Yet more elementary proofs that the determinant of a symplectic matrix is 1

F. Bünger ${ }^{\text {a }}$, S.M. Rump ${ }^{\text {a,b }}$
${ }^{a}$ Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, Hamburg 21071, Germany
${ }^{b}$ Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

It seems to be of recurring interest in the literature to give alternative proofs for the fact that the determinant of a symplectic matrix is one. We state four short and elementary proofs for symplectic matrices over general fields. Two of them seem to be new.

Keywords: symplectic matrix, determinant, transvection, isometry 2010 MSC: 15B57, 65F40, 11C20, 51A50

1. Introduction

Let \mathbb{K} be a field and $n \in \mathbb{N}:=\{1,2, \ldots\}$. A matrix $S \in \mathbb{K}^{2 n \times 2 n}$ is called J-symplectic if

$$
\begin{equation*}
S^{T} J S=J \tag{1}
\end{equation*}
$$

for regular and skew-symmetric $J \in \mathbb{K}^{2 n \times 2 n}$, i.e., $J^{T}=-J$. If the characteristic $\operatorname{char}(\mathbb{K})$ of the field \mathbb{K} is two, i.e., if $1=-1$, then $J^{T}=J$, and additionally $J_{i, i}=0$

Email addresses: florian.buenger@tuhh.de (F. Bünger), rump@tuhh. de (S.M. Rump)
for all $i \in\{1, \ldots, 2 n\}$ is assumed in this case. The symplectic (matrix) group ${ }^{11}$

$$
\begin{equation*}
\operatorname{Sp}(J):=\operatorname{Sp}(2 n, \mathbb{K}):=\left\{S \in \mathbb{K}^{2 n \times 2 n} \mid S^{T} J S=J\right\} \tag{2}
\end{equation*}
$$

is, up to isomorphism, independent of the particular choice of $J .2$ In matrix theory often

$$
J:=\left(\begin{array}{cc}
0 & I \tag{3}\\
-I & 0
\end{array}\right)
$$

is taken as the default, where $I:=I_{n} \in \mathbb{K}^{n \times n}$ is the identity matrix of order n. Clearly, (1) immediately gives

$$
(\operatorname{det} S)^{2} \operatorname{det} J=\operatorname{det}\left(S^{T} J S\right)=\operatorname{det} J
$$

so that $\operatorname{det} J \neq 0$ implies $\operatorname{det} S \in\{-1,1\}$. It is one of the basic, well-known facts on symplectic matrices that

$$
\begin{equation*}
\operatorname{det} S=1 \quad \text { for all } S \in \operatorname{Sp}(2 n, \mathbb{K}) \tag{4}
\end{equation*}
$$

Note that this is trivial for char $(\mathbb{K})=2$ since then $1=-1$, but for char $(\mathbb{K}) \neq 2$ it is not obvious. In text books on classical groups like [1] or [15] this result is mostly stated as a corollary of another basic fact, namely that the symplectic group is generated by so-called symplectic transvections, i.e., each $S \in \operatorname{Sp}(2 n, K)$ can be written as a product

$$
\begin{equation*}
S=\prod_{i=1}^{r} E_{i} \tag{5}
\end{equation*}
$$

[^0]of transvections $E_{i} \in \operatorname{Sp}(2 n, \mathbb{K}), i=1, \ldots, r, r \in \mathbb{N}$. A symplectic transvection has the form
\[

$$
\begin{equation*}
E=E_{\alpha, v}:=I+\alpha v v^{T} J, \quad \alpha \in \mathbb{K} \backslash\{0\}, v \in \mathbb{K}^{2 n} \backslash\{0\}, \tag{6}
\end{equation*}
$$

