
LurupaRigorous Error Bounds in Linear ProgrammingChristian KeilHamburg University of Tehnology, Institute for Reliable Computing.keil�tu-harburg.deAbstrat. Linear Programming has numerous appliations. Reently ithas been shown that many real world problems exhibit numerial di�-ulties due to ill-onditioning.This paper desribes Lurupa, a software pakage for omputing rigorousbounds for the optimal value of a linear program. The pakage an handlepoint and interval problems. Numerial experiene with the Netlib lplibrary is given.Keywords. linear programming, rigorous error bounds, Netlib lp li-brary, interval arithmeti1 IntrodutionIt is well known that the errors introdued by �oating point arithmeti a�etthe results of numeri omputation. It is also known that the degree of in�uenedepends on the ondition number of the problem to be solved. What is lessknown is the fat, that for seemingly simple problems like linear programmingthe ondition an be very poor even for non arti�ial, real world problems.In a reent paper by Ordóñez and Freund [1℄ the authors show that 71% ofthe linear programs in the Netlib lp library [2℄ exhibit numerial di�ulties dueto ill-onditioning. This emphasizes the need for veri�ation tools for these kindsof problems.One approah to this is to use rational arithmeti to verify the optimalityof the returned solution. This has been done for example by Gärtner [3℄. Hefouses on problems where either the number of onstraints or variables is small.While this is ommon for problems from omputational geometry, it is not om-mon for linear programming in general. In fat only a handful of problems fromthe Netlib approximately satisfy this requirement. For the other problems hismethod, whih utilizes an expliit inverse, is not appliable. Another variant ofusing rational arithmeti was investigated by Dhi�aoui et al [4℄. They imple-mented methods that verify the primal or dual feasibility of a basis index setand an exat lp-solver that an start at a given basis or from srath. The startbasis an be taken from an approximate solver. This approah is appliable togeneral linear programming problems. A tool whih only veri�es the optimalityof an approximate solution was desribed by Koh [5℄.



2 C. KeilThe drawbak of using rational arithmeti, however, is that it is only appli-able to problems with a rational solution. While this is ertainly the ase forlinear programming, for semide�nite programming for example it is not. Se-ond no sensitivity analysis is performed. Computing the exat solution does notguarantee that it is meaningful for a physial problem.All of the above problems of using rational arithmeti an be addressed withtools using interval arithmeti. Lurupa is suh a tool designed to ompute rig-orous bounds for the optimal value of a linear program. In ontrast to rationalarithmeti it allows unertainties in the input data. The omputational omplex-ity is an additional bene�t of the algorithms implemented in Lurupa with respetto branh�and�bound frameworks for global optimization. The rigorous lowerbound an in most ases be omputed in O(n2) operations where n is the num-ber of variables. This is the same order of omplexity whih is required to solvesubproblems unveri�ed using hot-start failities. Hene a rigorous branh�and�bound algorithm should be slowed down at most by a onstant fator. Notiethat obtaining the lower bound by a veri�ation of the Karush�Kuhn�Tukeronditions or the Fritz�John onditions (see Kearfott [6℄ and Hansen and Wal-ster [7℄) would require O(n3) operations and slow down the algorithm at leastby a fator of n. A generalization of the ideas to the semide�nite ase along withnumerial experiene an be found in [8℄.For desribing Lurupa we will start with a look at the theory behind theomputations done in the pakage. Then we will investigate the software itself,the arhiteture and typial usage. Following is a survey of the numerial expe-riene with the Netlib lp library. Finally we will take a look at some limitationsand future work.2 TheoryThe algorithms to ompute the rigorous bounds for the optimal value that areimplemented in Lurupa are based on the ones developed by Jansson [9℄. Theyare modi�ed with respet to the set of variables that are solved for to satisfy theonstraints. In Jansson's paper two theorems are presented, whih are repeatedhere without proof. The idea is to derive bounds for the optimal value from boxesthat are veri�ed to ontain feasible points. These boxes are obtained iterativelyby the solution of slightly perturbed linear programs.To investigate the theorems let us look at a linear program of the form
f∗ := min cT x

s.t. Ax ≤ a

Bx = b

x ≤ x ≤ x.

