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Abstract

Standard Wilkinson-type error estimates of floating-point algorithms
that are solely based on the first or second standard model typically in-
volve a factor γk := ku/(1 − ku), where u denotes the relative rounding
error unit of a floating-point number system. Using specific properties of
floating-point grids it was shown that often γk can be replaced by ku, and
the restriction on k can be removed. That is true for standard algorithms
such as summation, dot product, matrix multiplication, LU- or Cholesky
decomposition, et cetera.

Recently it was shown that, at least for summation and dot product,
such results derive without any reference to a floating-point grid. In the
current paper we further sharpen the error estimate for summation into
ku/(1 + ku), again without any reference to a floating-point grid. Fur-
thermore, an estimate of type hu is shown for sums and dot products that
are evaluated using a binary tree of height h. Both estimates require a
mandatory restriction of size 1/u on the number of summands and the
height, respectively.

Finally, a different kind of error estimate is shown for recursive sum-
mation. The discussed bound is sharp, holds true for any number of
summands, and is uniformly bounded by 1.

The novelty of our approach is two-fold. First, rather than using a
rounding function, the discussed estimates are based on almost arbitrary
perturbations of real operations without any reference to a floating-point
grid. As a consequence, the corresponding floating-point error bounds in
some base β for rounding to nearest, and partly also for directed round-
ings, follow as corollaries. Secondly, in regard to our weak assumptions,
the new estimates are sharp. Our main result is sharp for actual realiza-
tions of grids floating-point arithmetics are based on. To be more specific,
for any feasible problem size, for IEEE 754 binary32 as well as binary64
format, there are examples satisfying the given bound with equality.
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1 Introduction

For a set of floating-point numbers F ⊆ R, many floating-point error estimates
are based on the first standard model [1]

a, b ∈ F : a +̃ b = (a+ b)(1 + ε) for some |ε| ≤ u, (1)

where 0 < u ∈ R is a constant associated to F, and +̃ denotes an addition on
F. Typically, u is referred to as the relative rounding error unit.

A direct consequence for the error of the result sn of recursive summation

s1 := x1; si+1 = si +̃xi+1 = (si + xi+1)(1 + εi) for 1 ≤ i ≤ n− 1 (2)

of a vector x ∈ Fn is the standard error estimate [1]∣∣∣∣∣sn −
n∑
i=1

xi

∣∣∣∣∣ ≤ ((1 + u)n−1 − 1
) n∑
i=1

|xi|. (3)

That estimate is true in the absence of a floating-point grid. In fact, not even
a +̃ b = c +̃ d for a + b = c + d is necessary. Moreover, the estimate is derived
without any consideration of the rounding mode.

Without additional assumptions, the factor (1 + u)n−1 − 1 in (3) cannot be
replaced by (n − 1)u. As an example consider a logarithmic number system
F := {±ck : k ∈ Z} for 1 < c ∈ R with rounding upwards. Then u = c−1

c+1 and,

for sufficiently small e ∈ F, (1 +̃ e) +̃ e = c2 but c2−(1+2e) > 2 c−1
c+1 (1+2e). The

reason is that an arbitrary small summand e causes a relative error of almost
size u.

In a recent paper [4] we unveiled the necessary properties of floating-point
schemes that allow for linearly growing a priori error estimates such as the ones
for LU- and Cholesky factorizations in [7]. More specifically, we showed that
the implication

a +̃ b = a+ b+ δ =⇒ |δ| ≤ min(|a|, |b|) (4)

is sufficient for the estimate∣∣∣∣∣sn −
n∑
i=1

xi

∣∣∣∣∣ ≤
n−1∑
i=1

|εi|
n∑
i=1

|xi| ≤ (n− 1)u

n∑
i=1

|xi|, (5)

which is true without restriction on n and for any order of summation. It is
straightforward to show that the assumption (4) is satisfied for any rounding
to nearest, see (7) in the next section. In fact, the assumptions in [4] are even
more general.

In the present paper, we define quantities ξi similar to εi and prove∣∣∣∣∣sn −
n∑
i=1

xi

∣∣∣∣∣ ≤
∑n−1
i=1 ξi

1 +
∑n−1
i=1 ξi

n∑
i=1

|xi|.
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Since these ξi are nonnegative and less than or equal to u, this implies∣∣∣∣∣sn −
n∑
i=1

xi

∣∣∣∣∣ ≤ (n− 1)u

1 + (n− 1)u

n∑
i=1

|xi|,

which was first proved for recursive summation by Mascarenhas1 [5], provided
that 20(n − 1)u ≤ 1. We will show that our estimate is true under very weak
assumptions on the perturbations of real sums. Moreover, it is true for any order
of summation and no floating-point grid is necessary. For addition in rounding
to nearest according to IEEE 754 the estimate is sharp.

