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ABSTRACT
Let a strongly stable norm ‖ · ‖ on the set Mn of complex n-by-n matrices be given,
which means that ‖Ak‖ ≤ ‖A‖k for all A ∈ Mn and all k = 1, 2, . . . . Furthermore,
let f(x) =

∑∞
k=0 ckx

k be a power series with nonnegative coefficients ck ≥ 0 and
radius of convergence R > 0. If ‖I‖ > 1, we additionally suppose that c0 = f(0) = 0.

We aim to characterize those A with ‖A‖ < R which fulfill ‖f(A)‖ = f(‖A‖).
We first show how to reduce the discussion of f to Neumann series. For matrix
norms induced by uniformly convex vector norms, like the `p-norms, p ∈ (1,∞),
it follows from known results on the Daugavet equation ‖I + A‖ = 1 + ‖A‖ that
‖f(A)‖ = f(‖A‖) holds true if, and only if, ‖A‖ is an eigenvalue of A, provided that
ckck+1 6= 0 for some k ≥ 0. Under adapted assumptions on the ck we prove that this
equivalence remains true for the `1- and the `∞-norm, for unitarily invariant matrix
norms, and for the numerical radius. We conjecture this equivalence to be valid for
all strongly stable norms if ck > 0 for all k ≥ 1.
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1. Introduction

For n ∈ N = {1, 2, . . . } let Mn denote the set of complex n-by-n matrices and
I = In ∈Mn the n-by-n identity matrix. Let a strongly stable norm ‖ · ‖ on Mn be
given (see [5]), which means that

‖Ak‖ ≤ ‖A‖k for all A ∈Mn and all k ∈ N. (1)

If, in addition, ‖ · ‖ is submultiplicative, i.e., if ‖XY ‖ ≤ ‖X‖‖Y ‖ for all X,Y ∈ Mn,
then ‖ · ‖ is called a matrix norm. One of the most prominent examples of a strongly
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stable norm which is not a matrix norm is the numerical radius

r(A) := max{|u∗Au| | u ∈ Cn, u∗u = 1},

where u∗ denotes the conjugate transpose of u ∈ Cn. If

f(x) =

∞∑
k=0

ckx
k

is a power series with all ck ≥ 0 and radius of convergence R > 0, then the triangle
inequality and (1) readily imply

‖f(A)‖ = ‖
∞∑
k=0

ckA
k‖ ≤ c0‖I‖+

∞∑
k=1

ck‖A‖k = f(0)(‖I‖ − 1) + f(‖A‖) (2)

for all A ∈ Mn with ‖A‖ < R. Note that (1) applied to A := I and k := 2 yields
‖I‖ = ‖I2‖ ≤ ‖I‖2 so that ‖I‖ ≥ 1. However, ‖I‖ > 1 may hold true as, for example,
for the Frobenius norm in dimension n ≥ 2. Thus, the unpleasant addend f(0)(‖I‖−1)
on the right-hand side in (2) disappears if, and only if,

f(0) = 0 or ‖I‖ = 1, (3)

in which case we have

‖f(A)‖ ≤ f(‖A‖). (4)

Under the assumption (3), which shall hold true in what follows, we are interested in
determining those matrices A (with ‖A‖ < R) for which equality holds true in (4). To
do so, first note that [6, Theorem 5.7.10] and (1) imply

ρ(X) = lim
k→∞

‖Xk‖1/k ≤ ‖X‖ for all X ∈Mn (5)

where ρ(X) is the spectral radius of X. For spec(X) denoting the spectrum of X ∈Mn,
we have spec(f(A)) = f(spec(A)). Now, if ‖A‖ ∈ spec(A), then (4), (5), and ck ≥ 0
for all k yield

f(‖A‖) ≥ ‖f(A)‖ ≥ ρ(f(A)) = max{|f(λ)| | λ ∈ spec(A)} ≥ |f(‖A‖)| = f(‖A‖),

so that ‖f(A)‖ = f(‖A‖). This simple observation is recorded as

Remark 1. If ‖ · ‖ is strongly stable and ‖A‖ is an eigenvalue of A, then equality
holds true in (4) provided that (3) is satisfied.

In general, the converse is not true even for n = 1, where, for example, f(x) := x2

and A := −1 fulfill |f(A)| = 1 = f(|A|), but ρ(A) = 1 is not an eigenvalue of A. Thus,
in order to turn Remark 1 into an equivalence statement, which is the task of this
paper, further conditions must be imposed on f(x) or ‖ · ‖. We conjecture:

Conjecture 1.1. If f (k)(0) > 0 for all k ∈ N and f(0)(‖I‖ − 1) = 0, then
‖f(A)‖ = f(‖A‖) holds true if, and only if, ‖A‖ is an eigenvalue of A.
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We could neither prove this conjecture for general strongly stable norms, nor could
we find a counterexample. In this note we prove the following:

Theorem 1.2. Let ‖ · ‖ be a norm on the set Mn of complex n-by-n matrices. Fur-
thermore, let f(x) :=

∑∞
k=0 ckx

k with all ck ≥ 0, radius of convergence R ∈ (0,∞],
and f(0)(‖I‖− 1) = 0. Suppose that one of the following cases holds true: the norm is

1) induced by a uniformly convex vector norm1 and ckck+1 6= 0 for some k ≥ 0,
2) unitarily invariant2 and ckck+1 6= 0 for some k ≥ 0,
3) the numerical radius and ckck+1 6= 0 for some k ≥ 1,
4) the `1- or the `∞-norm and ck 6= 0 for all k ≥ k0 and some k0 ≥ 0.