\]

where in this formula $I=I_{2 n}$ denotes the identity matrix of order $2 n$. Since $v^{T} J v=0$,

$$
E^{T} J E:=\left(I-\alpha J v v^{T}\right) J\left(I+\alpha v v^{T} J\right)=J-\alpha^{2} J v\left(v^{T} J v\right) v^{T} J=J
$$

shows that a symplectic transvection is indeed a symplectic matrix. From $E_{\alpha, v} E_{-\alpha, v}=$ $I-\alpha^{2} v\left(v^{T} J v\right) v^{T} J=I$ it follows that $E_{\alpha, v}^{-1}=E_{-\alpha, v}$ is again a symplectic transvection. Moreover, $(E-I)^{2}=\alpha^{2} v\left(v^{T} J v\right) v^{T} J=0$ implies that all eigenvalues of E are one so that $\operatorname{det} E=1$. Hence, (5) implies $\operatorname{det} S=1$.

The fact that transvections have determinant 1 can also be derived in an elementary way as follows. A transvection is a rank-1 update of the identity matrix, so

$$
\left(\begin{array}{cc}
I & 0 \\
w^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
I+u w^{T} & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-w^{T} & 1
\end{array}\right)=\left(\begin{array}{cc}
I & u \\
0 & 1+w^{T} u
\end{array}\right)
$$

shows for $u:=\alpha v$ and $w^{T}:=v^{T} J$ that $\operatorname{det} E_{\alpha, v}=1+\alpha v^{T} J v=1$.
It is not known to the authors who discovered first that symplectic groups are solely generated by transvections. This became nowadays some kind of common knowledge ${ }^{3}$ An elementary short proof in matrix notation is stated in Section 4 . In this context we want to mention the famous papers by Dieudonné [5] and Callan [2], where moreover the minimum number r of factors in a representation (5) is determined. These papers are much more involved.

Another standard proof of the determinant property (4) uses the identity $\operatorname{Pf}(J)=$ $\operatorname{Pf}\left(S^{T} J S\right)=\operatorname{det}(S) \operatorname{Pf}(J)$ on Pfaffians and $\operatorname{Pf}(J) \neq 0$. However, a more direct proof seems to be of recurring interest, see [10], [7], [12].

We contribute two elementary short proofs in Section 2. To the best of our knowledge these proofs seem to be new. In Section 3 we give yet another elementary short proof based on Jordan normal forms. This is in principle known but

[^1]we are not aware of a short and concise statement in the literature that is valid for arbitrary fields. Therefore we considered such a proof also as noteworthy.

2. Proof by block determinants

For preparation, the following trivial lemma is proven by elementary linear algebra.
Lemma 1. Let $M \in \mathbb{K}^{n \times n}$.
a) M is equivalent to $D:=\operatorname{diag}\left(I_{m}, 0_{n-m}\right)$, that is, there are regular $A, B \in \mathbb{K}^{n \times n}$ such that $A M B=D$, where I_{m} is the identity matrix of order $m:=\operatorname{rank}(M)$ and 0_{n-m} is the zero matrix of order $n-m . \stackrel{4}{4}^{4}$
b) There is regular $R \in \mathbb{K}^{n \times n}$ such that $M R$ is symmetric, i.e., $M R=R^{T} M^{T}$.

Proof: a) Let P be a permutation matrix such that the first m columns of $M P=$ $\left[M_{1}, M_{2}\right], M_{1} \in \mathbb{K}^{n, m}, M_{2} \in \mathbb{K}^{n, n-m}$, are linearly independent. The columns of M_{1} can be extended to a basis of \mathbb{K}^{n}, i.e., there is a $M_{3} \in \mathbb{K}^{n, n-m}$ such that $Q:=$ [M_{1}, M_{3}] is regular. Now $I=Q^{-1} Q=\left[Q^{-1} M_{1}, Q^{-1} M_{3}\right]$ means $Q^{-1} M_{1}=\binom{I_{m}}{0}$ so that $M^{\prime}:=Q^{-1} M P=\left[Q^{-1} M_{1}, Q^{-1} M_{2}\right]=\left(\begin{array}{cc}I_{m} & U \\ 0 & V\end{array}\right)$ for suitable $U \in \mathbb{K}^{m, n-m}$ and $V \in \mathbb{K}^{n-m, n-m}$. Since M and M^{\prime} have the same rank, necessarily $V=0$ must hold true. The matrix $R:=\left(\begin{array}{cc}I_{m} & -U \\ 0 & I_{n-m}\end{array}\right)$ is regular and fulfills

$$
Q^{-1} M P R=M^{\prime} R=\left(\begin{array}{cc}
I_{m} & U \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{m} & -U \\
0 & I_{n-m}
\end{array}\right)=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) .
$$

