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Why verified linear programming?

I Rounding errors in floating point arithmetic cause
suboptimal or infeasible results

I Ordóñez and Freund, 2003:
71% of netlib LP problems are ill-posed

Ben-Tal and Nemirovski, 2000

In real-world applications of Linear Programming one cannot
ignore the possibility that a small uncertainty in the data

(intrinsic for most real-world LP programs) can make the usual
optimal solution of the problem completely meaningless from a

practical viewpoint.
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A linear program (LP)

Definition (Linear Program (LP))

min cT x objective function
subject to Ax ≤ a linear. . .

Bx = b . . . constraints
x ≤ x ≤ x simple bounds

I Simple bounds may be infinite
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Verified LP software

Constraint programming
RealPaver (Granvilliers)

Rational arithmetic
exlp (Kiyomi), perPlex (Koch),
QSopt_ex (Applegate et al.)

Global optimization
GlobSol (Kearfott), ICOS (Lebbah)

Verified linear programming
Lurupa (Keil)
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Are we comparing apples and oranges?

What is solving?
I Return a rigorous result for the LP
I Type of result (exact, enclosure of optimal, near optimal

point) often secondary from application point of view
I Lower bound (RealPaver) important for rigorous

branch-and-bound schemes
Packages for different tasks with different outputs – fair?

I All can solve LP⇒ look at performance
I Test whether exploiting structure is necessary
I LP is an easy test,

general problems of same size are much harder
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A set of test problems

I 103 real-world problems from netlib and Meszaros’s
collection

I Various applications
I Difficult or interesting at time of submission
I Less than 1500 variables

I Timeout depends on problem:
100 times fastest solving time
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Introducing performance profiles

Suppose two solvers on 5 problems

tA,∗ tB,∗
3s 3s
1s 10s
2s 4s
2s 20s
∞ 100s
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rA,∗ rB,∗
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ts,p is the runtime for solver s on problem p
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Definition (Runtime ratio)

Runtime ratio r for a solver s on a problem p is

rs,p :=
ts,p

mins{ts,p}
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Definition (Performance profile)

Cumulative distribution function of runtime ratios

ρs(τ) :=
|{p | rs,p ≤ τ}|

|{p}|
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How to read performance profiles
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How to read performance profiles
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Performance profiles for real-world problems
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A mixed integer linear program (MILP)

Definition (Mixed Integer Linear Program (MILP))

min cT x objective function
subject to Ax ≤ a linear. . .

Bx = b . . . constraints
x ≤ x ≤ x simple bounds
xZ ∈ Z integrality constraints

I Simple bounds may be infinite
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An innocuous test problem?

Example (Neumaier and Shcherbina, 2004)

min − x20

s. t. (s + 1)x1 − x2 ≥ s − 1

− sxi−1 + (s + 1)xi − xi+1 ≥ (−1)i(s + 1) i : 2, . . . ,19
− sx18 − (3s − 1)x19 + 3x20 ≥ −(5s − 7)

0 ≤ xi ≤ 10 i : 1, . . . ,13

0 ≤ xi ≤ 106 i : 14, . . . ,20
all x ∈ Z.

I Integer variables and coefficients⇒ expect exact solution
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Results of commercial state-of-the-art solver

Set s = 6⇒ several state-of-the-art solver fail
I bonsaiG and Xpress find no solution
I CPLEX, GLPK, Xpress-MP/Integer, and MINLP

even claim: integer infeasible
I x = (1,2,1,2, . . . ,1,2)T feasible
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Explanation of commercial-solver performance

Solving with branch-and-bound method
I Iteratively fixing non-integer variables to integer values

LP relaxation: x ∈ R
x̃ /∈ Z

MILP is judged infeasible
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I Iteratively fixing non-integer variables to integer values

LP relaxation: x ∈ R
x̃ /∈ Z

LP relaxation infeasible
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MILP is judged infeasible
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A verified MILP solver

Student project by Doubli (2008)
I MILP solver based on miqp.m (Bemporad and Mignone)
I Lurupa to make branch-and-bound completely rigorous:

bounds on optimal value, certificates of infeasibility
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Result of verified MILP solver

Solving with completely rigorous branch-and-bound method

LP relaxation: x ∈ R
x̃ /∈ Z

LP relaxation infeasible
certificate of infeasibility

x̃ /∈ Z

x̃ /∈ Z
...

x1:4 = (1, 2, 1, 2)T

LP relaxation infeasible
no certificate of infeasibility

LP relaxation infeasible
certificate of infeasibility

x1 = 0 1 ≤ x1 ≤ 10

x1 = 1 2 ≤ x1 ≤ 10

x = (1,2,1, . . . ,2)T feasible and optimal
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Result of verified MILP solver

Solving with completely rigorous branch-and-bound method

LP relaxation: x ∈ R
x̃ /∈ Z

LP relaxation infeasible
certificate of infeasibility

x̃ /∈ Z

x̃ /∈ Z
...

x1:11 = (1, 2, 1, . . . , 1)T

LP relaxation feasible
feasibility verified

LP relaxation infeasible
certificate of infeasibility

x1 = 0 1 ≤ x1 ≤ 10

x1 = 1 2 ≤ x1 ≤ 10

x = (1,2,1, . . . ,2)T feasible and optimal
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A conic program

Definition (Conic Program)

min cT x objective function
subject to Ax ≤ a linear. . .

Bx = b . . . constraints
x ∈ C conic constraint

I Efficiently solvable under mild assumptions
(Ben-Tal and Nemirovski)
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Why conic programming

Rockafellar (1993)

In fact the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.

I Conic program universal convex program
(Nesterov and Nemirovski)
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Verified conic programming

I Algorithms by Jansson:
I Second-order cone programming (SOCP)
I Semidefinite programming (SDP)
I Conic programming in vector lattices

I Compute rigorous enclosures of
primal and dual feasible points
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Summary

Cheap rigorous error bounds available for
I Ill-conditioned and even ill-posed convex problems
I Convex relaxations in global optimization

I Neumaier and Shcherbina 2004, MILP
I Several publications by

Institute for Reliable Computing
Hamburg University of Technology
http://ti3.tu-harburg.de
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The end

Thank you for your

a-

http://www.tu-harburg.de/~keil

C. Keil Verified Linear Programming and Extensions

http://www.tu-harburg.de/~keil

	Introduction
	Comparison of verified LP software
	Extensions
	Mixed inter linear programming
	Conic programming

	Summary