Then, for A ∈Mn with ‖A‖ < R, we have ‖f(A)‖ = f(‖A‖) if, and only if, ‖A‖ is an
eigenvalue of A.

Before the proof we give some general remarks. We first show how to reduce the
discussion of power series to Neumann series or even to f(x) = xj(1 + x) for some
j ≥ 0. Then, part 1) for uniformly convex vector norms is a consequence of a result by
Abramovich et al. [1] on the so-called Daugavet equation ‖I +A‖ = 1 + ‖A‖.

Theorem 1.3 (Abramovich et al.). If ‖ · ‖ is induced by a uniformly convex vector
norm, then the Daugavet equation ‖I + A‖ = 1 + ‖A‖ holds true for an A ∈ Mn if,
and only if, ‖A‖ is an eigenvalue of A.

Recall that for 1 < p < ∞ the `p-norms ‖x‖p := (
∑n

k=1 |xk|p)
1/p, x ∈ Cn, are

uniformly convex so that the induced matrix norms

‖A‖p := max{‖Ax‖p | ‖x‖p = 1, x ∈ Cn}, A ∈Mn

fulfill the assumptions of Theorem 1.3. Contrary, the `1-norm ‖x‖1 :=
∑n

k=1 |xk| and
the `∞-norm ‖x‖∞ = max1≤k≤n |xk| are not uniformly convex, so that their induced
matrix norms ‖A‖1 and ‖A‖∞ are treated separately in Theorem 1.2. This is reasonable
because, for example, the nilpotent 2-by-2 matrix

A :=

(
0 a
0 0

)
, a > 0 (6)

fulfills the Daugavet equations 1 + a = ‖I +A‖1 = 1 + ‖A‖1 = 1 + ‖A‖∞ = ‖I +A‖∞,
but ‖A‖1 = a = ‖A‖∞ is not an eigenvalue of A.

Likewise, r(A) = xTAx = a/2 and r(I + A) = xT (I + A)x = 1 + a/2 holds true
for x := 2−1/2(1, 1)T , i.e., the Daugavet equation r(I + A) = 1 + r(A) is valid for the
numerical radius although r(A) is not an eigenvalue of A. Thus, the assumption k ≥ 1
in part 3) is necessary.

For a := 1/2 and the Frobenius norm ‖ · ‖F , the Daugavet equation ‖I + A‖F =
3/2 = 1 + ‖A‖F holds true again without ‖A‖F = 1/2 being an eigenvalue of A.
However, f(0)(‖I‖ − 1) = 0 is not fulfilled because ‖I‖F =

√
2 and f(0) = 1 for

f(x) := 1 + x. Hence, this is not a counterexample to part 2).
Another example is f(x) :=

∑∞
k=1 x

2k and A := −1/2 satisfying f(|A|) = 1/3 =
|f(A)| even though |A| = 1/2 is not an eigenvalue of A. Thus, the condition ckck+1 6= 0

1A vector norm ‖ · ‖ on Cn is uniformly convex if for all ε > 0 there exists δ > 0 such that ‖x− y‖ < ε for all

x, y ∈ Cn with ‖x‖ = ‖y‖ = 1 and ‖ 1
2

(x+ y)‖ > 1− δ.
2A norm ‖ · ‖ on Mn is unitarily invariant if ‖U∗AV ‖ = ‖A‖ for all A ∈Mn and all unitary U, V ∈Mn.
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for at least some k seems reasonable.
Note that, concerning unitarily invariant norms in part 2) of Theorem 1.2, our Con-

jecture 1.1 includes weakly unitarily invariant matrix norms as well. However, the
numerical radius, which is only weakly unitarily invariant and not a matrix norm, is
treated separately in part 3).

In the next section we prove some auxiliary lemmas leading to the reduction of
power series to Neumann series. It follows the proof of Theorem 1.2, and the note is
finished by some concluding remarks.

2. Reduction of power series to Neumann series

The following lemma is a reformulation of Lemma 2.1 in [5] for finite sums. For the
readers convenience a proof is given.3

Lemma 2.1. Let ‖ ·‖ be a norm on an R-vector space V and w1, . . . , wm ∈ V , m ≥ 2.
The following statements are equivalent:

i) ‖
m∑
k=1

µkwk‖ =
m∑
k=1

µk‖wk‖ for all µ1, . . . , µm ∈ R≥0

ii) ‖
m∑
k=1

wk‖ =
m∑
k=1

‖wk‖

Proof: i)⇒ ii). Take µk := 1 for k = 1, . . . ,m.
ii)⇒ i). Let µ1, . . . , µm ∈ R≥0. By simultaneous reordering of the µk and wk we may
assume without loss of generality that µ1 = max1≤k≤m µk. Then, using the triangle
inequality, µ1 − µk ≥ 0 for k = 2, . . . ,m, and ii), we derive