Thus, assertion a) holds true for $A:=Q^{-1}$ and $B:=P R$.
b) By a) there are regular A and B such that $A M B=\operatorname{diag}\left(I_{m}, 0_{n-m}\right)=: D$. The matrix $R:=B A^{-T}$ is regular and $M R=A^{-1} A M B A^{-T}=A^{-1} D A^{-T}$ is symmetric.

For proving (4), we take J as defined in (3) and $S \in \operatorname{Sp}(2 n, \mathbb{K})$. The partition $S=\left(\begin{array}{cc}V & W \\ X & Y\end{array}\right)$ implies

$$
S^{T} J S=\left(\begin{array}{cc}
V^{T} & X^{T} \\
W^{T} & Y^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
V & W \\
X & Y
\end{array}\right)=\left(\begin{array}{cc}
V^{T} & X^{T} \\
W^{T} & Y^{T}
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
-V & -W
\end{array}\right)=J,
$$

[^2]so that
\[

$$
\begin{equation*}
V^{T} X=X^{T} V \quad \text { and } \quad W^{T} Y=Y^{T} W \quad \text { and } \quad Y^{T} V-W^{T} X=I \tag{7}
\end{equation*}
$$

\]

2.1. Proof I

If V is the zero matrix, then the partition of S and the last equality in (7) imply

$$
\operatorname{det} S=(-1)^{n} \operatorname{det} W \operatorname{det} X=(-1)^{n} \operatorname{det} W^{T} X=(-1)^{n} \operatorname{det}(-I)=1 .
$$

Henceforth, we may assume that $m:=\operatorname{rank}(V)>0$. By Lemma 1 a) applied to $M:=V$ there are regular matrices $A, B \in \mathbb{K}^{n \times n}$ such that $D:=A V B=$ $\operatorname{diag}\left(I_{m}, 0_{n-m}\right)$. The matrices $\widehat{A}:=\operatorname{diag}\left(A, A^{-T}\right)$ and $\widehat{B}:=\operatorname{diag}\left(B, B^{-T}\right)$ are symplectic, and so is $\widehat{S}:=\widehat{A S} \widehat{B}=\left(\begin{array}{ll}D & * \\ * & *\end{array}\right)$. Moreover, $\operatorname{det} \widehat{S}=\operatorname{det} S$ by $\operatorname{det} \widehat{A}=1=$ $\operatorname{det} \widehat{B}$. Thus, w.l.o.g. we may assume that $\widehat{S}=S$, i.e., $V=D$. The first equality in (7) yields

$$
\left(X^{T} V\right)^{T}=X^{T} V=\left(\begin{array}{ll}
X_{11}^{T} & X_{21}^{T} \\
X_{12}^{T} & X_{22}^{T}
\end{array}\right)\left(\begin{array}{ll}
I_{m} & \\
& 0
\end{array}\right)=\left(\begin{array}{ll}
X_{11}^{T} & 0 \\
X_{12}^{T} & 0
\end{array}\right)=\left(\begin{array}{cc}
X_{11} & X_{12} \\
0 & 0
\end{array}\right) .
$$

Hence,

$$
X_{11}^{T}=X_{11} \quad \text { and } \quad X_{12}=0 \quad \text { and } \quad X=\left(\begin{array}{cc}
X_{11} & 0 \tag{8}\\
X_{21} & X_{22}
\end{array}\right)
$$

