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Abstract. A wide variety of problems in global optimization, combinatorial optimization as
well as systems and control theory can be solved by using linear and semidefinite programming.
Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and
degeneracy, erroneous results may be produced. The purpose of this article is to show how rigorous
error bounds for the optimal value can be computed by carefully postprocessing the output of a
linear or semidefinite programming solver. It turns out that in many cases the computational costs
for postprocessing are small compared to the effort required by the solver. Numerical results are
presented including problems from the SDPLIB and the NETLIB LP library; these libraries contain
many ill-conditioned and real life problems.
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1. Introduction. We consider the (primal) semidefinite program in block diag-
onal form

p∗ := min
n∑

j=1

〈Cj , Xj〉 s.t.
n∑

j=1

〈Aij , Xj〉 = bi for i = 1, . . . ,m,

Xj � 0 for j = 1, . . . , n,

(1.1)

where Cj , Aij , and Xj are symmetric sj × sj matrices, b ∈ Rm, and

〈C,X〉 = trace (CT X) (1.2)

denotes the inner product for the set of symmetric matrices. Moreover, � is the
Löwner partial order, that is X � Y iff X − Y is positive semidefinite. In the case
n = 1 we suppress the index j, and write shortly C,X,Ai, and s for the dimension.

If sj = 1 for j = 1, . . . , n (i.e., Cj , Aij , and Xj are real numbers), then (1.1)
defines the standard linear programming problem. Hence, semidefinite programming
is an extension of linear programming.

The Lagrangian dual of (1.1) is

d∗ := max bT y s.t.
m∑

i=1

yiAij � Cj for j = 1, . . . , n, (1.3)

where y ∈ Rm. The constraints
∑m

i=1 yiAij � Cj are called linear matrix inequalities
(LMI). We use the convention that p∗ = −∞ if (1.1) is unbounded and p∗ = ∞ if
(1.1) is infeasible. The analogous convention is used for (1.3).

The duality theory is similar to linear programming, but more subtle. The pro-
grams satisfy the weak duality condition

d∗ ≤ p∗, (1.4)
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but strong duality requires in contrast to linear programming additional conditions
(see for example Nemirovski [32], Ramana, Tunçel, and Wolkowicz [39] and Vanden-
berghe and Boyd [49]).

Theorem 1.1 (Strong Duality Theorem).

a) If (1.1) is strictly feasible (i.e., there exist feasible positive definite matrices
Xj for j = 1, . . . , n) and p∗ is finite, then p∗ = d∗ and the dual supremum is
attained.

b) If (1.3) is strictly feasible (i.e., there exists some y ∈ Rm such that Cj −∑m
i=1 yiAij are positive definite for j = 1, . . . , n) and d∗ is finite, then p∗ =

d∗, and the primal infimum is attained.
In general, one of the problems (1.1) and (1.3) may have optimal solutions while

its dual is infeasible, or the duality gap may be positive at optimality. The strict
feasibility assumptions in Theorem 1.1 are called Slater’s constraint qualifications.

Semidefinite programming and LMI-methods are documented by many applica-
tions and a number of survey papers (for example Skelton and Iwasaki [45], Balakr-
ishnan and Feron [3], and Vandenberghe and Boyd [49]). Applications include global
optimization problems, optimal state space realizations, robust controller design, inte-
ger programming problems, as well as eigenvalue problems in the form of minimizing
the largest, or minimizing the sum of the first few largest eigenvalues of a symmetric
matrix X subject to linear constraints on X.

Semidefinite programs can be solved in polynomial time if an a priori bound for
the size of their solution is known (see M. Grötschel, L. Lovász, and A. Schrijver [12]).
This is a consequence of the ellipsoid method for convex programming. The ellipsoid
method has not proven practical, and interior point methods turned out to be the
method of choice in semidefinite programming.

Conventionally, algorithms assume that the input data are given exactly, and they
use floating point arithmetic for computing an approximate solution. Occasionally,
wrong results may be produced, not solely but especially for ill-conditioned and ill-
posed problems in the sense defined by Renegar [40]. He defines the condition number
as the scale-invariant reciprocal of the smallest data perturbation that will render the
perturbed data instance either primal or dual infeasible. It is set to ∞ if the distance
to primal or dual infeasibility is 0, and in this case the problem is called ill-posed.
Examples where commercial solvers fail to solve linear optimization problems can
be found in Neumaier and Shcherbina [37], and in [17]. It cannot be answered how
frequently such failures occur. Ill-conditioning is, however, frequently observed. In a
paper by Ordóñez and Freund [38] it is stated that 71% of the LP-instances in the
NETLIB Linear Programming Library [33] are ill-posed, i.e., the problems have an
infinite condition number. Recently, Freund, Ordóñez and Toh [9] solved 85 out of
the 92 problems of the SDPLIB [5] with SDPT3 [47] and investigated the interior-
point iteration counts with respect to different measures for semidefinite programming
problems. They omitted the four infeasible problems and three very large problems
where SDPT3 ran out of memory. Of the remaining 85 problems they have shown 32
to be ill-posed.

As pointed out in Neumaier and Shcherbina [37], ill-conditioning is also likely to
take place in combinatorial optimization when branch-and-cut procedures sequentially
generate linear or semidefinite programming relaxations. Therefore, the computation
of rigorous error bounds, which take account of all rounding errors and of small errors
in the input data, is valuable in practice.

The primary purpose of this paper is to show that by properly postprocessing
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the output of a semidefinite or linear solver, rigorous error bounds for the optimal
value can be obtained. Moreover, existence of optimal solutions can be proved, or a
certificate of infeasibility can be given. The input data are allowed to vary within small
intervals. Our numerical experience with the NETLIB LP library and the SDPLIB
demonstrates that, roughly speaking, rigorous lower and upper error bounds for the
optimal value are computed even for ill-conditioned and degenerate problems. The
quality of the error bounds depends on the quality of the computed approximations
and the distances to dual and primal infeasibility. By comparing these bounds, one
knows whether the computed results are good.

The presented results can be viewed as a further development of similar meth-
ods for linear programming (Neumaier and Shcherbina [37], and [17]) and convex
programming [16].

The paper is organized as follows. Section 2 contains notation. In Section 3
an algorithm for computing a rigorous lower bound of the global minimum value is
considered, and in Section 4 a rigorous upper bound of the optimal value together with
a certificate of existence of optimal solutions is presented. In Section 5 we show how
these rigorous bounds can be used for obtaining certificates of infeasibility. Section 6
contains numerical results and some remarks on other software packages. Finally, in
Section 7 some conclusions are given.

2. Notation, interval arithmetic. Throughout this paper we use the following
notation. We denote by R, Rn, Rn

+, and Rm×n the sets of real numbers, real vectors,
real nonnegative vectors, and real m × n matrices, respectively. Comparisons ≤,
absolute value | · |, min, max, inf, and sup are used entrywise for vectors and matrices.
The identity matrix is denoted by Id.

For a symmetric matrix A the eigenvalues are sorted non-increasingly, λmax(A) =
λ1(A) ≥ λ2(A) ≥ . . . ≥ λmin(A).

