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Florian Bünger and Siegfried M. Rump

Abstract. Let DR, Dr, DS , Ds be complex disks with common center 1
and radii R, r, S, s, respectively. We consider the Minkowski products
A := DRDr and B := DSDs and give necessary and sufficient conditions
for A being a subset or superset of B. Partially, this extends to n-fold
disk products D1 · · ·Dn, n > 2.

It is well-known that the boundaries of A and B are outer loops
of Cartesian ovals. Therefore, our results translate to necessary and
sufficient conditions under which such loops encircle each other.
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Denote by
D(c, δ) := {z ∈ C : |z − c| ≤ δ}

the closed complex disk with center c ∈ C and radius δ ∈ R≥0. For given disks
D1, D2 let D′1, D

′
2 be disks with the same product of centers but different

radii. We will give necessary and sufficient conditions for the fact that the
Minkowski product D1D2 is a subset or superset of D′1D

′
2.

Recently it was proved [3] that the determinant of a real matrix is con-
tained in the Minkowski product of its Gershgorin circles. This is nontrivial
if the Gershgorin circles overlap; the proof uses only results from classical
matrix theory. When extending this result to complex matrices [4] we arrived
at the problem addressed in this note.

Independent from that the problem is of general interest within the
context of the Minkowski algebra of complex sets. This set algebra is thor-
oughly described by Farouki, Moon, and Ravani in [1] along with various
applications, and we refer to that paper and the references therein for details
on that topic. Let us particularly mention that [1] stresses the connection
between complex circle products, cartesian ovals, and geometrical optics to
demonstrate practical relevance.

Let D1 = D(c1, δ1) and D2 = D(c2, δ2) be given. If c1c2 = 0, then the
Minkowski product D1D2 is simply a circle around the origin with radius
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(|c1|+ δ1)(|c2|+ δ2), and the desired inclusion conditions follow immediately.
If c1c2 6= 0, then

D1D2 = c1c2D(1, r1)D(1, r2) with r1 =
δ1
|c1|

and r2 =
δ2
|c2|

.

Therefore, we may restrict our attention to products of disks with center 1.
Denote byA := D(1, R)·D(1, r) andB := D(1, S)·D(1, s) the Minkowski

products of two pairs of disks with common center 1 and radii R, r, S, s ∈ R≥0.
It is well-known that the boundary of such a Minkowski product is the outer
loop of a Cartesian oval [1, 2]. The extremal real points of A are well-known
to be

λA := minA ∩ R = min (1−R)(1± r) = 1−R− r|1−R| (1)

ρA := maxA ∩ R = (1 +R)(1 + r) (2)

with similar formulas for B. It follows that

[λA, ρA] = A ∩ R and [λB , ρB ] = B ∩ R.
The subject of this note is to present necessary and sufficient conditions for A
being a subset or superset of B. This is a question of matter if R ≥ S ≥ s ≥ r.
Our main result is

Theorem 1. Let R ≥ S ≥ s ≥ r ∈ R≥0 be given. Define A := D(1, R)·D(1, r),
B := D(1, S) ·D(1, s). Then, the following equivalence relations hold true:

a) A ⊆ B ⇔ λA ∈ B ⇔ λB ≤ λA
b) B ⊆ A ⇔ ρB ∈ A ⇔ ρB ≤ ρA

This means that the whole set A is contained in B if, and only if, its left-most
real point λA = 1 − R − r|1 − R| is an element of B. Likewise, the set B is
contained in A if, and only if, its right-most real point ρB = (1 + S)(1 + s)
is an element of A.

Inclusions in the respective topological interiors are characterized as follows.

Corollary 2. With the notation of Theorem 1 the following equivalence rela-
tions hold true:

a) A ⊆
◦
B ⇔ λA ∈

◦
B ⇔ λB < λA

b) B ⊆
◦
A ⇔ ρB ∈

◦
A ⇔ ρB < ρA

where
◦
M denotes the interior of a set M .

We start with proving relations between the extremal real points of A and B.

Lemma 3. Let R ≥ S ≥ s ≥ r ∈ R≥0 and define

λA := 1−R− r|1−R|, ρA := 1 +R+ r +Rr,
λB := 1− S − s|1− S|, ρB := 1 + S + s+ Ss.

Then

a) λB ≤ λA ⇒ ρA ≤ ρB
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b) ρA ≥ ρB ⇒ λA ≤ λB

Proof. a) Suppose that λB ≤ λA.