Since J itself is symplectic, also $S^{T}=J S^{-1} J^{-1}$ is symplectic so that the same argument gives $W=\left(\begin{array}{cc}W_{11} & W_{12} \\ 0 & W_{22}\end{array}\right)$. The third equality of (7) supplies

$$
I=Y^{T} V-W^{T} X=\left(\begin{array}{ll}
Y_{11}^{T} & Y_{21}^{T} \\
Y_{12}^{T} & Y_{22}^{T}
\end{array}\right)\left(\begin{array}{ll}
I_{m} & \\
& 0
\end{array}\right)-\left(\begin{array}{cc}
W_{11}^{T} & 0 \\
W_{12}^{T} & W_{22}^{T}
\end{array}\right)\left(\begin{array}{cc}
X_{11} & 0 \\
X_{21} & X_{22}
\end{array}\right)
$$

wherefore

$$
\begin{equation*}
W_{22}^{T} X_{22}=-I_{n-m} \quad \text { and } \quad Y_{11}^{T}-W_{11}^{T} X_{11}=I_{m} \tag{9}
\end{equation*}
$$

Using the Schur complement, the first equality of (8), and (9) we finally compute:

$$
\begin{aligned}
\operatorname{det} S & =\operatorname{det}\left(\begin{array}{c|ccc}
I_{m} & 0 & W_{11} & W_{12} \\
0 & 0 & 0 & W_{22} \\
X_{11} & 0 & Y_{11} & Y_{12} \\
X_{21} & X_{22} & Y_{21} & Y_{22}
\end{array}\right)=\operatorname{det}\left(\left(\begin{array}{ccc}
0 & 0 & W_{22} \\
0 & Y_{11} & Y_{12} \\
X_{22} & Y_{21} & Y_{22}
\end{array}\right)-\left(\begin{array}{c}
0 \\
X_{11} \\
X_{21}
\end{array}\right)\left(\begin{array}{lll}
0 & W_{11} & \left.W_{12}\right)
\end{array}\right)\right. \\
& =\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & W_{22} \\
0 & Y_{11}-X_{11} W_{11} & * \\
X_{22} & * & *
\end{array}\right)=(-1)^{n-m} \operatorname{det}\left(\begin{array}{ccc}
W_{22} & * & * \\
0 & Y_{11}-X_{11} W_{11} & * \\
0 & 0 & X_{22}
\end{array}\right) \\
& =(-1)^{n-m} \operatorname{det} W_{22} \operatorname{det}\left(Y_{11}-X_{11} W_{11}\right) \operatorname{det} X_{22} \\
& =(-1)^{n-m} \operatorname{det}\left(W_{22}^{T} X_{22}\right) \operatorname{det}\left(Y_{11}^{T}-W_{11}^{T} X_{11}\right)=(-1)^{n-m} \operatorname{det}\left(-I_{n-m}\right) \operatorname{det} I_{m}=1,
\end{aligned}
$$

where the fourth equality uses that W_{22} and X_{22} are matrices of order $n-m$.

2.2. Proof II

Contrary to Proof I the following proof avoids the subdivision of the four subblocks V, W, X, Y of S by using a trick like in [14]. ${ }^{5}$

By Lemma 1 b) applied to $M:=W^{T}$ there is a regular matrix $R \in \mathbb{K}^{n \times n}$ such that $W^{T} R=R^{T} W$. We will work in the commutative polynomial ring $\mathbb{K}[x]$. Define $Y_{x}:=Y+x R \in \mathbb{K}[x]^{n \times n}$ and $S_{x}:=\left(\begin{array}{ll}V & W \\ X & Y_{x}\end{array}\right)$. Using (7) we obtain $Y_{x}^{T} W=$ $Y^{T} W+x R^{T} W=W^{T} Y+x W^{T} R=W^{T} Y_{x}$ and
$\left(\begin{array}{cc}Y_{x}^{T} & -W^{T} \\ 0 & I\end{array}\right)\left(\begin{array}{cc}V & W \\ X & Y_{x}\end{array}\right)=\left(\begin{array}{cc}Y_{x}^{T} V-W^{T} X & Y_{x}^{T} W-W^{T} Y_{x} \\ X & Y_{x}\end{array}\right)=\left(\begin{array}{cc}Y_{x}^{T} V-W^{T} X & 0 \\ X & Y_{x}\end{array}\right)$.
Therefore, $\operatorname{det} Y_{x} \operatorname{det} S_{x}=\operatorname{det}\left(Y_{x}^{T} V-W^{T} X\right) \operatorname{det} Y_{x}$, i.e.,