For µ ∈ R the operator

svec(A,µ) := (A11, µA21, . . . , µAn1, A22, µA32, . . . , µAnn−1, Ann)T , (2.1)

transforms symmetric n × n matrices into (n + 1)n/2 dimensional vectors with the
property that the inner product of two symmetric matrices A,B is

〈A,B〉 = svec(A, 2)T svec(B, 1) = svec(A,
√

2)T svec(B,
√

2), (2.2)

and svec(A,
√

2) is the customary svec operator. We prefer the first representation of
the inner product, since this avoids conversion errors of the input data of semidefinite
programs in its vector representation form. The inverse operator of svec is denoted
by smat(a, µ) where a is the vector representation (2.1).

For block matrices with blocks Aj for j = 1, . . . , n we define the concatenated
vector

svec((Aj), µ) := (svec(A1, µ); . . . ; svec(An, µ)). (2.3)

We require only some elementary facts about interval arithmetic, which are de-
scribed here. There are a number of textbooks on interval arithmetic and self-
validating methods that we highly recommend to readers. These include Alefeld
and Herzberger [1], Moore [31], and Neumaier [34], [35].

If V is one of the spaces R, Rn, Rm×n, and v, v ∈ V, then the box

v := [v, v] := {v ∈ V : v ≤ v ≤ v} (2.4)
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is called an interval quantity in IV with lower bound v and upper bound v. In
particular, IR, IRn, and IRm×n denote the set of real intervals a = [a, a], the set
of real interval vectors x = [x, x], and the set of real interval matrices A = [A,A],
respectively. The real operations A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers,
real vectors, and real matrices can be generalized to interval operations. The result
A◦B of an interval operation is defined as the interval hull of all possible real results,
that is

A ◦B := ∩{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}. (2.5)

All interval operations can be easily executed by working appropriately with the
lower and upper bounds of the interval quantities. For example, in the simple case of
addition, we obtain

A + B = [A + B,A + B]. (2.6)

Interval multiplications and divisions require a distinction of cases. Similarly all
operations (2.5) between interval vectors and interval matrices can be executed. For
example the i, j component of the product of two interval matrices C,X ∈ IRn×n is

(CX)ij =
n∑

k=1

CikXkj . (2.7)

and the inner product

〈C,X〉 = trace (CT X) =
n∑

i,j=1

CijXij . (2.8)

For interval quantities A,B ∈ IV we define

midA := (A + A)/2 as the midpoint, (2.9)
radA := (A−A)/2 as the radius, (2.10)
|A| := max{|A| : A ∈ A} as the absolute value, (2.11)
A+ := max{0, A}, (2.12)
A− := min{0, A}. (2.13)

Moreover, the comparison in IV is defined by

A ≤ B iff A ≤ B,

and other relations are defined analogously. Real quantities v are embedded in the
interval quantities by identifying v = v = [v, v].

We call A ∈ IRn×n symmetric, if Aij = Aji for all i, j, and A is called positive
semidefinite if all A ∈ A have this property.

For linear systems of equations with inexact input data, the aim frequently is to
compute an interval vector x ∈ IRn containing the solution set

Σ(A,b) := {x ∈ Rn : Ax = b for some (A, b) ∈ (A,b)}, (2.14)

where A ∈ IRn×n, and b ∈ IRn. This is an NP-hard problem, but there are several
methods that compute enclosures x. A precise description of such methods, required
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assumptions, and approximation properties can be found for example in Neumaier
[34]. Roughly speaking, it turns out that for interval matrices with ‖Id − RA‖ < 1
(R is an approximate inverse of the midpoint midA) there are several methods which
compute an enclosure x with O(n3) operations. The radius radx decreases linearly
with decreasing radii radA and radb. For the computation of enclosures in the case
of large-scale linear systems the reader is referred to Rump [42].

In interval arithmetic several methods for computing rigorous bounds for all or
some eigenvalues of interval matrices were developed. Some important references are
Floudas [7], Mayer [30], Neumaier [36], and Rump [42, 43].

3. Rigorous lower bound. In many applications some or all input data are
uncertain. We model these uncertainties by intervals. In the case of semidefinite
programming we assume that symmetric interval matrices Cj ,Aij ∈ IRsj×sj , i =
1, . . . ,m, j = 1, . . . , n, and an interval vector b ∈ IRm are given. This yields a family
of semidefinite programs (1.1), where the input data P = (A, b, C) are allowed to vary
within interval bounds P := (A,b,C).

In order to indicate the dependency on the input data, we sometimes write p∗(P ),
d∗(P ), X∗(P ), etc.

First, we state a lemma proving a lower bound for the inner product of two
symmetric matrices.

Lemma 3.1. Let D,X be symmetric matrices of dimension s that satisfy

d ≤ λmin(D), 0 ≤ λmin(X), and λmax(X) ≤ x. (3.1)

Then

〈D,X〉 ≥ s · d− · x, (3.2)

where d− := min{0, d}.
Proof. Let D have the eigenvalue decomposition

D = QΛ(D)QT , QQT = Id,

where Λ(D) is the diagonal matrix with eigenvalues of D on the diagonal. Then

〈D,X〉 = trace(QΛ(D)QT X)
= trace(Λ(D)QT XQ)

=
s∑

k=1

λk(D)Q(:, k)T XQ(:, k).

Because of (3.1), we have 0 ≤ Q(:, k)T XQ(:, k) ≤ x yielding

〈D,X〉 ≥
s∑

k=1

λk(D)− · x ≥ s · d− · x.

We are now ready to prove a rigorous lower bound for the optimal value p∗.
Theorem 3.2. Let P define a family of semidefinite programs (1.1) with input

data P ∈ P, let ỹ ∈ Rm, set

Dj := Cj −
m∑

i=1

ỹiAij for j = 1, . . . , n, (3.3)
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and suppose that

dj ≤ λmin(Dj) for j = 1, . . . , n. (3.4)

Assume further that upper bounds for the maximal eigenvalues of the primal feasible
solutions of (1.1)

λmax(Xj) ≤ xj , for j = 1, . . . , n (3.5)

are known, where xj may be infinite. If

dj ≥ 0 for xj = +∞, (3.6)

then for every P ∈ P the inequality

p∗(P ) ≥ inf{bT ỹ +
n∑

j=1

sj · d−j · xj} (3.7)

is satisfied, and the right hand side of (3.7) is finite1. Moreover, for every P ∈ P and
every j with dj ≥ 0 the LMI

m∑
i=1

yiAij − Cj � 0

is feasible with y := ỹ.
Proof. Let P = (A, b, C) ∈ P be chosen fixed, and let Xj = Xj(P ) be primal

feasible for P and j = 1, . . . , n. Let

Dj = Cj −
n∑

i=1

ỹiAij for j = 1, . . . , n,

then
n∑

j=1

〈Cj , Xj〉 − bT ỹ =
n∑

j=1

〈Dj , Xj〉.