(1)We an desribe this linear program with the parameter tuple P := (c, A, a, B, b)and the simple bounds x, x. Some or all simple bounds may be in�nite; that is
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xi = −∞ and xi = ∞ is allowed. The linear program's dual is

f∗ := max aT y + bT z + xT u + xT v

s.t. AT y + BT z + u + v = c

y ≤ 0, u ≥ 0, v ≤ 0.

(2)To deal with unertainties in the input data, we an substitute the elementsof P with interval parameters leading to interval problems P := (c,A,a,B,b).We do not onsider unertainties in the simple bounds as these are often exatlyknown suh as the positiveness of variables.Theorem 1 (Lower Bound). Given an interval linear program P and simplebounds x ≤ x. Suppose interval vetors y ≤ 0, z satisfy1. for all free xj (i.e., xj = −∞, xj = ∞) and all A ∈ A, B ∈ B there exists
y ∈ y, z ∈ z suh that

cj − (A:j)
T y − (B:j)

T z = 0holds, and2. for all variables xj bounded on one side only the defets
dj := cj − (A:j)

Ty − (B:j)
T zare nonnegative if the variable is bounded from below and nonpositive if it isbounded from above.Then y, z ontain a dual feasible solution y(P ), z(P ) for eah P ∈ P, and alower bound for the optimal value an be omputed as

inf
P∈P

f∗(P ) ≥ f∗ := inf{aT y + bT z +
∑

xj 6=−∞

xjd
+

j +
∑

xj 6=∞

xjd
−
j }. (3)Theorem 2 (Upper Bound). Given an interval linear program P and simplebounds x ≤ x. Suppose interval vetor x satis�es

Ax ≤ a, x ≤ x ≤ x,and for all B ∈ B, b ∈ b exists x ∈ x with
Bx = b.Then x ontains a primal feasible solution x(P ) for eah P ∈ P, and an upperbound for the optimal value an be omputed as

sup
P∈P

f∗(P ) ≤ f
∗

:= max{cT x}. (4)Moreover, if the objetive funtion is bounded from below for every linear programwith input data P ∈ P, then eah problem has an optimal solution.



4 C. Keil3 SoftwareLurupa was designed with modularity and �exibility in mind. The aim is toprovide a fast implementation of rigorous algorithms for linear programmingproblems. These shall be available as standalone versions and as a library to beintegrated into larger frameworks. The implementation is in ANSI C++.3.1 ArhitetureThe overall arhiteture is depited in Figure 1. The main work is performedby a omputational ore, whih uses the PROFIL/BIAS library [10℄ for therigorous omputations. This ore is instruted either via the ommand line lientor using the API, that is diretly alling the methods exposed by the ore.To do the approximative omputations the ore itself aesses arbitrary linearprogramming solvers via wrapper lasses with a ommon interfae. Beside theseomponents are the lasses for reporting and model storing.
Core API

command line client

Report Storage

Solver_module

Sm_lps5_5lp_solve

PROFIL/BIAS

Fig. 1. ArhitetureTaking a tour of the essential parts and starting with the omputationalore, we see in Figure 2 a UML Class diagram of the atual worker lass Lurupa.The main routines to use the ore are set_solver_module, read_lp, solve_lp,lower_bound, and upper_bound. The former two are responsible for setting upthe environment. That is seleting a solver module and thus a linear program-ming solver and reading the linear program itself. To represent unertainties inthe model, the parameters an be in�ated to intervals with a spei�ed relativeradius. With solve_lp the solver is instruted to ompute an approximate so-lution to the problem. The subsequent veri�ation is performed by the last twomethods, whih ompute the rigorous lower and upper bound for the optimalvalue. To �ne-tune the omputations the remaining methods may be used to



