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Abstract. The Newton iteration is customarily used for (sequential) approximation of zeros
of differentiable functions. Beside the classical Kantorovich theory there exist convergence criteria
which only involve data at one point, i.e. point estimates. The sufficient conditions ensure immediate
quadratic convergence to a single zero and have been frequently used by different authors to design
robust, fast and efficient root-finding methods for polynomials.

In this paper a sufficient condition for the simultaneous convergence of the one-dimensional
Newton iteration for polynomials will be given. The new condition involves only n point evaluations of
the Newton correction and the minimum mutual distance of approximations to ensure ’simultaneous’
quadratic convergence to the pairwise distinct n roots.

To establish the new convergence condition a new error estimate for Newton’s method will be
proven. This estimate is applicable if n (rough) approximations of the pairwise distinct roots are
well separated. The resulting error estimate is independent of n.
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1. Introduction. The well known work of Ostrowski and Kantorovich yields
convergence criteria for a twice differentiable function f , whenever

∣∣∣∣Df(z0)−1 · f(z0)
∣∣∣∣

and
∣∣∣∣D2f(z) ·Df(z0)−1

∣∣∣∣ can be suitably estimated on a circle around z0 . Starting
afresh, Myong-Hi Kim and Steve Smale independently derived sufficient convergence
conditions for the Newton method from data at one point, see [12] or [13]. Before we
formulate these conditions for holomorphic functions, two definitions (of Smale’s) are
appropriate.

Definition 1.1. Given a holomorphic function f : C → C. If for all Newton
iterates zk of z0 ∈ C : |zk+1 − zk| ≤ ( 1

2 )2
k−1|z1 − z0|, k = 0, 1, · · ·, then the element

z0 ∈ C is called an approximate zero (of f).
The convergence of Newton’s method from an approximate zero is obviously

quadratic. An existence criterion for approximate zeros can be established via a
simultaneous estimation of the Newton corrrection and certain coefficients of a Taylor
expansion. For this purpose define for a holomorphic function f the following.

Definition 1.2. α(z, f) := |f(z)/f ′(z)| supk>1 |
f(k)(z)
k!f ′(z) |

1/(k−1).

If α(z0, f) is suitably small, the starting point z0 is an approximate zero, as shown
by Kim and Smale. The condition involves only evaluation of functions at a single
point. Using the majorant sequence technique, Xing-Hua Wang and Dan-Fu Han
established a sharp result [14] which yields the following theorem.

Theorem 1.3. Given a holomorphic function f and z0 ∈ C, suppose

α(z0, f) < 3− 2
√

2.(1.1)

Then z0 is an approximate zero.
For a polynomial, this sufficient condition involves only computable data. Based

on such results, new algorithms for polynomial root approximation have been devised,
see for example [7], [8]. These methods apply the Newton iteration sequentially for
each root. On the other hand, there exist several methods for the simultaneous
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approximation of polynomial zeros which are based on variants of Newton’s method
in Cn. In this paper, a practical condition will be established which guarantees
the convergence of Newton’s method from n pairwise different approximations to n
pairwise different zeros. Before presenting the details we sketch the way to derive
such conditions.

Given a polynomial P (z) = an ·
∏

(z−ζi) of degree n, consider the formal identity
(derived in Section 3 as (3.2) )

α(z, P ) = | P (z)
P ′(z)

| ·max
k>1

|
( n∑

i1<i2<···<ik
i1,i2,···,ik=1

1
(z − ζi1) · · · (z − ζik

)

) P (z)
P ′(z)

|1/(k−1).(1.2)

If z = z0 is close to ζ1, and well separated from the other zeros ζ2, · · · , ζn, condition
(1.1) holds true, i.e. the Newton iteration converges starting with z = z0. How to
guarantee the separation?

