ := 10−2.155 to obtain for r = 0.0012 on
|z| = ρ the estimate

|f(z)| ≥
(

ρ− r√
r −

√
r · ρ

)n0

·
∣∣∣∣f(0)(

1√
r
)n0

∣∣∣∣
√

r+ρ√
r−ρ

· (M + 1)
−2ρ√
r−ρ

≥ 0.168565 · |0.8985/
√

0.0012|1.506351 (1846)−0.506351 ≥ 0.50413.
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Similarly |1− f(0)| ≥ 0.1015 and n1(f) = n0(1− f) ≥ 2 yield for all z on |z| = ρ
the lower estimate

|1− f(z)| ≥
(

ρ− r√
r −

√
r · ρ

)n1

·
∣∣∣∣(1− f(0))

(
1√
r

)n1
∣∣∣∣
√

r+ρ√
r−ρ

· (M + 1)
−2ρ√
r−ρ

≥
(

ρ− r√
r −

√
r · ρ

)2

·

∣∣∣∣∣(1− f(0))

(
1√
r

)2
∣∣∣∣∣
√

r+ρ√
r−ρ

· (M + 1)
−2ρ√
r−ρ

≥ 0.1685652 · |0.1015/0.0012|1.506351 (1846)−0.506351 ≥ 0.504207.

This contradicts the fact that the functions f and 1− f simultaneously intersect
the interval (0, 1) on |z| = ρ, i.e. contradicts equation (5). This establishes the
following result.

Theorem 3
A2 > 0.0012.
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