Since Dj ∈ Dj , Lemma 3.1 implies

n∑
j=1

〈Dj , Xj〉 ≥
n∑

j=1

sj · d−j · xj ,

which proves the inequality (3.7), and the assumption (3.6) yields a finite right hand
side. The last statement is an immediate consequence of Dj ∈ Dj and λmin(Dj) ≥
dj ≥ 0.

Observe that ỹ is dual feasible provided dj ≥ 0 for j = 1, . . . , n. Hence in this
case, (3.7) yields the lower bound inf{bT ỹ} for the dual optimal value d∗(P ) for every
P ∈ P.

In order to judge the quality of the lower bound (3.7), we assume that

1Notice that bT y is an interval operation yielding an interval for the expression in the braces in
(3.7). Hence, the infimum denotes the lower bound of this interval. This notation applies also for
the supremum and subsequently.
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i) exact input data P = P are given,
ii) D = D is computed exactly, and
iii) Slater’s constraint qualifications (cf. Section 1) are fulfilled.

Moreover, let ỹ be the optimal solution of the dual problem (1.2), and let dj = λmin(D)
for j = 1, . . . , n. Then dj ≥ 0 for j = 1, . . . , n, and

p∗(P ) = d∗(P ) = bT ỹ.

Hence, no overestimation occurs, and it follows that the quality of this lower bound
mainly depends on the quality of the dj and on the computed approximation ỹ.

An immediate consequence of Theorem 3.2 is the following error bound for linear
programming problems

p∗ := min cT x s.t. Ax = b, x ≥ 0, (3.8)

which is proved in [17], and in [37] for finite bounds xj . The input data are A ∈ Rm×n,
b ∈ Rm, c ∈ Rn and P = (A, b, c) ∈ Rm×n+m+n.

Corollary 3.1. Let P = (A,b, c) ∈ IRm×n+m+n, ỹ ∈ Rm, and let

d := c−AT ỹ. (3.9)

Assume further that upper bounds of the primal feasible solutions

xj ≤ xj for j = 1, . . . , n

are known for all P ∈ P, which may also be infinite. If

dj ≥ 0 for xj = +∞, (3.10)

then for every P ∈ P the optimal value p∗(P ) satisfies the inequality

p∗(P ) ≥ inf{bT ỹ +
n∑

j=1

d−j · xj}. (3.11)

Proof. Apply Theorem 3.2 to the semidefinite program where the symmetric
matrices Aij , Cj and Xj are one-dimensional.

Next, we describe an algorithm for computing a lower bound of the optimal value,
which is based on Theorem 3.2. We assume that an approximate dual optimal solution
ỹ ∈ Rm of the midpoint problem midP is known. If condition (3.6) is fulfilled, the
only work is to compute the right hand side of (3.7). Otherwise, the idea is to perturb
all constraints which violate condition (3.6); that is, we solve a perturbed midpoint
problem P = (midA,midb, C(ε)) with

Cj(ε) = midCj − εjId, εj =
{

> 0 if dj < 0 and xj = +∞
0 otherwise. (3.12)

Then the dual optimal solution y(ε) satisfies the constraints

midCj −
m∑

i=1

yi(ε) midAij � εjId.
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Algorithm 3.1. Rigorous lower bound

given: real or interval input data P = (A,b, c),
upper bounds xj for j = 1, . . . , n,
approximate dual optimal solution ỹ for midP,
p∗ := −∞,
ε, k are n-dimensional zero vectors,
maximal numbers of iterations lmax,
l := 0.

while perturbed problem P (ε) is dual feasible and l ≤ lmax

1. Compute Dj = Cj −
∑m

i=1 ỹiAij , j = 1, . . . , n.
2. Compute rigorous lower bounds dj ≤ λmin(Dj), for j = 1, . . . , n.
3. If dj ≥ 0 for every j with xj = +∞ then compute

p∗ = inf{bT ỹ +
n∑

j=1

sj · d−j · xj},

STOP.
4. Compute for j = 1, . . . , n

kj :=

{
kj + 1 if dj < 0 and xj = +∞
kj otherwise,

εj :=

{
−2kj dj + εj if dj < 0 and xj = +∞
εj otherwise.

5. Solve the perturbed midpoint problem P (ε) = (midA,midb, C(ε)), where
Cj(ε) = midCj − εjId for j = 1, . . . , n, and set ỹ := ỹ(ε) (approximate dual
optimal solution).

6. l := l + 1.
end

Hence, the minimal eigenvalues of the new defect

Dj(ε) := Cj −
m∑

i=1

yi(ε)Aij

will increase. Choosing εj very large may imply dual infeasibility, choosing εj > 0
too small may not be sufficient for satisfying (3.6). Our current trade off is to solve
repeatedly perturbed programs until either condition (3.6) is satisfied, or the dual is
infeasible. The details are given in Algorithm 3.1. This algorithm requires interval
arithmetic (or at least the monotonic rounding operations) for computing the defect
matrices D, an algorithm for computing rigorous lower bounds dj , and a semidefinite
solver for computing approximate solutions of the perturbed problems.

The algorithm terminates during the first iteration in step 3 if all simple bounds
xj are finite or all dj are nonnegative. In this case the computational costs are
O(m ·

∑n
j=1 s2

j ) for computing the Dj ’s, the lower bounds dj require O(
∑n

j=1 s3
j )
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operations, and the bound p∗ needs O(m+n) operations. Hence the costs are negligible
compared to the costs for approximately solving a semidefinite program.

In other cases, however, the computational costs may increase because perturbed
semidefinite programs must be solved until either condition (3.6) is satisfied, the
semidefinite programming solver indicates dual infeasibility of the perturbed problem,
or the maximal number of iterations lmax is reached.

Several modifications of this algorithm are possible and may yield improvements.
Here we have considered a simple choice of perturbations: In each step we add to εj

the negative defects −dj multiplied by a factor 2kj , where kj counts the number of
iterations that violated the inequality dj ≥ 0.

In applications we recommend to use infinite bounds xj instead of unreasonable
large bounds, because otherwise the sum in (3.7) may yield an unnecessary overesti-
mation.

If the upper bounds xj = +∞ for j = 1, . . . , n, and Algorithm 3.1 delivers a
finite lower bound p∗, then the lower eigenvalue bounds dj must be nonnegative. This
proves dual feasibility, and if dj is positive for j = 1, . . . , n strict dual feasibility is
verified.

4. Rigorous upper bound. In this section we investigate the computation of
a rigorous upper bound for the optimal value of a semidefinite program together with
a certificate of existence of primal feasible solutions. The basic idea is to compute
interval matrices Xj for j = 1, . . . , n that contain a primal feasible solution for every
semidefinite program P ∈ P. The desirable characteristics of the matrices Xj are
given in the next theorem.