Given z1 with P (z1) ·P ′(z1) 6= 0, there is the well-known estimate for the distance
to the closest root, ζ1 say:∣∣∣∣P ′(z1)

P (z1)

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

1
z1 − ζi

∣∣∣∣∣ ≤ n

|z1 − ζ1|
or |z1 − ζ1| ≤ n ·

∣∣∣∣ P (z1)
P ′(z1)

∣∣∣∣ .(1.3)

Combining Theorem 1.3, (1.2) and (1.3) it is possible to prove a sufficient convergence
condition like

max
i

∣∣∣∣ P (zi)
P ′(zi)

∣∣∣∣ < mini 6=j |zi − zj |
5 · n2

(1.4)

for the convergence from the n points zi to the n pairwise distinct zeros of P (z) [2].
A second line of investigation starts from good practical error estimates for simul-

taneous methods. For example, it has been shown that the Durand-Kerner iteration
zi+1 := zi − P (zi)

an·
∏

j 6=i
(zi−zj)

is convergent if

max
i

∣∣∣∣∣ P (zi)
an ·

∏
j 6=i(zi − zj)

∣∣∣∣∣ < mini 6=j |zi − zj |
2 · n

(1.5)

holds true, see [3]. As the Durand-Kerner iteration is Newton’s iteration for Viète’s
system of equations [5], it seems natural to look for weaker conditions than (1.4) in
the one-dimensional case as well. The sufficiency of condition (1.5) for the Durand-
Kerner method has been established using a quite sharp error estimate from [4]. A
new error estimate will be used here to establish a new sufficient convergence for
Newton’s method. This condition improves on (1.4) by O(n), from 5n2 to 8n in the
denominator.

For the general case, the estimation (1.3) is sharp. Generally it cannot be used
to determine the number of zeros in the disc Ii := {z ∈ C : |z − zi| ≤ n ·

∣∣∣ P (zi)
P ′(zi)

∣∣∣}.
But if the discs Ii are mutually disjoint, each disc contains exactly one zero, and one
may ask whether there exist better estimates in this case. The calculation necessary
to determine whether two discs Ii, Ij are disjoint can trivially be modified to yield a
relative measure of separation. The measure of separation can be used to improve the
estimation (1.3). This leads to new inclusion discs Îi ⊂ Ii for the roots. Recursive
application of this idea will lead to the following result in Section 2.
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Theorem 1.4. Given a polynomial P (z) of degree n ≥ 3. Given n values zi

with P ′(zi) 6= 0. If maxi

∣∣∣ P (zi)
P ′(zi)

∣∣∣ <
mini6=j |zi−zj |

C·n , C > 2, then each circle |z − zi| <

C
C−1 ·

∣∣∣ P (zi)
P ′(zi)

∣∣∣ contains a zero.
This estimate will be derived by completely elementary means. The new error estimate
is used in Section 3 to prove the following new convergence condition which merely
involves data from Newton’s method.

Theorem 1.5. Given a polynomial P (z) of degree n ≥ 3. Given n values zi with
P ′(zi) 6= 0. Assume that

max
i

∣∣∣∣ P (zi)
P ′(zi)

∣∣∣∣ < mini 6=j |zi − zj |
8 · n

.(1.6)

Then the following holds true.
i) The Newton iteration converges for each zi, and convergence is quadratic.
ii) There is exactly one zero in Ki := {z ∈ C : |z − (zi − P (zi)

P ′(zi)
)| ≤ | P (zi)

P ′(zi)
|}.

Remark. Given n approximations zi, to check the general convergence criterion
(1.1) the n2 values P (k)(zi)

k!P ′(zi)
for k = 0, 2, · · · , n; i = 1, · · · , n have to be calculated. The

new criterion only involves the evaluation of n Newton corrections P (zi)
P ′(zi)

and improves
on (1.4) by O(n).

A theorem similar to Theorem 1.5 could be derived by assuming that a certain
isolation of a single zero is already guaranteed. Estimations of that kind have, for
example, been applied in the analysis of Pan’s algorithm for the improvement of
Weyl’s quadtree construction as stated in [11].