‖
m∑
k=1

µkwk‖ = ‖µ1

m∑
k=1

wk −
m∑
k=2

(µ1 − µk)wk‖ ≥ µ1‖
m∑
k=1

wk‖ −
m∑
k=2

(µ1 − µk)‖wk‖

= µ1

m∑
k=1

‖wk‖ −
m∑
k=2

(µ1 − µk)‖wk‖ =

m∑
k=1

µk‖wk‖ ≥ ‖
m∑
k=1

µkwk‖ ,

so that ‖
m∑
k=1

µkwk‖ =
m∑
k=1

µk‖wk‖. �

Lemma 2.2. Let V be a normed R-algebra with unit element 1 and norm ‖ · ‖, and
let f(x) :=

∑∞
k=0 ckx

k with all ck ≥ 0 and f(0)(‖1‖ − 1) = 0. Suppose that f(v) ∈ V
and f(‖v‖) ∈ R are well-defined for a fixed v ∈ V \{0}. Then the following is true:

i) If ‖ · ‖ is strongly stable, then ‖f(v)‖ ≤ f(‖v‖).
ii) If ‖ · ‖ is submultiplicative and h(x) := xmf(x) for some m ≥ 0 fulfills ‖h(v)‖ =

h(‖v‖), then also ‖f(v)‖ = f(‖v‖) holds true.

Proof: i) From 0 = f(0)(‖1‖−1) = c0(‖v0‖−1) it follows that c0‖v0‖ = c0 = c0‖v‖0.
Strong stability of the norm implies ‖vk‖ ≤ ‖v‖k for k ≥ 1. Therefore,

‖f(v)‖ = ‖
∞∑
k=0

ckv
k‖ ≤

∞∑
k=0

ck‖v‖k = f(‖v‖).

3As has been noted by the referee, the lemma extends to infinite sums as well, but this is not needed here.
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ii) By i) we have ‖f(v)‖ ≤ f(‖v‖), so that submultiplicativity of the norm gives

h(‖v‖) = ‖h(v)‖ = ‖vmf(v)‖ ≤ ‖v‖m‖f(v)‖ ≤ ‖v‖mf(‖v‖) = h(‖v‖).

Thus, equality holds and division by ‖v‖m 6= 0 proves ‖f(v)‖ = f(‖v‖). �

Lemma 2.3. Let V be a normed R-algebra with unit element 1 and strongly stable
norm ‖ · ‖ such that (V, ‖ · ‖) is complete, i.e., a Banach space. Let f(x) =

∑∞
k=0 ckx

k

be a power series with nonnegative coefficients ck ≥ 0, radius of convergence R, and
f(0)(‖1‖ − 1) = 0. For M ⊆ N0 := N ∪ {0} define fM (x) :=

∑
k∈M ckx

k. Then, for
v ∈ V \{0} with ‖v‖ < R and ‖f(v)‖ = f(‖v‖), the following is true:

i) ‖fM (v)‖ = fM (‖v‖) for all M ⊆ N0

ii) ‖vk‖ = ‖v‖k for all k ≥ 0 with ck 6= 0

iii) for a power series f̃(x) =
∑∞

k=0 c̃kx
k with nonnegative coefficients c̃k ≥ 0 such

that c̃k 6= 0 implies ck 6= 0, radius of convergence R̃ > ‖v‖, and f̃(0)(‖1‖−1) = 0
we have ‖f̃(v)‖ = f̃(‖v‖)

Proof: i) Let M ⊆ N0 and set N := N0\M . By Lemma 2.2 i) applied to fL(x) we
have ‖fL(v)‖ ≤ fL(‖v‖) for L ∈ {M,N}, so that

fM (‖v‖) + fN (‖v‖) = f(‖v‖) = ‖f(v)‖ = ‖fM (v) + fN (v)‖ ≤ ‖fM (v)‖+ fN (‖v‖)
≤ fM (‖v‖) + fN (‖v‖).

Subtracting fN (‖v‖) gives ‖fM (v)‖ = fM (‖v‖).
ii) Taking M := {k} in i) yields ck‖vk‖ = ‖fM (v)‖ = fM (‖v‖) = ck‖v‖k .

iii) For m ∈ N and k ∈M := {0, . . . ,m} define

wk := ckv
k and µk :=

{
c̃kc
−1
k if c̃k 6= 0,4

0 otherwise,

so that

µkwk = c̃kv
k . (7)

Using i) and ii) yields

‖
m∑
k=0

wk‖ = ‖fM (v)‖ = fM (‖v‖) =

m∑
k=0

‖wk‖ .

Therefore, defining f̃M similar to fM , Lemma 2.1, (7), and ii) give

‖f̃M (v)‖ = ‖
m∑
k=0

µkwk‖ =

m∑
k=0

µk‖wk‖ = f̃M (‖v‖) .

4By assumption, c̃k 6= 0 implies ck 6= 0 , so that µk is well-defined.
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Abbreviating fm := fM , we conclude

‖f̃(v)‖ = lim
m→∞

‖f̃m(v)‖ = lim
m→∞

f̃m(‖v‖) = f̃(‖v‖).

�
These preparations allow to state the announced reduction of a general power series

with nonnegative coefficients to the (possibly truncated) Neumann series.