Theorem 4.1. Let P define a family of semidefinite programs (1.1), and suppose
that there exist interval matrices Xj for j = 1, . . . , n, such that

∀ b ∈ b, ∀Aij ∈ Aij , i = 1, . . . ,m, j = 1, . . . , n

∃ symmetric Xj ∈ Xj :
n∑

j=1

〈Aij , Xj〉 = bi,
(4.1)

and for j = 1, . . . , n

Xj � 0 for all symmetric Xj ∈ Xj . (4.2)

Then, the optimal value is bounded from above by

p∗(P ) ≤ sup{
n∑

j=1

〈Cj ,Xj〉} (4.3)

Moreover, if all symmetric Xj ∈ Xj are positive definite and p∗(P ) is bounded from
below, then p∗(P ) = d∗(P ) for every P ∈ P (no duality gap), and the dual supremum
is attained.

Proof. Let P ∈ P be a fixed chosen problem. Then the conditions (4.1) and (4.2)
imply that there exists a primal feasible solution Xj = Xj(P ) for j = 1, . . . , n. Hence,∑n

j=1〈Cj , Xj〉 ≥ p∗(P ), and the inclusion property (2.5) yields (4.3). If all Xj ∈ Xj

are positive definite, then (4.1) and (4.2) imply the existence of strictly primal feasible
solutions, and hence Theorem 1.1 shows that the dual optimal solution is attained
and strong duality holds valid.

By weak duality the upper bound in (4.3) is also an upper bound of the dual
optimal value. Moreover, if all Xj ∈ Xj are positive definite, then the Strong Duality
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Theorem 1.1 implies that the right hand side of (3.7) is also a lower bound of the dual
optimal value for all P ∈ P. Hence, in this case it is not necessary to assume dj ≥ 0
for j = 1, . . . , n.

In the following, we describe an algorithm for computing this rigorous upper
bound. This algorithm must find appropriate interval matrices Xj , and verify the
conditions (4.1) and (4.2). We discuss these items below.

To make sure that the upper bound (4.3) is close to the optimal value, the interval
matrices Xj must be close to optimality. In general the complementary slackness
relations yield rank-deficient matrices, which are not positive definite. Therefore, we
solve the slightly perturbed midpoint problem

min
n∑

j=1

〈Cj , Xj〉 s.t.
n∑

j=1

〈Aij , Xj〉 = bi for i = 1, . . . ,m,

Xj � εj · Id, for j = 1, . . . , n,
(4.4)

where εj is positive and the input data (A, b, c) = midP. Then for small εj the
optimal solution (Xj(εj)) is positive definite and close to the optimal solution of the
midpoint problem.

In the following we show how we can construct an appropriate interval matrix
(Xj) by using an approximate optimal solution (Xj(εj)) of (4.4).

The semidefinite program (1.1) can be written in the equivalent vector represen-
tation form

min cT x s.t. Amatx = b, Xj � 0, for j = 1, . . . , n, (4.5)

where

c := svec((Cj), 2), (4.6)
x := svec((Xj), 1), (4.7)

and the i-th row of the m×
∑n

j=1
sj(sj+1)

2 matrix Amat is defined by

Amat(i, :) = svec((Aij)n
j=1, 2). (4.8)

If interval input data P are given, then we denote by Amat, b, and c the corresponding
interval quantities. Thus condition (4.1) is equivalent to

∀ b ∈ b, ∀Amat ∈ Amat ∃x ∈ x such that Amatx = b, (4.9)

which is an underdetermined system of linear equations with interval input data.
Given an approximate optimal solution (Xj(εj))n

j=1, it is straight forward to solve
such a system.

We start by assuming that the m×m submatrix midAmat
I with the m columns

midAmat(:, βi) is nonsingular, where the index set I := {β1, . . . , βm}. Let N denote
all indices of columns of midAmat which are not in I, let Amat

N be the matrix with
columns corresponding to the indices of N , and let x̃ = svec((Xj(εj)), 1). In our algo-
rithm we choose the index set I by performing an LU-decomposition on (midAmat)T

and assembling the computed pivot columns to Amat
I . Now we fix the variables x̃N ,

and compute with some verification method for interval linear systems an enclosure
xI of the solution set

ΣI := {xI ∈ Rm : Amat
I xI = b−

∑
γ∈N

Amat
N x̃N , A ∈ Amat, b ∈ b}. (4.10)
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Then x := (xI ; x̃N ) fulfills (4.9), and therefore (Xj) := smat(x, 1) satisfies condition
(4.1). Condition (4.2) must be verified by some method for computing a rigorous
lower bound for the smallest eigenvalue of a symmetric interval matrix.

Algorithm 4.1 contains the details for computing a rigorous upper bound for
the optimal value and for proving existence of primal feasible solutions. The algo-
rithm needs verified solvers for interval linear systems and eigenvalue problems, and
a semidefinite solver for computing approximations of the perturbed problems.

If Algorithm 4.1 delivers a finite upper bound p∗, then the lower eigenvalue bounds
λj must be nonnegative. If λj > 0 for j = 1, ..., n, then strict primal feasibility is
verified.

Krawczyk [27] was the first who solved non degenerate interval linear program-
ming problems by using the technique of fixing appropriate variables (the nonbasic
variables) and solving a remaining quadratic interval linear system for the basic vari-
ables. In [15] this technique was used to compute enclosures of all optimal vertices in
the degenerate case. Hansen [13] used this technique in order to prove existence of a
feasible point for nonlinear equations within a bounded box. It was further modified
and investigated numerically by Kearfott [20], and is also described in his book [19].

5. Certificate of Infeasibility. In branch and bound algorithms a subproblem
is discarded if the local nonlinear solver detects infeasibility. Occasionally local solvers
do not find feasible solutions of a subproblem, although they exist (see for example
the comments for use of SDPT3). A consequence is that the global minimum solutions
may be cut off.

To avoid this disadvantage we can apply the algorithms for computing rigorous
bounds described in the previous sections to a phase I problem in order to verify
infeasibility for primal and dual semidefinite problems. In the literature there are
several variations of the phase I method. It is common, however, that the auxiliary
objective function describes the infeasibility in the sense that the problem has no
feasible solutions, provided the optimal value is greater than zero. The latter property
can be verified by the algorithms of the previous sections.

Another approach is based on certificates of infeasibility. For linear programs
with bounded variables rigorous certificates of infeasibility are described in Neumaier
and Shcherbina [37]. For infeasible semidefinite problems often (but not every time)
certificates of infeasibility exposed by improving rays can be obtained (see also the
discussion in Todd [46]).

The primal problem (1.1) has a primal improving ray if there exists a block-
diagonal matrix (Xj) such that for all i = 1, . . . ,m and j = 1, . . . , n

Xj � 0,

n∑
j=1

〈Aij , Xj〉 = 0, and
n∑

j=1

〈Cj , Xj〉 < 0. (5.1)

It is well-known and straightforward to show that the existence of a primal improving
ray implies dual infeasibility. If interval input data P are given, and for the midpoint
problem of P an approximate primal improving ray is known, then we can try to verify
dual infeasibility for all problems with P ∈ P by using a similar approach as in the pre-
vious section. We assume that the semidefinite solver has computed an approximate
primal improving ray (X̃j) for the midpoint problem. Let β ≈

∑n
j=1〈midCj , X̃j〉

be approximately calculated and assume that β < 0. Notice that for positive β the
conditions (5.1) are in general not satisfied. Now, analogously to the previous section,
we can compute enclosures (Xj) such that for every Aij ∈ Aij and for every Cj ∈ Cj
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Algorithm 4.1. Rigorous upper bound, certificate of feasibility

given: real or interval input data P = (A,b, c),
approximate primal optimal solution (X̃j)n

j=1 of the midpoint problem,
p∗ := ∞,
ε, k are n-dimensional zero vectors,
maximal number of iterations lmax,
l := 0.