2. A special error estimate. We restate the very well known estimation (1.3)
from the introduction:

Lemma 2.1. Given a polynomial P (z) of degree n. Given z0 ∈ C with P ′(z0) 6= 0.
The circle |z − z0| ≤ n · | P (z0)

P ′(z0)
| contains at least one root of P (z).

Without further assumption the inclusion radius n · | P (z0)
P ′(z0)

| of Lemma 2.1 is op-
timal, but not in the situation of Theorem 1.5. If the set of roots can be separated
into at least two clusters and if the relative size of separation is known, this informa-
tion can be used directly in the proof of Lemma 2.1. This observation leads to the
following theorem.

Theorem 2.2. Given P (z) = an ·
∏n

i=1(z − ζi) ∈ C[z], an 6= 0, and z1 with
P ′(z1) 6= 0. Assume that the roots ζ1, · · · , ζk (k ≤ n) lie in D1 := {z ∈ C : |z − z1| ≤
n · | P (z1)

P ′(z1)
|}, and all other roots in the exterior of D1, i.e.,

1.) ζi ∈ D1 for 1 ≤ i ≤ k,
2.) ∃S > 1 : |z1 − ζi| ≥ S · n · | P (z1)

P ′(z1)
| for k + 1 ≤ i ≤ n.

Then the circle

|z − z1| ≤
k

n− (n− k)/S
· n · | P (z1)

P ′(z1)
|

contains a root.
Proof. The cases n = 1 or P (z1) = 0 are trivial. Assume n > 1 and P (z1) 6= 0.

The roots are assumed to be numbered such that ζ1 is the root with minimal distance
to z1, i.e. |z1 − ζ1| = min

i
|z1 − ζi|. Define δm := Snk+(n−k)δm−1

Sn = k + n−k
Sn δm−1 and
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δ0 := n. First, it will be shown by induction that the circle

|z − z1| ≤ δm · | P (z1)
P ′(z1)

|(2.1)

contains a root for every m. The claimed inclusion (2.1) is guaranteed for m = 0
by Lemma 2.1. Assume that (2.1) holds true for m, i.e. |z1 − ζ1| ≤ δm · | P (z1)

P ′(z1)
|.

Remember that the roots are numbered such, that for all i with 2 ≤ i ≤ k it holds
|z1 − ζi| ≥ |z1 − ζ1|. By assumption 2.) it is |z1 − ζi| ≥ Sn · | P (z1)

P ′(z1)
| for k + 1 ≤ i ≤ n,

and therefore |z1 − ζi| ≥ Sn
δm

· |z1 − ζ1|.
These estimates together show

|P
′(z1)

P (z1)
| = |

n∑
i=1

1
z1 − ζi

|

≤
k∑

i=1

| Sn

Sn(z1 − ζ1)
|+

n∑
i=k+1

| δm

Sn(z1 − ζ1)
| = Snk + (n− k)δm

Sn

1
|z1 − ζ1|

.

Therefore, |z1 − ζ1| ≤ Snk+(n−k)δm

Sn · | P (z1)
P ′(z1)

| = δm+1 · | P (z1)
P ′(z1)

|. The inclusion (2.1) is
established by induction. As n−k

Sn < 1, the sequence {δm} converges to the fixpoint
δ̂ := Snk

Sn−(n−k) > 0.
To obtain estimates suitable for the named applications, Theorem 2.2 will be ap-

plied for all zeros simultaneously. The improved inclusion implicitly causes a stronger
separation, and this leads to recursive improvement.

Proposition 2.3. Given P (z) = an ·
∏n

i=1(z − ζi) ∈ C[z] of degree n ≥ 3, and
n values zi with P ′(zi) 6= 0. Assume that for some C > 2,

max
i
| P (zi)
P ′(zi)

| <
min
i 6=j

|zi − zj |

C · n
.