Besides the improved and sharp bound, another target of the paper is to
identify as weak as possible assumptions for its validity.

For binary summation in a tree of height h standard error analysis involves
a factor (1 +u)h − 1. We show under very general assumptions that this factor
can be replaced by hu. A restriction of the height is mandatory, which, for
floating-point number systems, is of the order u−

1
2 . Note that for IEEE 754

single precision (binary32) that imposes the restriction n < 1.04 · 101233 on the
number of summands.

Again we want to stress that besides the new estimate a major goal is to
identify the necessary assumptions on an approximate addition +̃. In particular,
the new estimate for binary summation is even true for IEEE 754 addition with
directed rounding.

Finally we give another estimate for the error of summation in recursive
order, being true without restriction on n. For increasing n, the corresponding
factor in the error estimate converges to 1 from below. This property is peculiar
for recursive summation and is not true for evaluations in arbitrary order. The
corresponding assumptions are again very general, and the estimate is sharp.

The paper is organized as follows. For didactic reasons we first state in
the next section the conclusions for floating-point arithmetic with given preci-
sion and general basis. That applies for instance to any arithmetic adhering to
IEEE 754. We hope that motivates to go through the proofs of our new results
presented in Sections 3 to 5 covering general summation, binary summation,
and again a different estimate for recursive summation, respectively. We choose
that because it may not be clear beforehand that the assumptions of our general
theorems are indeed satisfied for floating-point number systems. Directly follow-
ing the general results in each section, we prove the corresponding conclusions
presented in Section 2.

Finally, we show some possible applications of the new bounds. The im-
proved constants eventually lead to nice constants for the sum of products, for
example when multiplying a vector by a Vandermonde matrix. Moreover, a new
estimate for blocked summation is presented.

1In [5], the author introduces a new concept of using continuous mathematics to analyze
floating-point arithmetic. However, the given proof is rather complicated and longish. Here
we generalize his result using comparatively simple arguments.
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2 Floating-point results

In this section we show implications of the subsequently presented, general per-
turbation estimates for the summation in some m-digit floating-point number
system in base β following the IEEE 754 standard. The relative rounding error
unit to such a system is u := 0.5β1−m.

In particular, we consider sums evaluated in rounding to nearest or in some
faithful rounding. An addition +̃ on F is called a sum in rounding to nearest if

|(a+ b)− (a +̃ b)| = inf{|(a+ b)− f | : f ∈ F}. (6)

In this case (1) is true with replacing u by u/(1 + u), see [3]. As mentioned
before, summing in rounding to nearest implies (4) by

|(a +̃ b)− (a+ b)| = inf {|f − (a+ b)| : f ∈ F}
≤ min {|f − (a+ b)| : f ∈ {a, b}}
= min {|a|, |b|} .

(7)

A result is rounded faithfully if, for all a, b ∈ F, a +̃ b is the only floating-point
number in the convex hull (a + b)∪ (a +̃ b). The latter means that there is no
other floating-point number between the actual and the computed result. In
that case (1) is true with replacing u by 2u.

Proposition 1. Let s be the result of a floating-point summation of a1, . . . , an ∈
F in some nearest-addition in arbitrary order. If n ≤ 1 + β−1

2 u−1, then∣∣∣∣∣s−
n∑
j=1

aj

∣∣∣∣∣ ≤ (n− 1)u

1 + (n− 1)u

n∑
j=1

|aj |. (8)

Remark 2. The estimate in Proposition 1 is sharp. Using IEEE 754 in ba-
sis β = 2, rounding to nearest, and tie-breaking rule round half to even, the
recursive summation of the summands 1,u,u, . . . ,u satisfies (8) with equality.
Moreover, the upper bound on n is mandatory. For the tie-breaking rule round
half away from zero the upper bound on n cannot be replaced by the next larger
integer. Similarly, for tie to even this restriction could be improved only by a
relatively small number. This statement is shown by the following example for
an even basis β:

s = 1 +̃ t +̃u +̃ t +̃u +̃ . . . +̃ t +̃u︸ ︷︷ ︸
β−1
2u summands

+̃βt +̃βu + βt +̃βu + . . .︸ ︷︷ ︸
β
2 +1 summands

,

where t := u + 2u2. It is straightforward to check that for any mantissa length
m ≥ 3 the error in this recursive floating-point sum does not satisfy estimate
(8). Hence, the tolerance to the restriction of n is not greater than β