Case 1: S ≥ 1. Then, R ≥ 1 and using r ≤ s gives

ρA − 1 = R− r +Rr + 2r = 1− λA + 2r ≤ 1− λB + 2s

= S − s+ Ss+ 2s = ρB − 1.

Case 2: S < 1. Then λB = (1 − S)(1 − s) > 0 so that R ≥ 1 is not possible
because otherwise λA = (1 − R)(1 + r) ≤ 0 < λB . Thus, R < 1 and λA =
(1−R)(1− r). Abbreviate

µ :=
R+ r

2
, ∆ :=

R− r
2

, and µ̃ :=
S + s

2
, ∆̃ :=

S − s
2

. (3)

Then ∆ ≥ ∆̃, and 0 ≤ µ, µ̃ ≤ 1 together with

(1− µ̃)2 −∆2 ≤ (1− µ̃)2 − ∆̃2 = (1− S)(1− s) = λB ≤ λA = (1− µ)2 −∆2

imply µ ≤ µ̃. Hence

ρA = (1 + µ)2 −∆2 ≤ (1 + µ̃)2 − ∆̃2 = ρB .

b) Suppose that ρA ≥ ρB .

Case 1: S ≥ 1. Using R ≥ S ≥ 1 and r ≤ s gives

1− λA = R+ r(R− 1) = ρA − 1− 2r ≥ ρB − 1− 2s = S + s+ Ss− 2s

= 1− λB .

Case 2: S < 1. Then λB = (1 − S)(1 − s) > 0. If R ≥ 1, then λA =
(1−R)(1+r) ≤ 0 < λB . Thus, we may assume that R < 1. We use (3) again,

so that ∆ ≥ ∆̃ and

(1 + µ)2 − ∆̃2 ≥ (1 + µ)2 −∆2 = ρA ≥ ρB = (1 + µ̃)2 − ∆̃2

imply µ ≥ µ̃. Thus, using 0 ≤ µ, µ̃ ≤ 1,

λA = (1− µ)2 −∆2 ≤ (1− µ̃)2 − ∆̃2 = λB

finishes that case and the proof. �

In [4] the following parameterization of the outer loop of a Cartesian oval
was invented.

Lemma 4. Let R ≥ r ∈ R≥0 be given. The boundary of the Minkowski (set)
product A = D(1, R) ·D(1, r) is parameterized by z(t) = x(t) + iy(t) with

x(t) :=
t2 + 1− (R2 + r2)

2
(4)

y(t) := ±
√

(R+ tr)2 − (x(t)− 1 + r2)2 (5)

t ∈ [t1, t2] := [ |1−R| − r , 1 +R+ r ] . (6)
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Note that the extremal real points of A satisfy λA = x(t1) and ρA = x(t2).

Next, we prove Theorem 1, that is, necessary and sufficient conditions for
A ⊆ B or for B ⊆ A. Two typical cases are displayed in Figure 1, where A is
depicted by the black solid and B by the red dashed line. We will show that
A ⊆ B holds true if, and only if, λA ∈ B, and B ⊆ A if, and only if, ρB ∈ A.

-1 0 1 2 3 4

-3

-2

-1

0

1

2

3

 a)  R = 1.3, r = 0.4, S = 1.2, s = 1.12

0 0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 b)  R = 1.1, r = 0.6, S = 0.9, s = 0.758

A
B

Figure 1. Outer loops of Cartesian ovals for products of
complex circles with center 1.

Proof of Theorem 1. The implications

A ⊆ B ⇒ λA ∈ B ⇒ λB ≤ λA
B ⊆ A ⇒ ρB ∈ A ⇒ ρB ≤ ρA

are trivial which leaves us with proving the following two implications:

(i) λB ≤ λA ⇒ A ⊆ B (ii) ρB ≤ ρA ⇒ B ⊆ A

By Lemma 4 the outer loop of A has the parameterization (4)-(6), and anal-
ogously, x̃, ỹ, t̃1, t̃2 are defined for B by replacing R, r by S, s. A computation
gives

x(t)2 + y(t)2 = (t+Rr)2 for all t ∈ [t1, t2], (7)

x̃(t)2 + ỹ(t)2 = (t+ Ss)2 for all t ∈ [t̃1, t̃2]. (8)