Let E0 := 1 and ρ0 := C − 1, and define two sequences by

Eν+1 :=
1

n− n−1
ρνEν

, ρν+1 :=
ρ0 + 1
Eν+1

− 1.(2.2)

With suitable enumeration of the roots, the following holds true for all ν:
i) ζi ∈ {z ∈ C : |z − zi| ≤ Eν · n · | P (zi)

P ′(zi)
|} for all i.

ii) ζj ∈ {z ∈ C : |z − zi| ≥ ρν · Eν · n · | P (zi)
P ′(zi)

|} for all j 6= i.
The proof by induction is based on the following result.

Lemma 2.4. Given P (z) = an ·
n∏

i=1

(z−ζi) ∈ C[z] of degree n ≥ 3. Given n values

zi with P ′(zi) 6= 0. Assume there exist E > 0, ρ ≥ 1 with ρ · E > 1, such that
1.) ζi ∈ {z ∈ C : |z − zi| ≤ E · n · | P (zi)

P ′(zi)
|} for each i,

2.) ζj ∈ {z ∈ C : |z − zi| ≥ ρ · E · n · | P (zi)
P ′(zi)

|} for each j 6= i.

Define δ̂ := ρ·E·n
ρ·E·n−(n−1) . Then the following inclusion holds true:

ζi ∈ {z ∈ C : |z − zi| ≤ δ̂ · | P (zi)
P ′(zi)

|} for all i.
4



Proof. For any index i, the assumptions of Theorem 2.2 are satisfied for k = 1:
1.) by Lemma 2.1, 2.) with S := ρE. An induction argument yields a sequence of
radii with fixpoint δ̂ as in the proof of Theorem 2.2.

Proof. [of Proposition 2.3] By assumption, n ≥ 3, ρ > 1 and ρ0 · E0 > 1.
Expanding the defining formulas, it is obvious that the sequence {Eν} is monotonically
decreasing and the sequence {ρν} is monotonically increasing. Moreover, ρν ·Eν > 1.
By Lemma 2.1 at least one root is contained in each circle |z−zi| ≤ n · | P (zi)

P ′(zi)
|. These

circles are mutually disjoint, and each contains exactly one zero, which is obvious
from

min
u 6=v

|zu − zv| > (C − 1) · n · | P (zi)
P ′(zi)

|+ n · | P (zj)
P ′(zj)

|

> n · | P (zi)
P ′(zi)

|+ n · | P (zj)
P ′(zj)

| ,(2.3)

for arbitrary i, j. Hence, for each approximation zi the assumptions of Lemma 2.4 are
satisfied with E := E0, ρ := ρ0, therefore i), ii) hold true for ν = 0. Assume, that the
claimed estimates hold for ν = ν0. Then, with a fixed enumeration, the assumptions
of Lemma 2.4 are satisfied with E := Eν , ρ := ρν > 1 because of ρν · Eν > 1. This
leads to the inclusion estimate

ζi ∈ {z ∈ C : |z − zi| ≤ Eν+1 · n · |
P (zi)
P ′(zi)

|}.(2.4)

The exclusion region in ii) is a trivial consequence.
The limits of the sequences {Eν}, {ρν} in Proposition 2.3 yield new error estimates

as well. Theorem 1.4 will be a simple consequence of the following result.
Theorem 2.5. Given P (z) = an ·

∏n
i=1(z − ζi) ∈ C[z] of degree n ≥ 3, and n

values zi with P ′(zi) 6= 0. Assume that for some C > 2,

max
i
| P (zi)
P ′(zi)

| <
min
i 6=j

|zi − zj |

C · n
.