2 .
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Proposition 3. Let s be the result of a floating-point summation of a1, . . . , an ∈
F in some nearest-addition in any order. If the height h of the corresponding
binary summation tree satisfies

h ≤

{
u−

1
2 − 1 if β = 2√

4− 8β−1u−
1
2 − 1 otherwise,

(9)

then ∣∣∣∣∣s−
n∑
j=1

aj

∣∣∣∣∣ ≤ hu
n∑
j=1

|aj |. (10)

Furthermore, if one substitutes 2u for the error constant u in (9) as well as
(10), the result remains valid for any faithful-addition.

Corollary 4. Denote by s the result of a floating-point dot product of a, b ∈
Fn in some rounding to nearest. Let the height h of the corresponding binary
evaluation tree satisfy (9). Then, barring underflow,

∣∣s− aT b∣∣ ≤ hu n∑
i=1

|aibi|. (11)

For faithful rounding the result is true when replacing the error constant u by
2u.

3 Estimate for bounded number of summands

The main result of this section is presented by the following theorem.

Theorem 5. Let a binary tree T with root r be given. Denote the set of inner
nodes of the subtree with root j including j by Nj, and the set of its leaves by
Lj. Let to each leaf i a real number xi, and to each inner node j a real number
δj be assigned. Moreover, let positive real numbers λ, µ satisfying

min

{
λ+

∑
j∈Nr

|δj |, µ

}
≤
∑
i∈Lr

|xi| ≤ µ+
∑
j∈Nr

|δj | (12)

be given. For all inner nodes k define

σk :=
∑
i∈Lk

|xi|+
∑
j∈Nk

|δj | and ξk :=

{ |δk|
λ if σleft(k) + σright(k) − |δk| < µ

|δk|
µ otherwise,

where left(k) and right(k) denote the left and right child of k, respectively. Sup-
pose

σleft(k) + σright(k) − |δk| ≥ µ =⇒ |δk| ≤ min{σleft(k), σright(k), µ} (13)
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as well as ∑
j∈Nr

ξj ≤
µ− λ

2λ
. (14)

Then ∑
j∈Nr

|δj | ≤
∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

∑
i∈Lr

|xi|. (15)

Furthermore,

∀k ∈ Nr : σk ≤
∑
i∈Lr

|xi|+
∑
j∈Nr

|δj | ≤
µ2

λ
. (16)

Theorem 5 applies to summations in some m-digit floating-point number
system with base β. The tree T describes the order in which the respective sum
is evaluated. By choosing the numbers λ and µ to be consecutive powers of β
that satisfy the condition (12), it is possible to use the relative error constant u
as a bound for the relative errors ξj . Proposition 1 then follows as a subcase of
Theorem 5. The corresponding proof is given at the end of this section.

Nevertheless, here we want to stress the fact that the above result is more
general than Proposition 1. The inequality (15) not only regards a bound for the
local relative errors with respect to the intermediate sums but gives a tighter
estimate in correspondence to the relative errors defined with respect to the
maximally possible sum of absolute values of the xi and absolute values of
the perturbations δi in the respective subtree. In the same manner, the core
condition (14) does not bound the number of summands directly but describes a
bound on the sum of the actual relative errors ξi. Moreover, the nearest-addition
property |(a +̃ b)− (a+ b)| ≤ min{|a|, |b|} is required solely for the intermediate
values whose absolute values are greater than or equal to µ, see (13).

It is straightforward to prove that the estimate (15) is sharp, i.e., to any
given height h it is possible to construct a tree T such that (15) is satisfied
with equality. Additionally, the restriction on the sum of relative errors is
mandatory, and it is sharp in the sense that the upper bound cannot be replaced
by any larger value. We skip the arguments for these statements here, since the
sharpness has already been shown for the subcase treated in Proposition 1.

In order to avoid a mess up of two considerably different lines of arguments,
we will first show the following auxiliary result.