Since A and B are symmetric to the real axis we may restrict our consid-
erations to the closed upper complex half plane where A and B have the
respective boundary curves z(t) := x(t)+ iy(t) and z̃(t) := x̃(t)+ iỹ(t). These
curves connect λA, ρA and λB , ρB , respectively. Precisely,

[z(t1), z(t2)] = [λA, ρA] and [λB , ρB ] = [z̃(t̃1), z̃(t̃2)]. (9)
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ad (i). By Lemma 3 a) and (9),

A ∩ R = [z(t1), z(t2)] = [λA, ρA] ⊆ [λB , ρB ] = [z̃(t̃1), z̃(t̃2)] = B ∩ R. (10)

Thus, the endpoints of the boundary curve z(t) of A are in B and the assertion
follows if z(t) does not leave B. In order to derive a contradiction, we assume
that there is a point ẑ = z(t̂) ∈ A\B. Then, injectivity of the curves z(t) and
z̃(t) implies that they must have (at least) two distinct intersection points
zk := z(τk) = z̃(τ̃k), τk ∈ [t1, t2] and τ̃k ∈ [t̃1, t̃2], k = 1, 2. Now, x(τk) = x̃(τ̃k)
and (4) yield

τ̃2k − τ2k = S2 + s2 − (R2 + r2). (11)

From (7), (8) it follows that (τk+Rr)2 = (τ̃k+Ss)2, i.e., τ̃2k = (τk+Rr+αSs)2

for some α ∈ {−1, 1}. Therefore, (11) becomes

2(Rr + αSs)τk + (Rr + αSs)2 = S2 + s2 − (R2 + r2). (12)

If Rr + αSs = 0, then Rr = Ss and (12) transforms to

0 = S2 + s2 − (R2 + r2) = (S − s)2 − (R− r)2.
which implies (S, s) = (R, r) so that A = B. If Rr+αSs 6= 0, then (12) gives

τk =
S2 + s2 − (R2 + r2)− (Rr + αS)2

2(Rr + αS)
.

Since the right-hand side is independent of k we get τ1 = τ2 and therefore
z1 = z(τ1) = z(τ2) = z2, a contradiction as z1 and z2 are distinct.

ad (ii). Lemma 3 b) and (9) yield

B ∩ R = [z̃(t̃1), z̃(t̃2)] = [λB , ρB ] ⊆ [λA, ρA] = [z(t1), z(t2)] = A ∩ R.
Now, the proof proceeds exactly the same way as in a) with the roles of A
and B interchanged. �

Proof of Corollary 2. The implications

A ⊆
◦
B ⇒ λA ∈

◦
B ⇒ λB < λA

B ⊆
◦
A ⇒ ρB ∈

◦
A ⇒ ρB < ρA

are again trivial and we are left with proving:

(i) λB < λA ⇒ A ⊆
◦
B (ii) ρB < ρA ⇒ B ⊆

◦
A

ad (i). We may assume that r < s since otherwise r = s clearly implies
B ⊆ A and therefore λA ≤ λB . By continuity we can find s̃ ∈ (r, s) such

that λB < λB̃ < λA for B̃ := D(1, S)D(1, s̃). By Theorem 1 a), A ⊆ B̃.
Furthermore,1

B̃ ⊆ D(1, S)
◦
D(1, s) = {z

◦
D(1, s) : z ∈ D(1, S)},

1Here
◦
D(1, s) denotes the interior of D(1, s) which is the open disk with center 1 and radius s.
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which is a union of open sets, so that A ⊆ B̃ ⊆
◦
B.

ad (ii). We may assume that R > S because R = S implies

ρA = (1 +R)(1 + r) ≤ (1 + S)(1 + s) = ρB .

We proceed analogously to (i) choosing R̃ ∈ (S,R). �

Keeping the notation of Theorem 1 and Corollary 2, the special case Rr = Ss
was considered in [4], Lemma 3, where B ⊆ A was deduced more directly.
This result follows in a sharpened form from the next Corollary.

Corollary 5. If (R, r) 6= (S, s) and Rr = Ss, then B ⊆
◦
A.

Proof. From R ≥ S ≥ s ≥ r and (R, r) 6= (S, s) we have
√
R−
√
r >
√
S−
√
s.

Abbreviating c := Rr = Ss, it follows that

ρA − 1 = R+ r +Rr = (
√
R−
√
r)2 + 2

√
c+ c > (

√
S −
√
s)2 + 2

√
c+ c

= S + s+ Ss = ρB − 1,

and Corollary 2 b) yields the assertion. �

Next, we extend Theorem 1 b) to the case of n complex disks. The proof
proceeds similar to that of Theorem 1 in [4].