Lurupa 5hange algorithm parameters. For details onerning the role of the parame-ters refer to Jansson [9℄. The reports an be ustomized via the Report lass.Calling set_verbosity adjusts the verbosity level of displayed messages. Thetwo remaining parameters speify whether messages are printed with prependedtime and whether intermediate vetors and matries are stored to disk for laterexamination.
Lurupa

 set_solver_module(module_path:char *): bool

 read_lp(in:FILE *,relative_interval_radius:double): Lp *

 solve_lp(lp:Lp *,optimal_value:double &): bool

 lower_bound(lp:Lp *,bound:double &,iterations:int &): Bound_status

 upper_bound(lp:Lp *,bound:double &,iterations:int &): Bound_status

 set_alpha(alpha:double)

 get_alpha(): double

 set_eta(eta:double)

 get_eta(): double

 set_inflate(inflate:bool)

 is_inflate(): bool

Report

 set_verbosity(level:short,print_time:bool,write_vm:bool)Fig. 2. CoreLooking loser at the solver modules in Figure 3, we �nd the ommon in-terfae Solver_module with the general methods read_lp, solve_original,solve_primal_perturbed, solve_dual_perturbed, and set_module_options.Reading an lp from a �le is the task of read_lp. An objet of the storage lassis initialized with the model from the spei�ed �le. The lp parameters an be in-�ated to intervals and the algorithm parameter eta is adjusted to the model. Themethods to solve the original and primal and dual perturbed models have twoparameters. All three need the model to be solved. Solving the original lp returnsthe optimal value in the parameter optimal_value. The perturbed methods re-quire the perturbation to be applied. With set_module_options solver spei�settings an be hanged in a ommand line argument way.These methods are inherited and implemented by the solver spei� modules,depited by the exemplary lp_solve [11℄ module Sm_lps5_5. The solver moduleshave to translate the above alls to orresponding alls to the solver. As eahsolver stores the model and assoiated data in a di�erent format they also haveto translate these strutures to the representation of Lurupa and keep trak ofany additional solver spei� information. This information an be attahed toLurupa's model representation.
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<<interface>>

Solver_module

 read_lp(lp:Lp *,in:FILE *,relative_interval_radius:const double,eta:double &)

 solve_original(lp_lurupa:Lp *,optimal_value:double &)

 solve_primal_perturbed(deflation:const Primal_deflation &,lp_lurupa:Lp *)

 solve_dual_perturbed(deflation_c:const VECTOR &,lp_lurupa:Lp *)

 set_module_options(argc:int,argv:char *[],lp_lurupa:Lp *)

Sm_lps5_5Fig. 3. Solver moduleThe �nal missing piee is the Lp lass for storing the model as seen in Figure 4.It stores the tuple P and x, x, along with meta data like the name of the model,and the number and indies of the free variables. Further it stores the informationabout the approximate primal and dual solutions x,y, z. The dual solution issplit into a part orresponding to less equal� and equal�onstraints. Storingsolver spei� information is shown in the ase of lp_solve with the mapping ofless equal� and equal�onstraint indies to overall onstraint indies, mp_le_onand mp_eq_on, respetively.3.2 UsageThe usage of Lurupa depends on the atual environment and task. One way touse the software is via the ommand line lient the other diretly via the API.Using the software in a stand-alone fashion with the ommand line is theeasier part without the need for further programming. The ommand line lientdisplays some meta data from the model like the name and diretion of optimiza-tion, formats the results returned by the ore, and adds time ratios and relativeauraies of the bounds. All the options that are available are seleted throughthe use of ommand line parameters. These are divided into general and solverspei� parameters.The main general parameters are -lp <path/to/lp>, -lb, and -ub, whihspeify the lp to be proessed and request the lower and upper bound to beomputed, respetively. Summarizing the general parameters are displayed inTable 1.To selet a solver module the -sm <path/to/solver module> parameteris used. Further parameters depend on the seleted module. They inlude forexample algorithm settings for the solver and timeout settings. The parametersavailable with the lp_solve module are ontained in Table 2.A typial all with the ommand line lient islurupa -sm Sm_lps5_5 -lp lp.mps -lb -ub -v3