With ρ0 := C − 1 and Ê =
(

1
n + n−1

n · 2

ρ0·n+2·
√

(
ρ0·n

2 )2−(n−1)

)
the following holds true

(for a suitable enumeration of the zi):
i) The root ζi lies in the circle

|z − zi| ≤ Ê · n · | P (zi)
P ′(zi)

|,

ii) and for j 6= i, the root ζj lies in

|z − zi| ≥
[
C − Ê

]
· n · | P (zi)

P ′(zi)
|,

where
iii) Ê < C

C−1 .
Proof. Define the two sequences {ρν}, {Eν} as in (2.2). We find, that ρν ·Eν > 1,

and that both sequences are monotonic. By Proposition 2.3 we have the following
properties of the sequences. With suitable fixed enumeration it holds for each index
i = 1, · · · , n and every iteration index ν ≥ 0:
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1.) Each root ζi is isolated in the circle |z − zi| ≤ Eν · n · | P (zi)
P ′(zi)

|.
2.) The roots ζj , j 6= i, lie in the region |z − zi| ≥ ρν · Eν · n · | P (zi)

P ′(zi)
|.

If P (zi) = 0 for some i, then i), ii) hold true for that index, according to the assump-
tion and Lemma 2.1. Otherwise, we obtain a strictly monotonic sequence of inclusion
radii Ê ·n · | P (zi)

P ′(zi)
| with a non-zero limit. Therefore, the sequences Eν , ρν are bounded.

Passing to the limits Ê and ρ̂ retains the inclusion-exclusion properties from 1.), 2.).
It remains to calculate the limits. The recursion formula gives

Ê =
ρ̂ · Ê

ρ̂ · Ê · n− (n− 1)
,(2.5)

ρ̂ =
ρ0 + (1− Ê)

Ê
=

C − Ê

Ê
.(2.6)

Rearrangement of (2.5) shows

Ê =
ρ̂ + (n− 1)

ρ̂ · n
.(2.7)

Substitution in (2.6) shows

ρ̂ =
ρ0 + (1− ρ̂+(n−1)

ρ̂·n )
ρ̂+(n−1)

ρ̂·n

=
ρ̂ · ρ0 · n + ρ̂ · n− ρ̂− (n− 1)

ρ̂ + (n− 1)
.

This gives the quadratic equation

ρ̂ 2 − ρ̂ · ρ0 · n = −(n− 1).

Therefore, ρ̂ is either of ρ0·n
2 ±

√
(ρ0·n

2 )2 − (n− 1). Moreover,

ρ0 · n
2

−
√

(
ρ0 · n

2
)2 − (n− 1) < ρ0.

As the sequence {ρν} is monotonically increasing, its limit ρ̂ is given by

ρ̂ =
ρ0 · n

2
+
√

(
ρ0 · n

2
)2 − (n− 1) .

Substituting this in (2.7) shows

Ê =
1
n

+
n− 1

n
· 1
ρ̂

=
1
n

+
n− 1

n
· 2

ρ0 · n + 2 ·
√

(ρ0·n
2 )2 − (n− 1)

.(2.8)

Passing in 1.), 2.) from Eν , ρν to Ê, ρ̂ respectively yields i), ii). The inequality
( 1

n + n−1
n · 2

ρ0·n+2·
√

(
ρ0·n

2 )2−(n−1)
) · n < C

C−1 is easily verified for ρ0 = C − 1, which

yields iii).
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3. Simultaneous convergence of Newton’s method. Given a polynomial P
of degree n, the function α(z, f)|f=P

reads

α(z, P ) = | P (z)
P ′(z)

| max
k=2,···,n

|P
(k)(z)

k!P ′(z)
|1/(k−1).

Recall that by Theorem 1.3 the Newton iteration converges quadratically starting
from z0, if α(z0, P ) < 3− 2

√
2.

The sufficient convergence condition α(z0, P ) < 3−2
√

2 involves for a polynomial
of degree n only n point evaluations of rational functions, i.e., the condition only relies
on ’attainable data’. But the essential values P (k)(z)

k!P ′(z) which have to be calculated, are
not necessary in the actual computation. A new sufficient convergence condition
for Newton’s method will be established which only involves information ’naturally’
available from the Newton iteration.