Corollary 2.4. Let V , ‖ · ‖, 1 be as in Lemma 2.3. Define

g(x) := δ +

∞∑
k=1

xk

where

δ :=

{
1 if ‖1‖ = 1 and ‖ · ‖ is not submultiplicative,

0 otherwise.
(8)

Then, for given v ∈ V \{0} with ‖v‖ < 1, the following statements are equivalent:

i) ‖f(v)‖ = f(‖v‖) for all f(x) =
∞∑
k=0

ckx
k with all ck ≥ 0, radius of convergence

R > ‖v‖, and f(0)(‖1‖ − 1) = 0

ii) ‖f(v)‖ = f(‖v‖) for some f(x) =
∞∑
k=0

ckx
k with c0 ≥ 0, ck > 0 for k ≥ 1, radius

of convergence R > ‖v‖, f(0)(‖1‖ − 1) = 0, and sign(f(0)) ≥ δ
iii) ‖g(v)‖ = g(‖v‖)

Proof: i)⇒ ii). Take f(x) := g(x), note that g(x) has radius of convergence 1 > ‖v‖
and that g(0)(‖1‖ − 1) = δ(‖1‖ − 1) = 0 by (8).

ii) ⇒ iii) follows by Lemma 2.3 iii) with f̃(x) := g(x).

iii) ⇒ i). Let f(x) =
∑∞

k=0 ckx
k be given with all ck ≥ 0, radius of convergence

R > ‖v‖, and c0(‖1‖ − 1) = 0.

Case 1: c0 = 0 or δ = 1. Lemma 2.3 iii) with (f, f̃) := (g, f) yields ‖f(v)‖ = f(‖v‖).
Case 2: c0 6= 0 = δ. Since c0(‖1‖ − 1) = 0 we have ‖1‖ = 1, and δ = 0 implies that
‖ ·‖ is submultiplicative by (8). Define h(x) := xf(x), so that h(0) = 0. Case 1 applied
to h(x) gives ‖h(v)‖ = h(‖v‖), wherefore ‖f(v)‖ = f(‖v‖) by Lemma 2.2 ii). �

3. Proof of Theorem 1.2

For any strongly stable norm ‖ · ‖, Remark 1 proves the easy direction

‖A‖ ∈ spec(A) ⇒ ‖f(A)‖ = f(‖A‖).

For the opposite assume that ‖f(A)‖ = f(‖A‖) holds true.
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First, we consider the cases 1), 2), 3) of Theorem 1.2 and carry out a uniform re-
duction. The assumptions assure that ckck+1 6= 0 for some k ≥ 0, but the proofs are
presented under the weaker assumption ckck+j 6= 0 for some j ≥ 1. This will prove
that ω‖A‖ ∈ spec(A) for a j-th root of unity ω, and taking j := 1 yields the as-
sertion. By Lemma 2.3 i) with M := {k, k + j} and fM (x) = ckx

k + ck+jx
k+j , we

have ‖fM (A)‖ = fM (‖A‖). Lemma 2.3 iii) applied to fM (x) and h(x) := xk + xk+j

gives ‖h(A)‖ = h(‖A‖). Replacing h(x) by h(x/‖A‖), we also have ‖h(A/‖A‖)‖ =
h(‖A/‖A‖ ‖) = h(1), i.e., without loss of generality we may assume that ‖A‖ = 1.
However, this is only used in case 3).

Case 1): Set g(x) := 1+xj , so that h(x) = xkg(x). By Lemma 2.2 ii) and Lemma 2.3 ii)

‖I +Aj‖ = ‖g(A)‖ = g(‖A‖) = 1 + ‖A‖j = 1 + ‖Aj‖.

Thus, Aj fulfills the Daugavet equation. Theorem 1.3 implies ‖A‖j = ‖Aj‖ ∈ spec(Aj),
wherefore ω‖A‖ ∈ spec(A) for some j-th root of unity ω. Taking j := 1 as noted above
gives the assertion.

Case 2): First, we note that a strongly stable, unitarily invariant norm is already
submultiplicative, i.e., a matrix norm (cf. [7], p. 211, problem 3). Moreover, a unitarily
invariant norm fulfills ‖I‖ = 1 if, and only if ‖ · ‖ = ‖ · ‖2 is the Euclidean norm.
Since the Euclidean norm is already covered by case 1), we may assume without
loss of generality that ‖I‖ > 1. Therefore, the assumption f(0)(‖I‖ − 1) = 0 implies
c0 = f(0) = 0, so that k ≥ 1 and h(x) = xk−1g(x) with g(x) := x+xj+1 is well-defined.
By Lemmas 2.3 ii) and 2.2 ii) we have

‖Aj+1‖ = ‖A‖j+1 , (9)

‖(I +Aj)A‖ = ‖g(A)‖ = g(‖A‖) = ‖A‖+ ‖Aj+1‖ = (1 + ‖A‖j)‖A‖ . (10)

The following basic inequalities for unitarily invariant matrix norms will be used:5

‖XY ‖ ≤ ‖X‖2‖Y ‖ and ‖X‖2 ≤ ‖X‖ for all X,Y ∈Mn. (11)

Taking X := Aj and Y := A in (11), it follows from (9) that

‖Aj‖2‖A‖ ≤ ‖Aj‖ ‖A‖ ≤ ‖A‖j‖A‖ = ‖A‖j+1 = ‖Aj+1‖ ≤ ‖Aj‖2‖A‖ .

