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Benefits of Convex Optimization

Convex Optimization
Vast number of applications in finance, engineering, ...
Appears as subproblem in global optimization

Rockafellar (1993)
In fact the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.
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Linear Programming Applications

Oil refinery problems
Flap settings on aircraft
Industrial production and allocation
Image restoration
Linear relaxations in global optimization

Lovasz (1980)
If one would take statistics about which mathematical problem
is using up most of the computer time in the world, then (not
including database handling problems like sorting and
searching) the answer would probably be linear programming.
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A linear program

Definition (Linear program (LP))

Find the optimal value f ∗ of a linear objective function cT x
subject to

linear constraints Ax ≤ a, Bx = b and
simple bounds x ≤ x ≤ x .

Set of feasible points F satisfying constraints and simple
bounds
Can be represented by the tuple P := (c, A, a, B, b) and
x , x
Simple bounds may be infinite
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A lower bound for the optimal value (1)

Theorem (Jansson (2004))
Given a linear program P and x , x. If y ≤ 0, z satisfy

∃ y ∈ y, z ∈ z : cj − (A:j)
T y − (B:j)

T z = 0 for free xj , and
the defects

dj := cj − (A:j)
T y− (B:j)

T z

{
≤ 0 for −∞ < xj ≤ x j

≥ 0 for x j ≤ xj < ∞

then a lower bound for the optimal value is

f ∗ := inf{aT y + bT z +
∑

x j 6=−∞
x jd

+
j +

∑
x j 6=∞

x jd−j }.
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A lower bound for the optimal value (2)

O(n2) operations for finite simple bounds,
coincides with Neumaier and Shcherbina’s (2004)
Conditions not met (infinite simple bounds)
⇒ iterate with perturbed dual constraints
Works for interval problems P
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An upper bound for the optimal value

Based on idea from Krawczyk (1975) later used and
modified
Jansson (1988), Hansen and Walster (1991),
Kearfott (1994)
Enclose primal interior point
Verifies existence of primal feasible solutions
Works for interval problems P
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Lurupa: verified linear programming

Lurupa
Computes rigorous bounds for the optimal value
Computes enclosures of near optimal, feasible points
Generates certificates of infeasibility, unboundedness
Computes verified condition numbers
Postprocesses approximate solution of unmodified LP
solver
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LP test set

Netlib comprises ∼ 100 problems
First added in 1988, latest in 1996
32 to 15695 variables, 27 to 16675 constraints
(medium size)
Established test set for lp algorithms
Ordóñez and Freund (2003): 71% ill-posed
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Numerical Results (unpreprocessed!)

In total 89 problems, 86 with infinite simple bounds
35 finite upper bounds for the optimal value

med(µ(f
∗
, f ∗)) = 8.0e − 9 med(tf∗/tf∗) = 5.3

76 finite lower bounds for the optimal value

med(µ(f ∗, f ∗)) = 2.2e − 8 med(tf∗/tf∗) = 0.5
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Semidefinite programming applications

Control theory
Circuit design
Combinatorial optimization
Robust optimization
Signal processing
Algebraic geometry
Quantum chemistry
Atom physics
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A semidefinite program
Definition (Semidefinite program (SDP) block diagonal
form)
Find the optimal value f ∗ of 〈C1, X1〉+ · · ·+ 〈Cn, Xn〉 subject to

〈A11, X1〉+ · · ·+ 〈A1n, Xn〉 = b1

...
〈Am1, X1〉+ · · ·+ 〈Amn, Xn〉 = bm

Xj � 0

Dual constraints equivalent to Linear matrix inequality
(LMI)

y1A1j + · · ·+ ymAmj � Cj for j = 1, . . . , m

Weak duality holds, strong duality complicated
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Verified Error Bounds: SDP lower bound
Theorem (Jansson (2007))
Given an SDP P = (Aij , b, Cj) and approximate ỹ ∈ Rm.
Let

Dj := Cj −
m∑

i=1

ỹiAij , d j ≤ λmin(Dj) (measures violations)

lj ≥ number of negative eigenvalues of Dj .

If the optimal Xj satisfies the primal boundedness qualification
λmax(Xj) ≤ x j ∈ R+ ∪ {+∞}, then a lower bound for the optimal
value is

f ∗p ≥ bT ỹ +
n∑

j=1

ljd−j x j =: f ∗p , where d−j = min(0, d j)
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VSDP: Verified Semi-Definite Programming

MATLAB software package by Jansson using INTLAB (Rump)
Verified lower and upper bounds of the optimal value
Proves existence of feasible solutions, also for LMI’s
Provides rigorous certificates of infeasibility
Facilitates to solve approximately the problem by using
different well-known semidefinite programming solvers
(SDPT3, SDPA)
Can handle several formats
Allows the use of interval data
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SDP test set

SDPLIB
92 problems out of control and system theory, truss
topology design, graph partitioning, max cut, . . .
Wide range of sizes (6 to 7000 constraints,
dimension of X : 13 to 7000 ⇒ up to ≈ 24 million variables)
Freund, Ordóñez, and Toh (2006): 32 out of 80 problems
ill-posed
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Numerical results

Using SDPT3
Approximate solver runs out of memory for two very large
problems
Median of guaranteed relative accuracy: 7.0 · 10−7

Median (t/t) = 0.085
Median (t/t) = 1.99
f
∗
d = +∞ for 32 ill-posed problems, reflecting zero distance

to primal infeasibility
Finite bounds and strong duality proved for all other
problems, with exception of hinf2
7 warnings from SDPT3, 3 warnings for well-posed
problems ⇒ not reflecting difficulty of the problems
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Electronic structure calculations
Electrons

(i) do not move around
nucleus in circular orbits

(ii) may exist at any
arbitrary point

(iii) more frequently exist in
regions described by
probability amplitudes,
wave functions Ψ(r , t) Electronic distribution in

NH3 molecule (Ammonia)
with unitary time evolution

~
∂

∂t
Ψ = HΨ, Schrödinger’s Equation,

H Hamiltonian (operator corresponding to energy)
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Electronic structure calculations

Challenging, large-scale problem in atomic physics:
ground-state-energy of molecules (smallest eigenvalue of
Hamiltonian H)
ground-state-energy can be computed from an SDP
(Coleman 1987, . . . , Fukuda et. al to appear in Math.
Programming) that is ill-conditioned
Nakata et. al (J. Chem. Phys. 2001) report numerical
inaccuricies → need for verification
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Electronic structure calculations example

Ammonia NH3
N = 10 electrons, r = 16, m = 2964
size of block matrices: 8, 8, 8, 8, 28, 28, 64, 28, 28, 64,
128, 64, 64, 56, 224, 224, 56, 736, 736, 224, 224
ground-stage energy: 67.92487 eV

Using SDPA as approximate solver:

approximate relative accuracy: 4.9906e − 009
guaranteed relative accuracy: 1.2502e − 007
times: t̃ = 6.59h, t = 0.54h, t = 6.67h
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Electronic structure calculations results

VSDP solved all but the largest molecule problems
(m > 7000, more than 2.5 million variables) due to SDPA
and SDPT3 being aborted after 3 days of computation
D.Chaykin implements a C++ code for verified results using
SDPARA for solving the problems with m > 5000 and
n > 1500
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Summary

Cheap rigorous error bounds available for
ill-conditioned and even ill-posed convex problems
rigorous error bounds for convex relaxations in global
optimization

Neumaier and Shcherbina 2004, MILP
Jansson 2004, LP and Convex Programming
Keil and Jansson 2006, NETLIB LP library
Jansson, Chaykin and Keil 2007, SDP
Jansson 2005, Ill-posed SDP
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