Choose an index set I such that the submatrix midAmat
I is (at least numerically)

nonsingular (for example, by performing an LU-decomposition on (midAmat)T ).

if there is no nonsingular submatrix then STOP.

while perturbed problem P (ε) is primal feasible and l ≤ lmax

1. Compute an enclosure xI of the solution set ΣI (4.10), and set x := (xI ; x̃N ).
2. Set (Xj) = smat(x, 1), and compute rigorous bounds

λj ≤ λmin(Xj) for j = 1, . . . , n.

3. if λj ≥ 0 for j = 1, . . . , n then compute

p∗ = sup{cT x},

STOP.
4. Compute for j = 1, . . . , n

kj :=

{
kj + 1 if λj < 0
kj otherwise,

εj :=

{
−2kj λj + εj if λj < 0
εj otherwise.

5. Solve the perturbed problem (4.4), set X̃j := X̃j(ε) for j = 1, . . . , n (approx-
imate primal optimal solution), and set x̃ := svec((X̃j), 1).

6. l := l + 1.
end

there exist solutions Xj ∈ Xj of the underdetermined linear system

n∑
j=1

〈Aij , Xj〉 = 0 for i = 1, . . . ,m,

n∑
j=1

〈Cj , Xj〉 = β, (5.2)

If an enclosure (Xj) is computed, and if all minimal eigenvalues λmin(Xj) are non-
negative, then, because β < 0, it follows that for every P ∈ P there exists Xj ∈ Xj

for j = 1, . . . , n such that (5.1) is satisfied. Therefore, all problems with P ∈ P are
dual infeasible, and the block-matrices (Xj) contain the primal improving rays.

The dual problem (1.3) has a dual improving ray if there is a vector y ∈ Rm such
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that

m∑
i=1

yiAij � 0 for j = 1, . . . , n, and bT y > 0. (5.3)

The existence of a dual improving ray implies primal infeasibility. If interval input
data P are given and for some problem P ∈ P an approximate dual improving ray ỹ
is known, then we can try to verify primal infeasibility for all problems with P ∈ P as
follows: First we compute by using interval arithmetic upper bounds of the maximal
eigenvalues of

∑m
i=1 ỹiAij for j = 1, . . . , n. If these upper bounds are nonpositive and

if bT ỹ > 0, then ỹ is a dual improving ray for all P ∈ P. Hence, ỹ is a rigorous
certificate of primal infeasibility for all P ∈ P.

6. Numerical results. In this section, we present some numerical experiments
for semidefinite and linear programming problems. The results for the semidefinite
programming problems were obtained by using VSDP [14], a MATLAB software pack-
age for verified semidefinite programming. This package uses the toolbox INTLAB
[44] and allows interval input data. For all experiments we used the default values of
the solver.

First we consider a semidefinite program of small size

min 〈

 0 1
2 0

1
2 δ 0
0 0 δ

 , X〉

s.t. 〈

 0 − 1
2 0

− 1
2 0 0

0 0 0

 , X〉 = 1,

〈

 1 0 0
0 0 0
0 0 0

 , X〉 = ε,

〈

 0 0 1
0 0 0
1 0 0

 , X〉 = 0,

〈

 0 0 0
0 0 1
0 1 0

 , X〉 = 0,

X � 0.
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Table 6.1
Approximations p̃∗, d̃∗ and rigorous bounds p∗, p∗

ε δ p̃∗ d̃∗ tc p∗ p∗

0 0 −1.0004 −0.99355 0 ∞ −∞
10−8 10−8 −0.99184 −0.98372 0 ∞ −0.98373
10−6 10−10 −1.0007 −1.0027 0 −0.99965 −1.0061
10−4 10−3 8.9004 8.9990 0 9.3353 8.9990
−10−4 10−3 28.228 142.86 0 ∞ 142.86

10−4 −10−4 −5.9323 −1.0361 −7 −5.9324 −∞

The Lagrangian dual is

d∗ = max y1 + εy2 s.t. Y := C −
4∑

i=1

Ai1yi

=

 −y2
1+y1

2 −y3
1+y1

2 δ −y4

−y3 −y4 δ

 � 0.

The linear constraints of the primal problem imply

X =

 ε −1 0
−1 X22 0
0 0 X33

 ,

and X is positive semidefinite iff X22 ≥ 0, X33 ≥ 0, and ε·X22−(−1)2 ≥ 0. Hence, for
ε ≤ 0, the problem is primal infeasible and p∗ = +∞. The dual problem is infeasible
for δ < 0 with d∗ = −∞.

For ε = 0 and δ = 0 we obtain a duality gap with p∗ = +∞ and d∗ = −1, and
the problem is ill-posed. For ε > 0 and δ > 0 Slater’s constraint qualifications are
satisfied and the optimal value p∗ = d∗ = −1 + δ/ε.

Numerical results for different values ε and δ are summarized in Table 6.1. The
termination code tc = 0 in SDPT3 means normal termination without warning,
whereas tc = −7 indicates primal infeasibility. In the following, p̃∗ and d̃∗ denote
the computed approximations of the primal and dual optimal value, respectively.

We see that SDPT3 is not backward stable, since in five cases p̃∗ < d̃∗, violating
the weak duality. This example demonstrates that the measures for termination
and accepting an approximation are not appropriate for ill-conditioned or ill-posed
problems. The rigorous bounds p∗ and p∗ recognize difficult problems much better
and overestimate the optimal value only slightly, and this overestimation depends on
the quality of the computed approximations. The bounds are infinite if the problem is
infeasible or very ill-conditioned. For larger values ε > 0 and δ > 0 the approximations
and the rigorous bounds are almost identical, and are not displayed here.

In the following, we describe the numerical results on problems from the SDPLIB
collection of Borchers [5]. In summary, VSDP could compute (by using SDPT3 as
approximate solver) for all 85 problems discussed in [9] a rigorous lower bound of the
optimal value and verify the existence of strictly dual feasible solutions which implies
a zero duality gap. A finite rigorous upper bound could be computed for all well-posed
problems with the exception of hinf8, which is ill-conditioned. For the 32 ill-posed
problems VSDP has computed p∗ = +∞, which reflects that the distance to the next
primal infeasible problem is zero as well as the infinite condition number. Detailed
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numerical results can be found in the tables contained in the appendix. We measure
the accuracy by the quantity

µ(a, b) :=
a− b

max{1.0, (|a|+ |b|)/2}
.