Hence, division by ‖A‖ gives

‖Aj‖2 = ‖Aj‖ = ‖A‖j . (12)

By (12), (10), and (11) with X := I +Aj and Y := A we get

‖I +Aj‖2‖A‖ ≤ (1 + ‖Aj‖2)‖A‖ = (1 + ‖Aj‖)‖A‖ = (1 + ‖A‖j)‖A‖
= ‖(I +Aj)A‖ ≤ ‖I +Aj‖2‖A‖ .

Division by ‖A‖ gives ‖I+Aj‖2 = 1+‖Aj‖2, i.e., Aj fulfills the Daugavet equation with
respect to the Euclidean norm. Like in case 1), Theorem 1.3 implies ‖A‖j = ‖Aj‖ =
‖Aj‖2 ∈ spec(Aj), so that ω‖A‖ ∈ spec(A) for some j-th root of unity ω, and j := 1

5See, for example, [7], Corollary 3.5.10 on page 206 and problem 3 on page 211.
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finishes this case.

Case 3): As noted above, we may assume without loss of generality that r(A) = 1.
Lemma 2.3 ii) gives r(Ak) = r(A)k = 1 = r(A)k+j = r(Ak+j), so that Lemma 2.3 i)
yields

r(Ak +Ak+j) = r(h(A)) = h(r(A)) = r(A)k + r(A)k+j = r(Ak) + r(Ak+j) . (13)

Let x ∈ Cn with x∗x = 1 and |x∗(Ak+Ak+j)x| = r(Ak+Ak+j). Using (13) we compute

r(Ak) + r(Ak+j) = |x∗Akx+ x∗Ak+jx| ≤ |x∗Akx|+ |x∗Ak+jx| ≤ r(Ak) + r(Ak+j) ,

so that both inequalities become equalities. This implies

|x∗Akx| = r(Ak) = 1 = r(Ak+j) = |x∗Ak+jx| and x∗Akx = x∗Ak+jx . (14)

We will use Ando’s characterization [2] of matrices with numerical radius at most 1 as
presented in [11] (see also [7], problems 30. and 31. on page 46). The next lemma is an
adaption of [11, Theorem 2.1] to our purpose. The proof is deferred to the appendix. A
matrix Z ∈Mn is called contraction if ‖Z‖2 ≤ 1, the set of Hermitian n-by-n matrices
is denoted by Hn, and G � 0 means that G ∈ Hn is positive semidefinite.

Lemma 3.1. Let B ∈Mn such that |x∗Bx| = r(B) = 1 for some x ∈ Cn with x∗x = 1.

Then, there is a contraction Z ∈ Hn such that

(
I + Z B
B∗ I − Z

)
� 0. All such Z fulfill(

I + Z Bi

(Bi)∗ I − Z

)
� 0 for all i ∈ N, and

(
I + Z B
B∗ I − Z

)(
x
−βx

)
=

(
0
0

)
for

β := x∗Bx.

Lemma 3.1 applied to B := A supplies a contraction Z ∈ Hn such that(
I + Z Ak

(Ak)∗ I − Z

)
� 0 and

(
I + Z Ak+j

(Ak+j)∗ I − Z

)
� 0 .

For this common Z and the common x from (14), Lemma 3.1 applied to B := Ak and
B := Ak+j , respectively, gives

(I + Z)x− ηAkx = 0 = (I + Z)x− ζAk+jx ,

where η := x∗Akx = x∗Ak+jx =: ζ by (14). Thus v := Akx fulfills Ajv = v. Note
that v 6= 0 because |x∗v| = |x∗Akx| = r(Ak) = 1. As in the previous cases, this means
Av = ωv for a j-th root of unity ω, and j := 1 gives the assertion.

Case 4): W.l.o.g. we may assume ‖·‖ = ‖·‖∞.6 We first show that we may also assume

‖A‖∞ < 1 and f(x) =

∞∑
k=1

xk. (15)

This is seen as follows. By assumption, there is a k0 ≥ 0 such that ck 6= 0 for k ≥ k0.

6The case ‖ · ‖ = ‖ · ‖1 is reduced to the case ‖ · ‖ = ‖ · ‖∞ by taking the transposed matrix AT .
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Lemma 2.3 i) applied to M := N≥k0 = {k0, k0 +1, . . . } gives ‖fM (A)‖∞ = fM (‖A‖∞).
Since fM (x) = xk0h(x) for f(x) =

∑∞
k=k0

ckx
k−k0 , Lemma 2.2 ii) gives ‖h(A)‖∞ =

h(‖A‖∞), and we may therefore assume w.l.o.g. f = h, i.e., ck 6= 0 for all k ≥ 0.7

Defining f̃(x) = f(x/d) for some d > ‖A‖∞ and Ã := A/d yields ‖Ã‖∞ < 1, f̃(A) =
f(Ã), and ‖f(Ã)‖∞ = ‖f̃(A)‖∞ = f̃(‖A‖∞) = f(‖Ã‖∞) by Lemma 2.3 iii). Thus, we
may assume w.l.o.g. that ‖A‖∞ < 1. Defining g(x) :=

∑∞
k=1 x

k, Corollary 2.4 ii)⇒ iii)
shows that ‖g(A)‖ = g(‖A‖), i.e., we may assume w.l.o.g. that f(x) = g(x) as stated
in (15). By Lemma 2.3 ii)

‖Ak‖∞ = ‖A‖k∞ for all k ≥ 1,

so that

ρ(A) = lim
k→∞

‖Ak‖1/k∞ = ‖A‖∞ .