Lurupa 7-alpha d Set algorithm parameter alpha to d.-sv <�le> Append the results to the sv �le <�le>[.sv ℄, with the exten-sion being appended if not present.-eta d Set algorithm parameter eta to d.-i d Compute bounds for an interval problem derived from the onespei�ed. Change all parameters to intervals with a relativeradius of d.-in�ate Try in�ating the model if a perturbed one seems to be infeasible.-latex <�le> Append the results to the latex table in the �le <�le>[.tex ℄with the extension being appended if not present.-lb Compute the lower bound.-lp <�le> Read the linear program to be proessed from <�le>. Must bein a format that an be interpreted by the hosen solver module.If this swith is not present, the model is read from stdin.-sm <�le> Use the solver module <�le> to solve the linear programs.-t Prepend time information to messages.-ub Compute the upper bound.-vn Selet verbosity level:-v0 No messages-v1 Errors-v2 Warnings (default)-v3 Brief-v4 Normal-v5 Verbose-v6 Full-write_vm Write intermediate vetors and matries to disk.Table 1. General ommand line parameters
-sm,timeout,<se> Set solver timeout in seonds.-sm,vn Set solver verbosity:v0: NEUTRALv1: CRITICALv2: SEVEREv3: IMPORTANT (default)v4: NORMALv5: DETAILEDv6: FULLTable 2. Lp_solve module ommand line options
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Lp

 ic: INTERVAL_VECTOR

 IA: INTERVAL_MATRIX

 ia: INTERVAL_VECTOR

 IB: INTERVAL_MATRIX

 ib: INTERVAL_VECTOR

 xl: VECTOR

 xu: VECTOR

 name: char *

 free_variables: int *

 free_variables_size: int

 ix: INTERVAL_VECTOR

 iy: INTERVAL_VECTOR

 iz: INTERVAL_VECTOR

Lp_lps5_5

 mp_le_con: int *

 mp_eq_con: int *Fig. 4. LpThis all uses solver module Sm_lps5_5 to proesses the model lp.mps. Thelower and upper bound for the optimal value are omputed. Verbosity is set tolevel 3, whih is 'Brief', algorithm parameters are left at their default values.The integration of Lurupa into larger frameworks is possible using the pak-age as a library through the API. While the ommand line lient adds someoutput there is no further di�erene in funtionality or available features to theommand line lient.Lurupa exposes its funtionality through the ore Lurupa lass. Lookingbak at Figure 2, the example from above would look like Listing 1 when donevia the API. After the alls to lower_bound and upper_bound the lower andupper bound are ontained in lbound and ubound, respetively. The value ofliterations and uiterations indiates the number of neessary algorithm it-erations.4 Numerial ExperieneThe Netlib lp library of numerous problems from pratial bakground is a well�tting olletion of test problems. Here only an overview of our numerial ex-periene is given. Detailed results inluding interval problems an be found in[12℄.Ordòñez and Freund [1℄ de�ned a ondition number for a linear programbased on the distanes to the nearest primal infeasible and dual infeasible prob-lem, ρp and ρd, respetively. The ondition number follows as the sale invariant