Notice that we do not use the absolute value of a− b. Hence, a negative sign implies
that a < b. Table A.1 contains the rigorous upper bound p∗, the rigorous lower
bound p∗, the rigorous error µ(p∗, p∗), and the approximate duality gap µ(p̃∗, d̃∗). We
have set µ(p∗, p∗) = NaN if the upper bound p∗ is infinite. Table A.2 contains the
termination code tc given by SDPT3 and the time t in seconds for computing the
approximations. The times for computing the rigorous lower and upper bound are t
and t, respectively.

Some major characteristics of our numerical results for the SDPLIB are as fol-
lows: The median of the time ratio for computing the rigorous lower bound and the
approximations is med(t/t) = 0.045, and med(t/t) = 2.4. The median of the guar-
anteed accuracy µ(p∗, p∗) for the problems with finite condition number is 4.9 · 10−7.
We have used the median here because there are some outliers.

For the SDPLIB problems, SDPT3 (with default values) gave 7 warnings, and 2
warnings were given for well-posed problems. Hence, no warnings were given for 27
ill-posed problems with zero distance to primal infeasibility. In other words, there is
no correlation between warnings and the difficulty of the problem. At least for this
test set our rigorous bounds reflect the difficulty of the problems much better, and
they provide safety, especially in the case where algorithms subsequently call other
algorithms, as is done for example in branch-and-bound methods. In our opinion the
usefulness of a warning is dubious if for ill-posed problems normal termination occurs.
In contrast, VSDP shows a strong correlation between the rigorous bounds and the
difficulty of the problem. Moreover, the negative signs of µ(p̃∗, d̃∗) show that the
approximations do not satisfy weak duality. Therefore they are not backward stable,
i.e., they are not exact solutions of slightly perturbed problems.

One of the largest problems which could be solved by VSDP is thetaG51 where the
number of constraints is m = 6910, n = 1, and the dimension of the primal Solution
X1 is s1 = 1001 (implying 501501 variables). For this problem SDPT3 gave the
message out of memory, and we used SDPA [10] as approximate solver. The rigorous
lower and upper bound computed by VSDP are p∗ = −3.4900 ·102, p∗ = −3.4406 ·102,
respectively. The guaranteed relative accuracy is only 0.014, which may be sufficient
in several applications, but is insufficient from a numerical point of view. The times
in seconds for computing the approximations, the lower and the upper bound of the
optimal value are t = 3687.95, t = 45.17, and t = 6592.52, respectively. Existence
of optimal solutions and strong duality is proved. For the 11 instances, control1 to
control11, the guaranteed relative accuracies are also low, ranging from 1.21 · 10−4

to 5.93 · 10−2.
The aim in designing VSDP was to write the programs in a convenient form,

appropriate also for students. For example, the user can specify the block-diagonal
structure in the more natural way of cell arrays. Operations such as extracting se-
lected elements of a matrix or the operations vsvec (rounding error free vectorization
operator) and vsmat (corresponding rounding error free inverse operator) are written
in MATLAB [29]. This causes a loss of efficiency. At present a C++ implementation
of these error bounds using the interval library PROFIL/BIAS [25] is in process [6].

We already have a C++ implementation of the rigorous bounds for the special
case of linear programming called Lurupa [21]. Here we present a summary of our
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numerical results for the NETLIB suite of linear programming problems [33]. For
details refer to [23]. The NETLIB collection contains problems with up to 15695
variables and 16675 constraints. They originate from various applications, for exam-
ple forestry, flap settings on aircraft, and staff scheduling. In order to compare the
results, we initially chose the set of problems that Ordóñez and Freund [38] have com-
puted condition numbers for. Removing problems DEGEN3 and PILOT because the
approximate solver failed to solve these within 24 hours, the final test set included 87
problems. We applied our algorithm to the original problems without preprocessing.
As Fourer and Gay [8] observed, preprocessing can change the state of an LP from
feasible to infeasible and vice versa.

Roughly speaking, a finite bound can be computed iff the corresponding distance
to infeasibility is greater than 0. For 76 problems a finite lower bound could be com-
puted with a median accuracy of med(µ(p∗, p̃∗)) = 2.2 · 10−8 and a median time ratio
of med(t/t) = 0.5. For 35 problems the algorithm yielded a finite upper bound with
med(µ(p∗, p̃∗)) = 8.0 · 10−9 and med(t/t) = 5.3. For 32 problems finite rigorous lower
and upper bounds could be computed with med(µ(p∗, p∗)) = 5.6 · 10−8. Taking into
account the approximate solver’s default stopping tolerance of 10−9, the guaranteed
accuracy for the NETLIB LP suite is reasonable. The upper bound is more expensive,
since linear systems have to be solved rigorously.

To our knowledge no other software packages compute rigorous results for semidef-
inite programs. There are several packages that compute verified results for optimiza-
tion problems where the objective and the constraints are defined by smooth algebraic
expressions. The most widely known solvers for global optimization that use interval
arithmetic are probably GlobSol [18], Numerica [48], and COSY [4] (on inquiry we
did not receive a copy of COSY). They do not permit the nonsmooth semidefinite
constraints. But they can be used to solve linear programming problems (a special,
smooth case of semidefinite programming) rigorously. Packages for verified constraint
programming, like ICOS [28] and RealPaver [11], can also be used to compute rig-
orous results for an LP by adding bounds on the objective function to the set of
constraints. Specifically dedicated to verified linear programming are solvers using a
rational arithmetic. Examples are QSopxt ex [2], exlp [24], and, to a limited extent,
perPlex [26]. The latter one only verifying the optimality of a given basis.

We want to see how these packages compare for the special case of linear pro-
gramming. For this purpose we generate dense test problems with a method similar
to the one described by Rosen and Suzuki [41]. Setting a timeout of one hour on each
solver run, we then determine the largest problem size that the packages can solve.
First we have a look at the packages that do not exploit the linear structure in the
test problems. GlobSol, Numerica, and RealPaver fail to solve the test problems if the
number of variables and constraints exceeds 10. ICOS solves the problems within one
hour with up to 100 variables and constraints. Now looking at the packages taking ac-
count of the linear structure, we see that these succeed for larger problems. QSopt ex,
exlp, and perPlex solve problems with 200 variables and constraints. Lurupa does not
fail until the dimension exceeds 1500. For larger dimensions it turns out that it al-
ready takes more than one hour to compute the initial approximate solution. The
verification part only needs a fraction of this time. Our algorithm, however, produces
rigorous bounds for the optimal value and for feasible solutions close to optimality;
enclosures of optimal solutions are not computed. Elaborate numerical results can be
found in [22].
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7. Conclusions. The computation of rigorous error bounds for linear or semidef-
inite optimization problems can be viewed as a carefully postprocessing tool that uses
only approximate solutions computed by an LP or SDP solver. The numerical results
show that such rigorous error bounds can be computed even for problems of large
size.

8. Acknowledgment. We wish to thank Arnold Neumaier and Siegfried M.
Rump for their stimulating input and two anonymous referees for many suggestions
to improve this paper.

Appendix. Results from the SDPLIB.