Denoting |A| := (|Aij |) ∈Mn and using also (5), this implies

ρ(A) = ‖A‖∞ = ‖ |A| ‖∞ ≥ ρ(|A|) ≥ ρ(A) ,

wherefore

‖A‖∞ = ρ(A) = ρ(|A|). (16)

First, the case of irreducible A is considered. Then, Perron-Frobenius theory, cf. [6,
Theorem 8.4.5], yields

A = αD|A|D−1, α ∈ C, |α| = 1, αρ(A) ∈ spec(A), D ∈Mn, |D| = I. (17)

Let q ≥ 1 be the cyclicity index of |A|. Then

e2πij/qρ(|A|), j = 0, . . . , q − 1, (18)

are the eigenvalues of |A| of maximum modulus and

e2πij/qspec(|A|) = spec(|A|), j = 0, . . . , q − 1, (19)

i.e., the spectrum of |A| is invariant under rotations by q-th roots of unity.8 By Perron-
Frobenius theory, cf. [12, Theorem 2.19], there are a permutation matrix P ∈Mn and
q primitive square matrices C1, . . . , Cq such that

P |A|qP T =

(
C1 . . .

Cq

)
. (20)

Hence there is an m ∈ N such that

C`i > 0 for all ` ≥ m and all i = 1, . . . , q,

7Here submultiplicativity of ‖ · ‖∞ and ‖I‖∞ = 1 is used.
8In (18), (19), i :=

√
−1 is the complex unit and e2πij/q , j = 0, . . . , q − 1, are the q-th roots of unity.
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where C`i > 0 is meant componentwise. In particular, by (20), this means

(|A|q`)ii > 0 for all ` ≥ m and all i = 1, . . . , n. (21)

Choose a row index i ∈ {1, . . . , n} with
n∑
j=1
|f(A)ij | = ‖f(A)‖∞. Then, we have

f(‖A‖∞) = ‖f(A)‖∞ =

n∑
j=1

∣∣ ∞∑
k=1

Ak
∣∣
ij
≤

n∑
j=1

∞∑
k=1

(|A|k)ij =

∞∑
k=1

n∑
j=1

(|A|k)ij

≤
∞∑
k=1

‖A‖k∞ = f(‖A‖∞) .

Since |
∞∑
k=1

Ak|ij ≤
∞∑
k=1

(|A|k)ij for j = 1, . . . , n, this implies

∣∣ ∞∑
k=1

Ak
∣∣
ij

=

∞∑
k=1

(|A|k)ij for j = 1, . . . , n.

For j := i and distinct r, s ∈ N we derive

∞∑
k=1

(|A|k)ii =
∣∣ ∞∑
k=1

Ak
∣∣
ii
≤ |(Ar)ii + (As)ii|+

∑
k≥1
k 6=r,s

(|A|k)ii .

Subtracting
∑
k≥1
k 6=r,s

(|A|k)ii on both sides gives

(|A|r)ii + (|A|s)ii = |(Ar)ii + (As)ii| . (22)

Taking r := qm and s := q(m+ 1), (22) and (17) supply

(|A|qm)ii + (|A|q(m+1))ii =
∣∣∣αqm(|A|qm)ii + αq(m+1)(|A|q(m+1))ii

∣∣∣
=

∣∣∣(|A|qm)ii + αq(|A|q(m+1))ii

∣∣∣ . (23)

By (21), (|A|qm)ii, (|A|q(m+1))ii > 0, so that (23) necessitates αq = 1, i.e., α is a q-th
root of unity. From (16), (19), and (17) we finally obtain

‖A‖∞ = ρ(A) = ρ(|A|) ∈ spec(|A|) = αspec(|A|) = spec(A),

i.e., ‖A‖∞ is an eigenvalue of A. This finishes the proof for the irreducible case.

For the reducible case, which is treated now, we need, unexpectedly, quite some
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effort. Consider the index set

J := {i ∈ [n] |
n∑
j=1

|f(A)|ij = ‖f(A)‖∞ = f(‖A‖∞)}

and define Ã := A[J ] ∈Mm, m := |J |, to be the principal submatrix of A correspond-
ing to J . Then, by the rather technical Lemma 5.2, which is deferred to the appendix,
there is a permutation matrix P ∈Mn such that

P TAP =

(
Ã 0
∗ ∗

)
.

For all i ∈ {1, . . . ,m} this implies

m∑
j=1

|Ã|ij = ‖Ã‖∞ = ‖A‖∞ and

m∑
j=1

|f(Ã)|ij = ‖f(Ã)‖∞ = ‖f(A)‖∞ = f(‖A‖∞) = f(‖Ã‖∞). (24)

Like for A, (24) yields ρ(Ã) = ‖Ã‖∞ (cf. 16). Choose an irreducible principle subblock
B of the reducible normal form of Ã for which ρ(B) = ρ(Ã) holds true. From

‖B‖∞ ≥ ρ(B) = ρ(Ã) = ‖Ã‖∞ ≥ ‖B‖∞

it follows that ‖B‖∞ = ρ(B) = ‖Ã‖∞. Perron-Frobenius theory, cf. [12, Lemma 2.8],
implies that each row sum of |B| equals ‖B‖∞ = ‖Ã‖∞, wherefore B must be an
isolated block of the reducible normal form of Ã with eigenvalue ‖B‖∞. By (24) this
gives ‖f(B)‖∞ = f(‖B‖∞), and it follows from the irreducible case that

‖A‖∞ = ‖Ã‖∞ = ‖B‖∞ ∈ spec(B) ⊆ specÃ ⊆ spec(A) .