Theorem 6. Let n ∈ N and r, s ∈ Rn
≥0 be given such that s1 ≥ · · · ≥ sn. For

k ∈ {1, . . . , n} =: [n] define Ak :=
∏k

j=1D(1, rj) and Bk :=
∏k

j=1D(1, sj),

and let ρAk
:=

∏k
j=1(1 + rj) and ρBk

:=
∏k

j=1(1 + sj) denote the right-
most real points of Ak and Bk, respectively. Then, the following equivalence
relations holds true:

∀k ∈ [n] : Bk ⊆ Ak ⇔ ∀k ∈ [n] : ρBk
∈ Ak ⇔ ∀k ∈ [n] : ρBk

≤ ρAk

Proof. Again, the implications

∀k ∈ [n] : Bk ⊆ Ak ⇒ ∀k ∈ [n] : ρBk
∈ Ak ⇒ ∀k ∈ [n] : ρBk

≤ ρAk

are trivial and we are left with proving

∀k ∈ [n] : ρBk
≤ ρAk

⇒ ∀k ∈ [n] : Bk ⊆ Ak.

Therefore, let us assume that the premise holds true:

∀k ∈ [n] :

k∏
j=1

(1 + sj) ≤
k∏

j=1

(1 + rj) (13)

The proof proceeds by induction on n. For n = 1 we have B1 = D(1, s1) ⊆
D(1, r1) = A1 because s1 ≤ r1 by (13). Now, let n > 1 and suppose that
the assertion holds true for n− 1. Thus, it remains to prove that B := Bn ⊆
An =: A. If sj ≤ rj for all j = 1, . . . , n, then the assertion is trivial. Thus, we
may assume that there is a smallest index m ∈ {1, . . . , n} such that sm > rm.
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Since s1 ≤ r1 by (13) for k = 1, we have m ≥ 2. The minimal choice of m
and the assumption sm−1 ≥ sm yield

rm−1 ≥ sm−1 ≥ sm > rm. (14)

For j ∈ {1, . . . , n− 1} define

s′j :=

{
sj if 1 ≤ j ≤ m− 1

sj+1 if m ≤ j ≤ n− 1

r′j :=


rj if 1 ≤ j ≤ m− 2

(1 + rm−1)(1 + rm)

1 + sm
− 1 if j = m− 1

rj+1 if m ≤ j ≤ n− 1.

Clearly, s′1 ≥ · · · ≥ s′n−1 and
k∏

j=1

(1 + s′j) ≤
k∏

j=1

(1 + r′j) for k ∈ {1, . . . ,m− 2}.

For k ∈ {m− 1, . . . , n− 1} assumption (13) implies

k∏
j=1

(1 + s′j) =
1

1 + sm

k+1∏
j=1

(1 + sj)

≤ (1 + rm−1)(1 + rm)

1 + sm

m−2∏
j=1

(1 + rj)

k+1∏
j=m+1

(1 + rj)

=

k∏
j=1

(1 + r′j).

The induction hypothesis applied to r′, s′ ∈ Rn−1 supplies

B′ :=
n−1∏
j=1

D(1, s′j) ⊆
n−1∏
j=1

D(1, r′j) =: A′.

From (14) it follows that

sm ∈ [rm, rm−1] and r′m−1 =
(1 + rm−1)(1 + rm)

1 + sm
− 1 ∈ [rm, rm−1].

By Theorem 1 b)

D(1, sm)D(1, r′m−1) ⊆ D(1, rm−1)D(1, rm)

holds true and we conclude

B = D(1, sm)B′ ⊆ D(1, sm)A′ = D(1, sm)D(1, r′m−1)

n−1∏
j=1

j 6=m−1

D(1, r′j)

⊆ D(1, rm−1)D(1, rm)

n∏
j=1

j 6=m−1,m

D(1, rj) = A.
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�

Condition (13) is sufficient for deciding B ⊆ A but by Theorem 6 it already
implies that all partial disk products Bk are contained in the corresponding
Ak, k = 1, . . . , n. It is not clear how to formulate a criterion for B = Bn

being a subset of A = An such that Bk ⊆ Ak must not necessarily hold true
for all k < n.

Finally we remark that, analogously to Corollary 2, it is easy to show

that B ⊆
◦
A holds true if at least one of the n inequalities in (13) is strict.
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