$$
\begin{equation*}
\left(\operatorname{det} S_{x}-\operatorname{det}\left(Y_{x}^{T} V-W^{T} X\right)\right) \operatorname{det} Y_{x}=0 \tag{10}
\end{equation*}
$$

Now, $\operatorname{det} Y_{x}=\operatorname{det}(Y+x R)=\operatorname{det}\left(x I-\left(-Y R^{-1}\right)\right) \operatorname{det} R$ is the $\operatorname{det} R$-multiple (and thus a nonzero-multiple) of the characteristic polynomial of $-Y R^{-1}$. Hence, $\operatorname{det} Y_{x}$

[^3]is not the zero polynomial, so that (10) implies $\operatorname{det} S_{x}-\operatorname{det}\left(Y_{x}^{T} V-W^{T} X\right)=0$. Thus, the polynomials $\operatorname{det} S_{x}$ and $\operatorname{det}\left(Y_{x}^{T} V-W^{T} X\right)$ are identical. Evaluating at $x=0$ and using the third equality in (7) gives
$$
\operatorname{det} S=\operatorname{det}\left(Y^{T} V-W^{T} X\right)=\operatorname{det} I=1
$$

3. Proof by Jordan decomposition

The following lemma is an elementary first step in the course of determining the normal forms of isometries, see [8], 'Hilfssatz' 8.5, p. 567. ${ }^{6}$

Lemma 2. Let $S \in \operatorname{Sp}(2 n, \mathbb{K})$, and let $p, q \in \mathbb{K}[x] \backslash\{0\}$ be polynomials such that $p^{*}(x):=x^{\operatorname{deg}(p)} p\left(x^{-1}\right)$ and q are relatively prime to each other in $\mathbb{K}[x]$. Then $v^{T} J w=0$ for all $v \in \operatorname{kern}(p(S))$ and all $w \in \operatorname{kern}(q(S))$.

Proof: Set $d:=\operatorname{deg}(p)$. The assumption $\operatorname{gcd}\left(p^{*}, q\right)=1$ supplies polynomials $r, s \in \mathbb{K}[x]$ such that $r p^{*}+s q=1$. For $v \in \operatorname{kern}(p(S))$ and $w \in \operatorname{kern}(q(S))$ we use $S^{T} J=J S^{-1}$ to compute:

$$
\begin{aligned}
0 & =(p(S) v)^{T} J S^{d} r(S) w=v^{T} p\left(S^{T}\right) J S^{d} r(S) w=v^{T} J S^{d} p\left(S^{-1}\right) r(S) w \\
& =v^{T} J p^{*}(S) r(S) w=v^{T} J\left(p^{*}(S) r(S)+s(S) q(S)\right) w=v^{T} J w .
\end{aligned}
$$

The third proof of (4) does not need that J has the default form (3).
Rewriting $S^{T} J S=J$ as $S^{-1}=J^{-1} S^{T} J$ for $S \in \operatorname{Sp}(2 n, \mathbb{K})$ shows that S^{T} is similar to S^{-1}. Since every quadratic matrix is similar to its transpose, S is similar to S^{-1}. Hence, in a Jordan decomposition in a decomposition field \mathbb{F} of the characteristic polynomial $\chi_{S}(x)=\operatorname{det}(x I-S)$, each Jordan block for an eigenvalue $\alpha \in \mathbb{F} \backslash\{-1,1\}$ has a corresponding distinct Jordan block of the same size for the eigenvalue $\alpha^{-1} \neq \alpha$. Thus, those Jordan blocks for eigenvalues $\alpha \neq \pm 1$ produce a subdeterminant one.