Lemma 6. Let a positive real number µ as well as a binary tree T with root r be
given. Furthermore, let to each leaf i a real number xi, and to each inner node
j a real number δj be assigned. Denote the set of inner nodes of the subtree with
root j including j by Nj, and the set of its leaves by Lj. For all inner nodes k
define

σk :=
∑
i∈Lk

|xi|+
∑
j∈Nk

|δj |

as well as

Ωk := {j ∈ Nk : σleft(j) + σright(j) − |δj | ≥ µ} and fk := Nk \ Ωk, (17)
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where left(j) and right(j) denote the left and right child of j, respectively. Sup-
pose

∀j ∈ Ωr : |δj | ≤ min{σleft(j), σright(j), µ}. (18)

Then
Ωr 6= ∅ =⇒

∑
i∈Lr

|xi| ≥ µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |. (19)

Proof. The following proof is by induction on the height h of the tree, whereby
for h = 1 the validity of the implication (19) is evident. Let a tree T with
height h and root r be given, and suppose (19) is true for trees with height up
to h− 1. Denote the children of the root r by p and q. After possible renaming,
we henceforth assume without loss of generality that Ωq 6= ∅ implies Ωp 6= ∅.

We distinguish three cases. First, suppose that Ωq 6= ∅. The induction
hypothesis implies∑

i∈Lr

|xi| =
∑
i∈Lp

|xi|+
∑
i∈Lq

|xi|

≥ µ+
∑
j∈Ωp

|δj | −
∑
j∈fp

|δj |+ µ+
∑
j∈Ωq

|δj | −
∑
j∈fq

|δj |

= µ+
∑

j∈Ωr\{r}

|δj |+ µ−
∑

j∈fr\{r}

|δj |

≥ µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |,

where the last inequality is evident if r /∈ Ωr, and otherwise follows from |δr| ≤
µ implied by (18). Secondly, assume that Ωq = ∅ 6= Ωp. By the induction
hypothesis, Nq = fq, and r ∈ Ωr =⇒ |δr| ≤ σq, we derive∑

i∈Lr

|xi| =
∑
i∈Lp

|xi|+
∑
i∈Lq

|xi|+
∑
j∈Nq

|δj | −
∑
j∈fq

|δj |

≥ µ+
∑
j∈Ωp

|δj | −
∑
j∈fp

|δj |+
∑
i∈Lq

|xi|+
∑
j∈Nq

|δj | −
∑
j∈fq

|δj |

= µ+
∑

j∈Ωr\{r}

|δj |+ σq −
∑

j∈fr\{r}

|δj |

≥ µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |.

Finally, suppose that Ωq = ∅ = Ωp. Then Ωr 6= ∅ implies Ωr = {r} and therefore
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σp + σq − |δr| ≥ µ. Thus, using Np = fp and Nq = fq, we obtain∑
i∈Lr

|xi| =
∑
i∈Lp

|xi|+
∑
j∈Np

|δj | −
∑
j∈fp

|δj |+
∑
i∈Lq

|xi|+
∑
j∈Nq

|δj | −
∑
j∈fq

|δj |

= σp + σq − |δr|+ |δr| −
∑
j∈fr

|δj |

≥ µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |,

which completes the proof.

Using Lemma 6 the proof of the main result is rather straightforward and
can be done without the use of an induction argument.

Proof of Theorem 5. Let Ωr and fr be defined as in Lemma 6. Since the im-
plications (13) and (18) are equivalent, the assumption of Lemma 6 is sat-
isfied, and the result therefore applicable. We begin by proving inequality
(15), for which we distinguish two cases. First, assume that Ωr = ∅ and

λ+
∑
j∈Nr |δj | ≤

∑
i∈Lr |xi|. Then ξj =

|δj |
λ , and

∑
j∈Nr

|δj | =
∑
j∈Nr

|δj |
λ

1 +
∑
j∈Nr

|δj |
λ

(
λ+

∑
j∈Nr

|δj |

)
≤

∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

∑
i∈Lr

|xi|

shows the validity of (15) for the first case.
Secondly, suppose the opposite. Then (12) implies that either Ωr 6= ∅ or

that µ ≤
∑
i∈Lr |xi|. For the former case Lemma 6 gives∑

i∈Lr

|xi| ≥ µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |.