As before, denote the zeros of P (z) by ζ1, · · · , ζn. To employ the new estimate
from Theorem 1.4, a different expression for α(z, P ) is useful. Suppose P (z) 6= 0.
Then

|P
(k)(z)

k!P ′(z)
|

= | 1
k!

P (k)(z) · P (z)−1 · P (z)
P ′(z)

|

= | 1
k!

( n∑
i1=1

n∑
i2=1
i2 6=i1

· · ·
n∑

ik=1

∀m<k:ik 6=im

n∏
j=1

j 6=i1,i2,···,ik

(z − ζj)
)( n∏

j=1

(z − ζj)
)−1 P (z)

P ′(z)
|

= | 1
k!
· k!
( n∑

i1,i2,···,ik=1
i1<i2<···<ik

n∏
j=1

j 6=i1,i2,···,ik

(z − ζj)
n∏

j=1

(z − ζj)−1
) P (z)

P ′(z)
|

= |
( n∑

i1,i2,···,ik=1
i1<i2<···<ik

1
(z − ζi1)(z − ζi2) · · · (z − ζik

)

) P (z)
P ′(z)

|.(3.1)

By (3.1), the function α(z, P ) may be expressed formally (P ′(z) · P (z) 6= 0) by

α(z, P ) = | P (z)
P ′(z)

| ·max
k>1

|P
(k)(z)

k!P ′(z)
|1/(k−1)

= | P (z)
P ′(z)

| ·max
k>1

|
( n∑

i1<i2<···<ik
i1,i2,···,ik=1

1
(z − ζi1) · · · (z − ζik

)

) P (z)
P ′(z)

|1/(k−1).(3.2)

If approximations zi of the roots ζi are given, lower estimates of |zi − ζj |, j = 1, · · · , n
facilitate the estimation of α(zi, P ) from (3.2).

Consider a fixed index i. Choosing a suitable numeration of the approximations
zj , assume |zi−ζi| = minj |zj−ζi|. Then, a lower estimate of |zi−ζi| in the non-trivial
case P ′(zi) · P (zi) 6= 0 can be obtained from lower estimates of |zi − ζj |, j 6= i and an
upper estimate of |zi − ζi| as follows. Using the relation

(zi − ζi) ·
P ′(zi)
P (zi)

=
n∑

j=1

zi − ζi

zi − ζj
or (zi − ζi) =

(
1 +

n∑
j=1
j 6=i

zi − ζi

zi − ζj

)
· P (zi)
P ′(zi)
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gives

|zi − ζi| ≥
(
1− (n− 1)|zi − ζi|

minj 6=i |zi − ζj |

)
· | P (zi)

P ′(zi)
|,(3.3)

which can be utilized for a lower estimate.
The well-known Lemma 2.1 shows |zi − ζi| ≤ n · | P (zi)

P ′(zi)
|. So it is quite obvious,

that conditions like (1.4) can be used to estimate α(z, P ) by estimating suitably the
distances |zi − ζj | in (3.2). The use of Theorem 1.4 improves the estimates involved,
so we are already prepared to prove Theorem 1.5.

Proof. [of Theorem 1.5] Assume P (zi) 6= 0. Let N := maxj

∣∣∣ P (zj)
P ′(zj)

∣∣∣. By Theo-
rem 1.4 with n ≥ 3 (and C = 8), a fixed enumeration can be chosen such that the
following estimates hold true.

|zi − ζi| <
8
7
· | P (zi)

P ′(zi)
| ≤ 8

7
·N for each i,(3.4)

|zi − ζj | ≥ |zi − zj | − |zj − ζj | > 8(n− 1
7
)N for each j 6= i.(3.5)

These estimates together with (3.3) yield

|zi − ζi| >
(
1−

(n− 1) 8
7 ·N

8(n− 1
7 ) ·N

)
· | P (zi)

P ′(zi)
| > 6

7
· | P (zi)

P ′(zi)
|.(3.6)