Clearly the Jordan blocks for the eigenvalue 1 also produce a subdeterminant one, so that it remains to show that the Jordan blocks for the eigenvalue -1 produce a subdeterminant one.

[^4]Let $m \in \mathbb{N}$ be the sum of the sizes of all such Jordan blocks, i.e., m is the algebraic multiplicity of the eigenvalue -1 . Then $p:=(x+1)^{m}$ divides $\chi_{S}(x)$ and $q:=\chi_{S}(x) / p$ is not divisible by $x+1$. Hence, $p^{*}=p$ and q are relatively prime to each other, and Lemma 2 yields that $U:=\operatorname{kern}(p(S))$ and $V:=\operatorname{kern}(q(S))$ are J-perpendicular, i.e., $u^{T} J v=0$ for all $u \in U$ and $v \in V$. Since $U \oplus V=\mathbb{K}^{2 n}$, necessarily U is J-regular, meaning that for an arbitrary basis u_{1}, \ldots, u_{m} of U the Gramian matrix $\widehat{J}:=\left(u_{i}^{T} J u_{j}\right)_{1 \leqslant i, j \leqslant m}$ is regular. Since \widehat{J} is skew-symmetric (with $\widehat{J}_{i, i}=0$ for all i if $\operatorname{char}(\mathbb{K})=2$), m must necessarily be even. Hence, the Jordan blocks for the eigenvalue -1 produce a subdeterminant $(-1)^{m}=1$. Therefore, $\operatorname{det} S=1$.

4. Proof by generating transvections

Finally, as mentioned in the introduction, we give a short and elementary proof that every $S \in \operatorname{Sp}(2 n, \mathbb{K})$ is a product of symplectic transvections. As noted in the introduction, symplectic transvections have determinant 1 , so that $\operatorname{det} S=1$ follows. For the fourth proof it is also not needed that J has the default form (3).

The proof proceeds by induction on $m:=\operatorname{rank}(S-I)$, where I is the identity matrix of order $2 n$ in this section. If $m=0$, then $S=I$. As noted in the introduction, the inverse E^{-1} of a symplectic transvection E is again a symplectic transvection so that $S=I=E E^{-1}$ is the product of two symplectic transvections. Now let $m>0$. Then $S \neq I$ and there is a $u \in \mathbb{K}^{2 n}$ such that $v:=(S-I) u \neq 0$. Consider a symplectic transvection $E:=I+\alpha v v^{T} J, \alpha \in \mathbb{K} \backslash\{0\}$. If w is fixed by S, then it is also fixed by S^{-1}, wherefore

$$
v^{T} J w=u^{T} S^{T} J w-u^{T} J w=u^{T} J S^{-1} w-u^{T} J w=0
$$

implies $E S w=E w=w+v^{T} J w=w$. Thus, we conclude that for all $u \in \mathbb{K}^{2 n}$ with $v:=(S-I) u \neq 0$ and all $\alpha \in \mathbb{K} \backslash\{0\}$ the transvection $E:=I+\alpha v v^{T} J$ fulfills

$$
\begin{equation*}
\operatorname{kern}(S-I) \subseteq \operatorname{kern}(E S-I) \tag{11}
\end{equation*}
$$

Case 1: There exists $u \in \mathbb{K}^{2 n}$ such that $\alpha:=u^{T} J S u \neq 0$. In particular this means that $S u \neq u$ or equivalently $v:=(S-I) u \neq 0$. Take $E:=I+\alpha^{-1} v v^{T} J$ and use $(S u)^{T} J(S u)=0$ to compute

$$
E S u=S u+\alpha^{-1} v v^{T} J S u=S u-\alpha^{-1} v\left(u^{T} J S u\right)=S u-v=u .
$$

Thus, u is fixed by $S^{\prime}:=E S$ but not by S. Using (11) we see that

$$
\operatorname{kern}(S-I) \oplus \mathbb{K} u \subseteq \operatorname{kern}\left(S^{\prime}-I\right)
$$

so that $m^{\prime}:=\operatorname{rank}\left(S^{\prime}-I\right)<\operatorname{rank}(S-I)=m$. By induction S^{\prime} is a product of symplectic transvections and therefore also S.

