Verified Linear Programming and Extensions

Christian Keil

Department of Applied Mathematics Waseda University, Tokyo

EASIAM 2008

C. Keil Verified Linear Programming and Extensions

Introduction

Comparison of verified LP software

Extensions Mixed inter linear programming Conic programming

Summary

Why verified linear programming?

- Rounding errors in floating point arithmetic cause suboptimal or infeasible results
- Ordóñez and Freund, 2003: 71% of netlib LP problems are ill-posed

Ben-Tal and Nemirovski, 2000

In real-world applications of Linear Programming one cannot ignore the possibility that a small uncertainty in the data (intrinsic for most real-world LP programs) can make the usual optimal solution of the problem completely meaningless from a practical viewpoint.

Definition (Linear Program (LP))

min	c ^T x	objective function
subject to	$Ax \leq a$	linear
	Bx = b	constraints
	$\underline{x} \leq x \leq \overline{x}$	simple bounds

Introduction

Comparison of verified LP software

Extensions

Mixed inter linear programming Conic programming

Summary

Constraint programming RealPaver (Granvilliers)

Constraint programming RealPaver (Granvilliers)

Rational arithmetic

exlp (Kiyomi), perPlex (Koch), QSopt_ex (Applegate et al.) Constraint programming RealPaver (Granvilliers)

Rational arithmetic

exlp (Kiyomi), perPlex (Koch), QSopt_ex (Applegate et al.)

Global optimization

GlobSol (Kearfott), ICOS (Lebbah)

Constraint programming RealPaver (Granvilliers) Rational arithmetic exlp (Kiyomi), perPlex (Koch), QSopt_ex (Applegate et al.) Global optimization GlobSol (Kearfott), ICOS (Lebbah) Verified linear programming Lurupa (Keil) What is solving?

- Return a rigorous result for the LP
- Type of result (exact, enclosure of optimal, near optimal point) often secondary from application point of view
- Lower bound (RealPaver) important for rigorous branch-and-bound schemes

Packages for different tasks with different outputs - fair?

- All can solve LP \Rightarrow look at performance
- Test whether exploiting structure is necessary
- LP is an easy test, general problems of same size are much harder

- 103 real-world problems from netlib and Meszaros's collection
 - Various applications
 - Difficult or interesting at time of submission
 - Less than 1500 variables
- Timeout depends on problem:
 100 times fastest solving time

Introducing performance profiles

Suppose two solvers on 5 problems

$t_{A,*}$	$t_{B,*}$
3s	3s
1s	10s
2s	4s
2s	20s
∞	100s

 $t_{s,p}$ is the runtime for solver *s* on problem *p*

Introducing performance profiles

Suppose two solvers on 5 problems

$t_{A,*}$	t _{B,*}		$r_{A,*}$	r _{В,*}
3s	3s	-	1	1
1s	10s		1	10
2s	4s	\rightarrow	1	2
2s	20s		1	10
∞	100s		∞	1

Definition (Runtime ratio)

Runtime ratio r for a solver s on a problem p is

$$r_{s,p} := \frac{t_{s,p}}{\min_s\{t_{s,p}\}}$$

Introducing performance profiles

Suppose two solvers on 5 problems

Definition (Performance profile)

Cumulative distribution function of runtime ratios

$$\rho_{s}(\tau) := \frac{|\{\boldsymbol{p} \mid \boldsymbol{r}_{\boldsymbol{s},\boldsymbol{p}} \leq \tau\}|}{|\{\boldsymbol{p}\}|}$$

C. Keil

Performance profiles for real-world problems

Introduction

Comparison of verified LP software

Extensions Mixed inter linear programming Conic programming

Summary

Definition (Mixed Integer Linear Program (MILP))

min	c ^T x	objective function
subject to	$Ax \leq a$	linear
	Bx = b	constraints
	$\underline{x} \leq x \leq \overline{x}$	simple bounds
	$x_{\mathcal{Z}} \in \mathbb{Z}$	integrality constraints

Simple bounds may be infinite

Example (Neumaier and Shcherbina, 2004)

$$\begin{array}{ll} \min & -x_{20} \\ \text{s. t. } (s+1)x_1 - x_2 \ge s - 1 \\ & -sx_{i-1} + (s+1)x_i - x_{i+1} \ge (-1)^i (s+1) & i:2,\ldots,19 \\ & -sx_{18} - (3s-1)x_{19} + 3x_{20} \ge -(5s-7) \\ & 0 \le x_i \le 10 & i:1,\ldots,13 \\ & 0 \le x_i \le 10^6 & i:14,\ldots,20 \\ & \text{all } x \in \mathbb{Z}. \end{array}$$

► Integer variables and coefficients ⇒ expect exact solution

Set $s = 6 \Rightarrow$ several state-of-the-art solver fail

- bonsaiG and Xpress find no solution
- CPLEX, GLPK, Xpress-MP/Integer, and MINLP even claim: integer infeasible

•
$$x = (1, 2, 1, 2, \dots, 1, 2)^T$$
 feasible

Solving with branch-and-bound method

Iteratively fixing non-integer variables to integer values

LP relaxation: $x \in \mathbb{R}$ $\tilde{x} \notin \mathbb{Z}$

Solving with branch-and-bound method

Iteratively fixing non-integer variables to integer values

Solving with branch-and-bound method

Iteratively fixing non-integer variables to integer values

Solving with branch-and-bound method

Iteratively fixing non-integer variables to integer values

Solving with branch-and-bound method

Iteratively fixing non-integer variables to integer values

MILP is judged infeasible

Student project by Doubli (2008)

- MILP solver based on miqp.m (Bemporad and Mignone)
- Lurupa to make branch-and-bound completely rigorous: bounds on optimal value, certificates of infeasibility

Solving with completely rigorous branch-and-bound method

Solving with completely rigorous branch-and-bound method

Solving with completely rigorous branch-and-bound method

 $x = (1, 2, 1, \dots, 2)^T$ feasible and optimal

Definition (Conic Program)

min	c ^T x	objective function
subject to	$Ax \leq a$	linear
	Bx = b	constraints
	$x \in \mathcal{C}$	conic constraint

 Efficiently solvable under mild assumptions (Ben-Tal and Nemirovski)

Rockafellar (1993)

In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

 Conic program universal convex program (Nesterov and Nemirovski)

- Algorithms by Jansson:
 - Second-order cone programming (SOCP)
 - Semidefinite programming (SDP)
 - Conic programming in vector lattices
- Compute rigorous enclosures of primal and dual feasible points

Introduction

Comparison of verified LP software

Extensions Mixed inter linear programming Conic programming

Summary

Cheap rigorous error bounds available for

- Ill-conditioned and even ill-posed convex problems
- Convex relaxations in global optimization
- Neumaier and Shcherbina 2004, MILP
- Several publications by Institute for Reliable Computing Hamburg University of Technology http://ti3.tu-harburg.de

The end

Thank you for your

http://www.tu-harburg.de/~keil