Table A.1: Rigorous bounds for the SDPLIB

Notice that all problems with p∗ =∞ are ill-posed with the exception of hinf8.

Problem p∗ p∗ µ(p∗, p∗) µ(p̃∗, d̃∗)

arch0 −5.6651e− 01 −5.6652e− 01 5.05e− 06 −2.77e− 07
arch2 −6.7151e− 01 −6.7152e− 01 5.16e− 06 1.01e− 07
arch4 −9.7263e− 01 −9.7263e− 01 3.66e− 08 3.66e− 08
arch8 −7.0570e + 00 −7.0570e + 00 1.84e− 07 1.61e− 07
control1 −1.7782e + 01 −1.7785e + 01 1.21e− 04 −6.13e− 08
control2 −8.2909e + 00 −8.3000e + 00 1.10e− 03 3.74e− 08
control3 −1.3615e + 01 −1.3633e + 01 1.36e− 03 −1.89e− 07
control4 −1.9671e + 01 −1.9794e + 01 6.24e− 03 −7.71e− 07
control5 −1.6795e + 01 −1.6884e + 01 5.25e− 03 −1.72e− 06
control6 −3.6736e + 01 −3.7304e + 01 1.53e− 02 2.15e− 06
control7 −2.0434e + 01 −2.0625e + 01 9.29e− 03 1.36e− 06
control8 −2.0019e + 01 −2.0286e + 01 1.33e− 02 −5.36e− 08
control9 −1.4036e + 01 −1.4675e + 01 4.45e− 02 −2.57e− 06
control10 −3.6890e + 01 −3.8533e + 01 4.36e− 02 2.79e− 06
control11 −3.0119e + 01 −3.1959e + 01 5.93e− 02 3.40e− 06
equalG11 −6.2915e + 02 −6.2916e + 02 1.08e− 05 2.62e− 05
equalG51 −4.0055e + 03 −4.0056e + 03 3.58e− 05 4.17e− 08
gpp100 ∞ 4.4943e + 01 NaN 1.24e− 04
gpp124-1 ∞ 7.3431e + 00 NaN 6.94e− 07
gpp124-2 ∞ 4.6862e + 01 NaN 1.23e− 07
gpp124-3 ∞ 1.5301e + 02 NaN 1.28e− 04
gpp124-4 ∞ 4.1899e + 02 NaN 9.83e− 05
gpp250-1 ∞ 1.5443e + 01 NaN 6.85e− 03
gpp250-2 ∞ 8.1869e + 01 NaN 1.44e− 06
gpp250-3 ∞ 3.0354e + 02 NaN 4.30e− 07
gpp250-4 ∞ 7.4733e + 02 NaN 2.81e− 07
gpp500-1 ∞ 2.5320e + 01 NaN 2.04e− 06
gpp500-2 ∞ 1.5606e + 02 NaN 1.30e− 03
gpp500-3 ∞ 5.1302e + 02 NaN 1.21e− 05
gpp500-4 ∞ 1.5670e + 03 NaN 8.81e− 08
hinf1 ∞ −2.0328e + 00 NaN −1.12e− 04
hinf2 −7.1598e + 00 −1.0967e + 01 4.20e− 01 −3.38e− 05
hinf3 ∞ −5.6954e + 01 NaN −2.30e− 04
hinf4 ∞ −2.7477e + 02 NaN −1.43e− 05
hinf5 ∞ −3.6259e + 02 NaN 2.20e− 03
hinf6 ∞ −4.4914e + 02 NaN −1.21e− 03
hinf7 ∞ −3.9082e + 02 NaN −8.98e− 06
hinf8 ∞ −1.1618e + 02 NaN −3.93e− 04
hinf9 ∞ −2.3709e + 02 NaN −3.43e− 02
hinf10 ∞ −1.0887e + 02 NaN −1.42e− 03
hinf11 ∞ −6.5944e + 01 NaN −1.24e− 03
hinf12 ∞ −7.8714e− 01 NaN −6.66e− 01
hinf13 ∞ −4.6009e + 01 NaN −3.62e− 02

continued. . .
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Problem p∗ p∗ µ(p∗, p∗) µ(p̃∗, d̃∗)

hinf14 ∞ −1.3001e + 01 NaN 1.70e− 04
hinf15 ∞ −2.6324e + 01 NaN −9.20e− 02
maxG11 −6.2916e + 02 −6.2916e + 02 5.13e− 08 3.01e− 08
maxG32 −1.5676e + 03 −1.5676e + 03 3.16e− 07 −2.99e− 08
maxG51 −4.0063e + 03 −4.0063e + 03 5.49e− 08 −2.23e− 08
mcp100 −2.2616e + 02 −2.2616e + 02 1.85e− 08 1.11e− 08
mcp124-1 −1.4199e + 02 −1.4199e + 02 8.92e− 09 8.79e− 09
mcp124-2 −2.6988e + 02 −2.6988e + 02 3.31e− 08 9.67e− 10
mcp124-3 −4.6775e + 02 −4.6775e + 02 8.57e− 09 −1.45e− 09
mcp124-4 −8.6441e + 02 −8.6441e + 02 1.46e− 08 −7.77e− 09
mcp250-1 −3.1726e + 02 −3.1726e + 02 1.00e− 08 3.43e− 08
mcp250-2 −5.3193e + 02 −5.3193e + 02 6.85e− 09 −1.14e− 10
mcp250-3 −9.8117e + 02 −9.8117e + 02 2.04e− 08 1.86e− 08
mcp250-4 −1.6820e + 03 −1.6820e + 03 1.59e− 08 3.43e− 08
mcp500-1 −5.9815e + 02 −5.9815e + 02 4.91e− 08 −1.16e− 08
mcp500-2 −1.0701e + 03 −1.0701e + 03 1.28e− 07 −5.93e− 08
mcp500-3 −1.8480e + 03 −1.8480e + 03 1.31e− 08 7.66e− 09
mcp500-4 −3.5667e + 03 −3.5667e + 03 1.19e− 08 −3.91e− 09
qap10 ∞ 1.0925e + 03 NaN −1.10e− 04
qap5 ∞ 4.3600e + 02 NaN 7.22e− 10
qap6 ∞ 3.8141e + 02 NaN −9.00e− 05
qap7 ∞ 4.2479e + 02 NaN −7.27e− 05
qap8 ∞ 7.5686e + 02 NaN −1.29e− 04
qap9 ∞ 1.4099e + 03 NaN −5.35e− 05
qpG11 −2.4487e + 03 −2.4487e + 03 6.42e− 09 6.42e− 09
qpG51 −1.1818e + 04 −1.1818e + 04 7.44e− 09 7.44e− 09
ss30 −2.0239e + 01 −2.0240e + 01 1.55e− 06 1.55e− 06
theta1 −2.3000e + 01 −2.3000e + 01 1.55e− 08 9.89e− 09
theta2 −3.2879e + 01 −3.2879e + 01 1.18e− 06 1.17e− 08
theta3 −4.2167e + 01 −4.2167e + 01 9.64e− 07 −1.73e− 08
theta4 −5.0321e + 01 −5.0321e + 01 1.09e− 06 9.41e− 09
theta5 −5.7232e + 01 −5.7232e + 01 4.92e− 07 −6.68e− 09
thetaG11 −4.0000e + 02 −4.0000e + 02 4.23e− 07 2.02e− 10
truss1 9.0000e + 00 9.0000e + 00 1.61e− 07 3.08e− 09
truss2 1.2338e + 02 1.2338e + 02 1.60e− 06 −5.86e− 09
truss3 9.1100e + 00 9.1100e + 00 1.11e− 07 1.11e− 07
truss4 9.0100e + 00 9.0100e + 00 1.19e− 08 4.15e− 09
truss5 1.3264e + 02 1.3264e + 02 9.09e− 06 −2.28e− 07
truss6 9.0119e + 02 9.0100e + 02 2.16e− 04 −3.26e− 07
truss7 9.0015e + 02 9.0000e + 02 1.70e− 04 −4.67e− 06
truss8 1.3312e + 02 1.3311e + 02 7.79e− 05 −4.98e− 06