Case 2: $u^{T} J S u=0$ for all $u \in \mathbb{K}^{2 n}$. Then $J S$ is skew-symmetric since

$$
0=(u+v)^{T} J S(u+v)=v^{T} J S u+u^{T} J S v
$$

for all $u, v \in \mathbb{K}^{2 n}$. Thus, $-J S=(J S)^{T}=S^{T} J^{T}=-S^{T} J=-J S^{-1}$ shows that $S^{2}=I$, i.e., S is an involution. Take some $u \in \mathbb{K}^{n}$ with $v:=(S-I) u \neq 0$ and set $E:=I+v v^{T} J$ and $S^{\prime}:=E S$. By (11), $m^{\prime}:=\operatorname{rank}\left(S^{\prime}-I\right) \leqslant \operatorname{rank}(S-I)=m$. Since $J S$ is regular, there is some $w \in \mathbb{K}^{n}$ such that $\beta:=v^{T} J S w \neq 0$. By assumption $w^{T} J S w=0$, and using $S^{T} J=J S^{-1}=J S$ and $0=S^{2}-I=(S-I)(S+I)$ we deduce

$$
\begin{aligned}
\alpha & :=w^{T} J S^{\prime} w=w^{T} J S w+w^{T} J v\left(v^{T} J S w\right)=\beta w^{T} J v=-\beta v^{T} J w \\
& =-\beta\left(v^{T} J(S+I) w-v^{T} J S w\right)=-\beta u^{T}\left(S^{T}-I\right) J(S+I) w+\beta^{2} \\
& =-\beta u^{T} J(S-I)(S+I) w+\beta^{2}=\beta^{2} \neq 0 .
\end{aligned}
$$

Hence, S^{\prime} fulfills the assumption of Case 1 with $u:=w$ and we may proceed as before to find a second symplectic transvection E^{\prime} with

$$
m^{\prime \prime}:=\operatorname{rank}\left(E^{\prime} E S\right)=\operatorname{rank}\left(E^{\prime} S^{\prime}\right)<m^{\prime} \leqslant m
$$

By induction $E^{\prime} E S$ is a product of transvections, and so is S.

5. Acknowledgement

The authors would like to thank an anonymous referee for helpful comments.

References

[1] E. Artin. Geometric Algebra. Wiley Interscience Publishers, INC., New York, Wiley Classics Library Edition, 1988.
[2] D. Callan. The Generation of $\operatorname{Sp}\left(\mathbb{F}_{2}\right)$ by Transvections. Journal of Algebra, 42, 378-390, 1976.
[3] J. Dieudonné. Sur les groupes classiques. Hermann, Paris, 1948.
[4] J. Dieudonné. La géométries des groupes classiques. Springer, Berlin et al., 1955.
[5] J. Dieudonné. Sur les générateurs des groupes classiques. Summa Bras. Mathem., 3, 149-178, 1955.
[6] L.E. Dickson. Linear groups, with an exposition of the Galois Field theory. Teubner, Leipzig, 1901.
[7] F.M. Dopico, C.R. Johnson. Complementary bases in symplectic matrices and a proof that their determinant is one. Linear Algebra Appl., 419, 772778, 2006.
[8] B. Huppert. Angewandte Lineare Algebra. de Gruyter, Berlin, New York, 1990.
[9] C. Jordan. Traité des substitutions et des équations algébriques. GauthierVillars, Paris, 1870.
[10] D.S. Mackey, N. Mackey. On the determinant of symplectic matrices. Numerical Analysis Report No. 422, Manchester Center for Computational Mathematics, Manchester, England, 2003.
[11] C.-M. Marle. The inception of Symplectic Geometry: the works of Lagrange and Poisson during the years 1808-1810. Letters in Mathematical Physics, 90:3, doi:10.1007/s11005-009-0347-y, 2009.
[12] D. Rim. An Elementary Proof That Symplectic Matrices Have Determinant One. arXiv:1505.04240v3 [math.HO], 2015.
[13] I. Schur. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Journal für die reine und angewandte Mathematik, 147, 205-232, 1917.
[14] J.R. Silvester. Determinants of Block Matrices. Math. Gaz., 84(501), 460467, 2000.
[15] D.E. Taylor. The Geometry of the Classical Groups. Heldermann Verlag, Berlin, 1992.
[16] H. Weyl. The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, New Jersey, 1939.