To prove convergence, α(zi, P ) will be estimated for each i ∈ {1, · · · , n}. It is
useful to split the sum in (3.2) dependent on i:

n∑
i1<i2<···<ik
i1,i2,···,ik=1

1
(z − ζi1)(z − ζi2) · · · (z − ζik

)

=
n∑

i1<i2<···<ik
i1,i2,···,ik=1
i∈{i1,···,ik}

1
(z − ζi1) · · · (z − ζik

)
+

n∑
i1<i2<···<ik
i1,i2,···,ik=1
i6∈{i1,···,ik}

1
(z − ζi1) · · · (z − ζik

)

=:
′∑

+
′′∑

.(3.7)

Using this notation together with (3.2), the function α(z, P ) can be written as

α(z, P ) =
∣∣∣∣ P (z)
P ′(z)

∣∣∣∣max
k>1

∣∣∣∣∣(
′∑

+
′′∑

)
P (z)
P ′(z)

∣∣∣∣∣
1/(k−1)

.(3.8)

For fixed i and k ≥ 2, the sum
∑′ (i ∈ {i1, · · · , ik}) comprises exactly

(
n−1
k−1

)
≤

(n − 1)k−1 terms, the complementary sum
∑′′ comprises

(
n−1

k

)
< (n − 1)k terms

accordingly.
The convergence of Newton’s method can be deduced after appropiate estimation

of α(zi, P ). Let µ := minj 6=i |zi − ζj |. From (3.7) with (3.4), (3.5) and (3.6) it follows

∣∣∣ ′∑
+

′′∑∣∣∣ < (n− 1)k−1 · 1
|zi − ζi|

(
1
µ

)k−1 + (n− 1)k · ( 1
µ

)k
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< | P ′(zi)
6/7 · P (zi)

|( (n− 1)
8(n− 1

7 )N
)k−1 + (

n− 1
8(n− 1

7 )N
)k

< | P ′(zi)
6/7 · P (zi)

|( 1
8 ·N

)k−1 + (
1

8 ·N
)k ,∣∣∣∣∣

( ′∑
+

′′∑)
P (zi)
P ′(zi)

∣∣∣∣∣ < 7
6
(

1
8 ·N

)k−1 + (
1

8 ·N
)k · | P (zi)

P ′(zi)
|

≤ 7
6
(

1
8 ·N

)k−1 +
1
8
· ( 1

8 ·N
)k−1

=
(7

6
+

1
8

)
(

1
8 ·N

)k−1.(3.9)

Hence, α(zi, P ) may be estimated with (3.8), (3.9) as

α(zi, P ) <
∣∣∣ P (zi)
P ′(zi)

∣∣∣ ·max
k>1

∣∣∣( 1
8 ·N

)k−1(7
6

+
1
8

)∣∣∣1/(k−1)

≤ 1
8
·
(7

6
+

1
8

)
.(3.10)

This yields α(zi, P ) < 3−2
√

2, and Theorem 1.3 implies that zi is an approximate zero.
By Definition 1.1, the quadratic convergence is guaranteed. As

∑∞
k=0(1/2)2

k−1 = 5/3,
all Newton iterates of zi lie in {z ∈ C : |z − zi| ≤ 5/3 · | P (zi)

P ′(zi)
|}. By (3.4) there is a

zero in {z ∈ C : |z − zi| ≤ 8/7 · | P (zi)
P ′(zi)

|}. The inclusion region with center zi − P (zi)
P ′(zi)

stated in Theorem 1.5, ii) is a simple consequence. These circles are pairwise disjoint.

Remark. A different proof shows that the new criterion (1.6) can be relaxed to
the domain of linear convergence.

4. Conclusion. A sufficient criterion for quadratic convergence of Newton’s
method has been established using a new error estimate. This criterion involves
only n Newton corrections, and it improves by O(n) on sufficient conditions directly
computed from the point estimate theory of Kim and Smale.
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