Table A.2: Computational effort for the SDPLIB

Problem tc t t t
arch0 0 19.95 0.81 24.05
arch2 0 18.06 0.36 43.13
arch4 0 19.20 0.34 3.39
arch8 0 19.81 0.33 46.34
control1 0 1.28 0.05 1.66
control2 0 2.64 0.03 3.14
control3 0 6.20 0.09 6.56
control4 0 11.33 0.14 13.83
control5 0 23.11 0.28 34.75
control6 0 60.72 0.47 155.11
control7 0 87.67 0.72 138.31
control8 0 152.98 1.23 232.28
control9 0 238.88 635.77 390.06
control10 0 432.48 3.05 743.75
control11 0 661.59 3.95 1129.63

continued. . .
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Problem tc t t t
equalG11 0 590.89 844.22 896.25
equalG51 0 1677.77 1369.69 1638.83
gpp100 0 2.34 0.30 35.88
gpp124-1 0 5.88 6.25 38.55
gpp124-2 0 6.11 0.56 41.75
gpp124-3 0 3.95 0.63 36.80
gpp124-4 0 4.16 0.59 43.89
gpp250-1 0 18.64 5.58 122.00
gpp250-2 0 31.14 5.53 112.63
gpp250-3 0 24.77 5.08 160.81
gpp250-4 0 24.66 5.56 130.88
gpp500-1 0 190.39 236.81 642.58
gpp500-2 0 145.53 46.69 809.75
gpp500-3 0 156.52 46.73 961.78
gpp500-4 0 205.06 46.42 815.34
hinf1 0 1.28 0.05 16.95
hinf2 0 1.03 0.06 12.23
hinf3 0 1.11 0.02 16.73
hinf4 0 1.09 0.06 5.98
hinf5 -4 1.23 0.05 6.81
hinf6 0 1.34 0.06 8.69
hinf7 -4 1.22 1.31 13.63
hinf8 -4 1.19 0.06 5.83
hinf9 2 1.38 0.06 7.98
hinf10 0 1.80 0.05 6.02
hinf11 0 1.94 0.05 11.25
hinf12 0 3.00 6.28 6.64
hinf13 0 1.94 0.08 7.39
hinf14 -4 1.44 0.06 6.91
hinf15 0 2.34 0.08 10.47
maxG11 0 449.28 13.14 678.13
maxG32 0 6910.72 176.53 9838.19
maxG51 0 990.22 26.47 1352.08
mcp100 0 2.44 0.09 5.53
mcp124-1 0 3.13 0.13 0.55
mcp124-2 0 3.69 0.13 9.16
mcp124-3 0 3.91 0.14 4.59
mcp124-4 0 4.09 0.17 4.91
mcp250-1 0 15.33 0.47 20.83
mcp250-2 0 16.41 0.52 22.16
mcp250-3 0 18.08 0.59 43.17
mcp250-4 0 18.80 0.70 23.08
mcp500-1 0 104.31 3.03 146.30
mcp500-2 0 125.19 3.58 167.39
mcp500-3 0 127.05 3.94 301.72
mcp500-4 0 134.67 4.58 176.47
qap10 0 12.03 2.50 42.36
qap5 0 0.84 0.06 6.08
qap6 0 1.42 0.13 4.27
qap7 0 2.28 0.25 6.19
qap8 0 3.84 0.58 11.22
qap9 0 7.08 1.06 21.95
qpG11 0 1081.17 58.72 998.61
qpG51 0 3520.34 113.42 1380.81
ss30 0 49.09 0.81 5.22
theta1 0 0.92 0.09 1.13
theta2 0 3.75 1.33 11.28
theta3 0 14.67 8.02 35.41
theta4 0 45.06 22.16 217.53
theta5 0 141.27 59.50 446.95
thetaG11 -7 725.06 768.33 2142.47

continued. . .
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Problem tc t t t
truss1 0 1.09 0.06 3.42
truss2 0 6.95 0.28 29.55
truss3 0 1.36 0.05 0.09
truss4 0 1.05 0.06 1.19
truss5 0 14.44 0.66 45.80
truss6 0 41.75 2.20 183.61
truss7 0 33.86 1.39 72.20
truss8 0 18.69 1.63 23.88
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[25] O. Knüppel, PROFIL/BIAS and extensions, Version 2.0, tech. rep., Inst. f. Informatik III,

Technische Universität Hamburg-Harburg, 1998.
[26] T. Koch, perPlex. World Wide Web. http://www.zib.de/koch/perplex.
[27] R. Krawczyk, Fehlerabschätzung bei linearer Optimierung, in Interval Mathematics, K. Nickel,

ed., vol. 29 of Lecture Notes in Computer Science, Springer Verlag, Berlin, 1975, pp. 215–
222.

[28] Y. Lebbah, ICOS (Interval COnstraints Solver). World Wide Web. http://www.essi.fr/

~lebbah/icos/index.html.
[29] MATLAB User’s Guide, Version 6, The MathWorks Inc., 2000.
[30] G. Mayer, Result verification for eigenvectors and eigenvalues, in Topics in validated compu-

tations. Proceedings of the IMACS-GAMM international workshop, Oldenburg, Germany,
30 August - 3 September 1993, J. Herzberger, ed., Stud. Comput. Math. 5, Amsterdam,
1994, Elsevier, pp. 209–276.

[31] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
[32] A. Nemirovski, Lectures on Modern Convex Optimization, 2003.
[33] Netlib, Netlib linear programming library. http://www.netlib.org/lp.
[34] A. Neumaier, Interval Methods for Systems of Equations, Encyclopedia of Mathematics and

its Applications, Cambridge University Press, 1990.
[35] , Introduction to Numerical Analysis, Cambridge University Press, 2001.
[36] , Complete Search in Continuous Global Optimization and Constraint Satisfaction, Acta

Numerica, 13 (2004), pp. 271–369.
[37] A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer programming,

Mathematical Programming, Ser. A, 99 (2004), pp. 283–296.
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