This finishes the proof of Theorem 1.2. �

4. Concluding remarks

The Daugavet equation ‖Id + T‖ = 1 + ‖T‖ is an intensively investigated subject in
functional analysis, see [4], [1], [8], [9], [13], [10], [3] and the references therein. In that
context, T is usually an operator in some normed function space in which the identity
operator Id has norm 1.

Theorem 1.3 says that for matrix norms induced by uniformly convex vector norms,
like the `p-norms for 1 < p < ∞, the validity of the Daugavet equation ‖I + A‖ =
1 + ‖A‖ forces ‖A‖ to be an eigenvalue of A ∈ Mn. As well-known and recalled by
examples in the introduction this is not true for other norms on Mn like the `1- and the
`∞-norm, many unitarily invariant norms like the Frobenius norm, or for the numerical
radius. Therefore, one may ask for alternatives to replace the Daugavet equation in
Theorem 1.3 for these norms, still confirming that ‖A‖ an eigenvalue of A. In this light
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our main Theorem 1.2 says that

‖A+A2‖ = ‖A‖+ ‖A‖2 (25)

is the appropriate analogue for unitarily invariant matrix norms and for the numerical
radius. Likewise the (scaled) Neumann series

‖
∞∑
k=0

(A/d)k‖ =

∞∑
k=0

‖A/d‖k for some d > ‖A‖ (26)

are suitable analogues for the `1- and the `∞-norm.
Note that (25) implies the Daugavet equation if ‖·‖ is submultiplicative (see Lemma

2.2 ii)), so that (25) is a stronger condition than the Daugavet equation in this case.
We are not aware of any investigation in equation (25) in the literature around the
Daugavet equation.

Next, we mention that Conjecture 1.1 includes all matrix norms induced by vector
norms, and that one may wonder why this important basic class of induced norms
does not occur as such in our main Theorem 1.2. A proof must cover in particular
induced `p-norms for 1 < p <∞ on the one hand and for p ∈ {1,∞} on the other. We
could not find a unified proof but had to treat those cases separately using individual
arguments.

Finally, one may ask what Theorem 1.2 tells us for specific power series with non-
negative coefficients like, for example, the exponential function f(x) := exp(x). Since
exp(0) = 1 6= 0, the assumption f(0)(‖I‖ − 1) = 0 of Theorem 1.2 is not fulfilled
for unitarily invariant matrix norms different from the Euclidean norm, for example,
the Frobenius norm ‖ · ‖F . Although all Taylor coefficients of exp(x) are positive, the
result is not true without this assumption as by the nilpotent 2-by-2 matrix A defined
in (6) with a ≈ 0.3817 being the root of exp(z)−

√
2 + z2. Then

‖ exp(A)‖F = ‖I +A‖F =
√

2 + a2 = exp(a) = exp(‖A‖F ) ,

but ‖A‖F = a is not an eigenvalue of A.
On the other hand, the assumption f(0)(‖I‖ − 1) = 0 is satisfied for the numerical

radius as well as for all `p-norms, 1 ≤ p ≤ ∞, because r(I) = 1 = ‖I‖p. As a
consequence, r(exp(A)) = exp(r(A)) holds true if, and only if, r(A) is an eigenvalue
of A, and ‖ exp(A)‖p = exp(‖A‖p) if, and only if, ‖A‖p is an eigenvalue of A.

5. Appendix

5.1. Proof of Lemma 3.1

By [11, Theorem 2.1] a) there is a contraction Z ∈ Hn such that

M :=

(
I + Z B
B∗ I − Z

)
� 0. For v :=

(
x
−βx

)
we have v∗Mv = 2− 2Re(βx∗Bx) = 0,

so that M � 0 implies Mv = 0. It remains to show that(
I + Z Bi

(Bi)∗ I − Z

)
� 0 for all i ∈ N. (27)
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This is done by repeating arguments given after the proof of [11, Theorem 2.1]. By [6,
Theorem 7.7.11] the following equivalence holds true for positive semidefinite A,C ∈
Hn (and arbitrary B ∈Mn):(

A B
B∗ C

)
� 0 ⇔ There is a contraction X ∈Mn such that B = A1/2XC1/2.

(28)
Since Z ∈ Hn is a contraction, A := I + Z and C := I − Z are positive semidefinite.
Thus (28) supplies a contraction X such that B = (I +Z)1/2X(I −Z)1/2. Taking i-th
powers yields

Bi = (I + Z)1/2X[(I − Z2)1/2X]i−1(I − Z)1/2.

Since Z is a Hermitian contraction, this is also true for (I − Z2)1/2. Therefore, Y :=
X[(I − Z2)1/2X]i−1 fulfills ‖Y ‖2 ≤ ‖X‖2[‖(I − Z2)1/2‖2‖X‖2]i−1 ≤ 1, i.e., Y is a
contraction. Hence Bi = (I + Z)1/2Y (I − Z)1/2 and (28) prove (27).