Lurupa 9Lurupa l;l. set_solver_module ("Sm_lps5_5 ");l.report. set_verbosity (3, false , false);FILE *in = fopen("lp.mps", "r");Lp lp = l.read_lp(in , 0);double optimal , lbound , ubound;int literations , uiterations ;l.solve_lp (lp , optimal );l.lower_bound (lp , lbound , literations );l.upper_bound (lp , ubound , uiterations );Listing 1. API Usagereiproal of the minimal distane to infeasibility. The results show that the lowerand upper bound is omputed if the distane to dual and primal infeasibility,respetively, is greater than 0.Table 3 ontains an overview of the results obtained in [12℄. For 76 out of89 problems a �nite lower bound ould be omputed. Only 3 of the remainingproblems have a distane to dual infeasibility being greater than 0. The othersare dual ill-posed. Examining the upper bound, 35 problems yield a �nite one.From the remaining problems only 2 have a distane to primal infeasibility beinggreater than 0. It seems reasonable that bounds for the remaining problems witha distane to infeasibility greater than 0 an be omputed by �ne tuning thealgorithms. In 32 ases both bounds were �nite. For eah of these groups thetable ontains the median values for the relative auray
µ(a, b) :=

|a − b|

max{1,
|a+b|

2
}and the required time ratios. The time to solve the problem approximately isdenoted by tf∗ , the times to ompute the bounds by tf∗ and tf∗ .The median values of the relative auray show us approximately 8 orretdigits for all three groups, whih is lose to optimal when taking into aountthe set stopping tolerane 10−9 of the used lp-solver. While the lower boundis heaper than solving the problem itself, the upper bound is more expensive.This an be attributed to the equation systems that have to be solved whenomputing the upper bound.5 Limitations and Future WorkAt the moment the interval representation of the linear program is dense dueto PROFIL/BIAS not supporting sparse matrix strutures. I am working on animplementation of suh strutures to be available in a future version of PRO-FIL/BIAS.



10 C. Keil 76 �nite lower bounds
med(µ(f∗, f∗)) = 2.183e − 8 med(tf∗/tf∗) = 0.50035 �nite upper bounds
med(µ(f

∗

, f∗)) = 8.034e − 9 med(tf
∗/tf∗) = 5.25032 �nite pairs

med(µ(f
∗

, f∗)) = 5.620e − 8Table 3. Overview of Netlib resultsOf great interest is also the onnetion to the work of Ordóñez and Freund.They show the distanes to infeasibility to be omputable as the minimal ob-jetive value of a number of linear programs. This makes Lurupa appliable toompute veri�ed distanes to infeasibility and thus veri�ed ondition numbersfor linear programs. Conneted is the topi of erti�ates for infeasibility andunboundedness, whih will be implemented in Lurupa.Ordòñez and Freund also observed that preproessing has a onsiderable im-pat on the ondition number of the problem. Fourer and Gay [13℄ showed, how-ever, that preproessing an hange the state of a linear program from feasibleto infeasible and vie versa. This suggests investigation of veri�ed preproessing.The ideas used in Lurupa for well-posed linear programs an be extendedto ill-posed problems. Also a generalization to arbitrary onvex optimizationproblems is possible (see Jansson [14℄, [15℄).Referenes1. Ordóñez, F., Freund, R.: Computational experiene and the explanatory valueof ondition measures for linear optimization. SIAM J. Optimization 14 (2003)307�3332. Netlib: (Netlib linear programming library) http://www.netlib.org/lp.3. Gärtner, B.: Exat arithmeti at low ost � a ase study in linear programming.Computational Geometry 13 (1999) 121�1394. Dhi�aoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Shömer, E.,Shulte, R., Weber, D.: Certifying and repairing solutions to large lps how goodare lp-solvers? In: SODA. (2003) 255�2565. Koh, T.: The �nal netlib-lp results. Tehnial Report 03-05, Konrad-Zuse-Zentrum für Informationstehnik Berlin, Takustraÿe 7, D-14195 Berlin-Dahlem,Germany (2003)6. Kearfott, R.: Rigorous Global Searh: Continuous Problems. Kluwer AademiPublisher, Dordreht (1996)7. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Seondedition edn. Pure and Applied Mathematis. Dekker (2003)
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