[^0]: ${ }^{1}$ The first notion of symplectic groups goes back to Jordan [9] in 1870, where in §VIII, p.171, he calls these groups 'groupes abélien', a name which was not yet occupied by commutative groups at that time. Later, in 1901, Dickson [6], Chapter II, p. 89, called these groups 'abelien linear groups'. The nowadays used name 'symplectic group' was invented by Weyl [16] in 1939. It is a Greek word for the Latin word 'complex' which was already occupied in mathematics by the complex numbers, see [11] for more history on symplectic geometry. The name 'symplectic group' was later used and made public by Dieudonné [3], [4] and also by van der Waerden in his famous books on modern algebra.
 ${ }^{2}$ For another skew-symmetric $\tilde{J} \in \mathbb{K}^{2 n \times 2 n}$, with $\tilde{J}_{i i}=0$ if char $(\mathbb{K})=2$, there always exists a regular matrix A such that $\tilde{J}=A^{T} J A$ with the property that S is J-symplectic, if, and only if, $\tilde{S}:=A^{-1} S A$ is \tilde{J}-symplectic. The conjugation by A, i.e., the mapping $\operatorname{Sp}(J) \rightarrow \operatorname{Sp}(\tilde{J}), S \mapsto$ $A^{-1} S A$ is a group isomorphism which does not change determinants, i.e., $\operatorname{det} S=\operatorname{det}\left(A^{-1} S A\right)$ for all $S \in \operatorname{Sp}(J)$.

[^1]: ${ }^{3}$ This knowledge goes back to the very first notion of symplectic groups by Jordan [9]. There, in Theorem 221, p. 174, Jordan proved for $\mathbb{K}=\mathbf{G F}(p)$ that the symplectic group is generated by a little bit different set of generators containing symplectic transvections. Since it can easily be seen that all these generators have determinant one, Jordan already deduced (4) in a remark on p. 176. The same result was more or less repeated by Dickson[6], Theorem 114, p. 92, for $\mathbb{K}=\mathbf{G F}\left(p^{m}\right)$, $m \in \mathbb{N}$.

[^2]: ${ }^{4}$ Note that this is obvious if a singular value decomposition is at hand, such as for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.

[^3]: ${ }^{5}$ Silvester [14] proved that a block matrix $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathbb{K}^{2 n \times 2 n}, A, B, C, D \in \mathbb{K}^{n \times n}$, has determinant $\operatorname{det} M=\operatorname{det}(A D-B C)$ if C and D commute, i.e., if $C D=D C$. The key idea in his proof is to substitute D by $D_{x}:=D+x I$ and to use a Schur complement-like formula for the determinant in the polynomial ring $\mathbb{K}[x]$. Actually this trick was implicitly already done by Schur [13], p. 216-217, thanks to P. Batra for pointing to this reference.

[^4]: ${ }^{6}$ A complete classification of the normal forms of symplectic (and also orthogonal and unitary) isometries over arbitrary fields is given in [8], 'Hauptsatz' 8.9, p. 570. From that classification the determinant property (4) follows immediately, however, this would mean to use a sledgehammer to crack a nut.