5.2. Auxiliary lemmas for the `∞-norm

Abbreviate [n] := {1, . . . , n} and let ‖v‖1 :=
∑n

i=1 |vi| denote the 1-norm of v ∈ Cn.
For A ∈Mn and i ∈ [n] set Ai: := (Ai1, . . . , Ain)T , so that ‖A‖∞ := max

i∈[n]
‖Ai:‖1.

We will frequently use that two nonzero complex numbers x and y point in the
same direction of the complex plane if, and only if, xy > 0, where the latter implicitly
indicates that xy is real. Thus, |x+ y| = |x|+ |y| holds true if, and only if xy ≥ 0.

Lemma 5.1. Let X,Y ∈ Mn, and i ∈ [n] satisfy ‖(XY )i:‖1 = ‖XY ‖∞ =
‖X‖∞‖Y ‖∞ 6= 0 . Then, for all j, ` ∈ [n] we have

i) Xi`Y`j (XY )ij ≥ 0 and the inequality is strict if Xi`Y`j 6= 0 ,
ii) Xi` = 0 or ‖Y`:‖1 = ‖Y ‖∞ .

Proof: Straight forward computation gives

‖XY ‖∞ = ‖(XY )i:‖1

=

n∑
j=1

|(XY )ij | =
n∑
j=1

∣∣ n∑
`=1

Xi`Y`j
∣∣ ≤ n∑

j=1

n∑
`=1

|Xi`| |Y`j | (29)

=

n∑
`=1

|Xi`|
n∑
j=1

|Y`j | ≤
n∑
`=1

|Xi`| ‖Y ‖∞ (30)

≤ ‖X‖∞‖Y ‖∞ = ‖XY ‖∞.

Thus, equality holds in (29) proving i), and in (30) proving ii). �

Lemma 5.2. Let f(x) :=
∑∞

k=1 x
k and A ∈Mn\{0} with ‖A‖∞ < 1 and ‖f(A)‖∞ =

f(‖A‖∞). Define J := {i ∈ [n] | ‖f(A)i:‖1 = ‖f(A)‖∞}. Then, there is a permutation
matrix P ∈Mn such that

P TAP =

(
A[J ] 0
∗ ∗

)
where A[J ] denotes the principal submatrix of A corresponding to the index set J .
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Proof: Let i ∈ J and j ∈ [n] such that Aij 6= 0. The assertion follows if j ∈ J can
be shown. Lemma 2.3 ii) yields ‖Ak‖∞ = ‖A‖k∞ for all k ≥ 1. Thus, Lemma 5.1 ii)
applied to X := A, Y := Ak, ` := j, and using Xi` = Aij 6= 0 gives

‖Akj:‖1 = ‖Ak‖∞ = ‖A‖k∞ for all k ∈ N. (31)

By assumption and definition of J we have

f(‖A‖∞) = ‖f(A)‖∞ = ‖f(A)i:‖1 =

n∑
`=1

∣∣ ∞∑
k=1

(Ak)i`
∣∣ ≤ n∑

`=1

∞∑
k=1

|(Ak)i`| (32)

≤
n∑
`=1

∞∑
k=1

(|A|k)i`| = ‖f(|A|)i:‖1 ≤ ‖f(|A|)‖∞ ≤ f(‖ |A| ‖∞) = f(‖A‖∞) .

Thus, equality holds in (32) which implies |
∑∞

k=1(Ak)i`| =
∑∞

k=1 |(Ak)i`| for all ` ∈ [n],
and therefore

(Ak)i` (Ak′)i` ≥ 0 for all ` ∈ [n] and all k, k′ ∈ N. (33)

In plain English this means that for any fixed ` ∈ [n], all nonzero (Ak)i`, k ∈ N, point
in the same direction in the complex plane. Let ` ∈ [n] and k, k′ ∈ N and suppose
that (Ak)j` 6= 0 6= (Ak

′
)j`. Lemma 5.1 i) applied to X := A and Y := Ak gives

Aij (Ak)j` (Ak+1)i` > 0 and likewise Aij (Ak
′
)j` (Ak′+1)i` > 0. Therefore,

0 < Aij (Ak)j` (Ak+1)i` Aij (Ak′)j` (Ak′+1)i`

= (Ak)j` (Ak′)j` |Aij |2 (Ak+1)i` (Ak
′+1)i` .

By (33) we have (Ak+1)i` (Ak
′+1)i` > 0, so that (Ak)j` (Ak′)j` > 0, i.e., we proved

(Ak)j` (Ak′)j` ≥ 0 for all ` ∈ [n] and all k, k′ ∈ N.

This implies

∣∣ ∞∑
k=1

(Ak)j`
∣∣ =

∞∑
k=1

|(Ak)j`| for all ` ∈ [n]. (34)

From (34) and (31) we conclude

‖f(A)j:‖1 =

n∑
`=1

∣∣ ∞∑
k=1

(Ak)j`
∣∣ =

n∑
`=1

∞∑
k=1

|(Ak)j`| =
∞∑
k=1

n∑
`=1

|(Ak)j`| =
∞∑
k=1

‖(Ak)j:‖1

=

∞∑
k=1

‖Ak‖∞ =

∞∑
k=1

‖A‖k∞ = f(‖A‖∞) = ‖f(A)‖∞ ,

which means j ∈ J . �
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