For the latter we may assume Ωr = ∅ and derive the same inequality via∑
i∈Lr

|xi| ≥ µ ≥ µ−
∑
j∈fr

|δj | = µ+
∑
j∈Ωr

|δj | −
∑
j∈fr

|δj |. (20)

The assumption (14) implies

µ

λ
−
∑
j∈Nr

ξj =
µ− λ
λ

+ 1−
∑
j∈Nr

ξj ≥ 2
∑
j∈Nr

ξj + 1−
∑
j∈Nr

ξj = 1 +
∑
j∈Nr

ξj ,

such that
µ
λ−

∑
j∈Nr ξj

1+
∑
j∈Nr ξj

≥ 1. Together with Nr = Ωr ∪ fr and the inequality in
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(20), we then derive

∑
j∈Nr

|δj | ≤
∑
j∈Ωr

|δj |+
µ
λ −

∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

∑
j∈fr

|δj |

=

∑
j∈Ωr

|δj |+
∑
j∈Nr ξj

∑
j∈Ωr

|δj |+ µ
∑
j∈fr ξi −

∑
j∈Nr ξj

∑
j∈fr |δj |

1 +
∑
j∈Nr ξj

=
µ
∑
j∈Nr ξj +

∑
j∈Nr ξj

∑
j∈Ωr

|δj | −
∑
j∈Nr ξj

∑
j∈fr |δj |

1 +
∑
j∈Nr ξj

=

∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

(
µ+

∑
j∈Ωr

|δj | −
∑
j∈fr

|δi|

)

≤
∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

n∑
i=1

|xi|

and validate (15).
For the validation of (16) we use (12) to show that∑

i∈Lr

|xi|+
∑
j∈Nr

|δj | ≤ µ+ 2
∑
j∈Nr

|δj | = µ+
µ+ λ

λ

∑
j∈Nr

|δj | −
µ− λ
λ

∑
j∈Nr

|δj |.

Together with (15), (14), and the implication 0 ≤ a ≤ b =⇒ a
1+a ≤

b
1+b , we

derive∑
i∈Lr

|xi|+
∑
j∈Nr

|δj | ≤ µ+
µ+ λ

λ

∑
j∈Nr ξj

1 +
∑
j∈Nr ξj

∑
i∈Lr

|xi| −
µ− λ
λ

∑
j∈Nr

|δj |

≤ µ+
µ+ λ

λ

µ−λ
2λ

1 + µ−λ
2λ

(
µ+

∑
j∈Nr

|δj |

)
− µ− λ

λ

∑
j∈Nr

|δj |

= µ+
µ− λ
λ

(
µ+

∑
j∈Nr

|δj |

)
− µ− λ

λ

∑
j∈Nr

|δj |

= µ+
µ− λ
λ

µ =
µ2

λ
,

which completes the proof.

We close this section by giving the argument for Proposition 1.

Proof of Proposition 1. In the following we exploit the same notation as in
Lemma 6 and Theorem 5, where we assume that the δk correspond to the
rounding errors introduced by the floating-point operations. In addition we
denote the intermediate sums by

sk =
∑
i∈Lk

xi +
∑
j∈Nk

δj = sleft(k) + sright(k) + δk = sleft(k) +̃ sright(k).
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Since floating-point additions in the underflow range do not cause rounding
errors, we may henceforth assume without loss of generality that

∑
i∈Lr |xi| lies

in the range of normalized numbers. Moreover, without loss of generality, we
may also reduce the following argument taking only these inner nodes k into
account for which sleft(k) + sright(k) lies in the normalized range. Denote by
ufp(sk) the largest power of β being less than or equal to |sk|. Define τ :=
ufp(

∑
i∈Lr |xi|),

λ :=

{
β−1τ if

∑
i∈Lr |xi| < τ +

∑
j∈Nr |δj |

τ otherwise,

and µ := βλ. Evidently, this definition complies with the assumption (12).
For any inner node k ∈ fr we have

|sleft(k) + sright(k)| − |δk| ≤ σleft(k) + σright(k) − |δk| < µ.

By nearest-addition and µ ∈ F this implies |sleft(k) + sright(k)| < µ. Thus, we
have ufp(sleft(k) + sright(k)) ≤ β−1µ = λ and

ξk =
|δk|
λ
≤ |δk|

ufp(sleft(k) + sright(k))
≤ u for k ∈ fr.

Furthermore, (16) gives |sleft(k)|+ |sright(k)| ≤ σk ≤ µ2

λ = βµ for all inner nodes
k, such that

ξk =
|δk|
µ
≤ |δk|

ufp(sleft(k) + sright(k))
≤ u for k ∈ Ωr.

Hence, all ξk are bounded by u. The assumption (13), in turn, follows by the
nearest-addition property (4)

|δk| ≤ min{|sleft(k)|, |sright(k)|}

and the fact that, for any m-digit floating point number system with m ≥ 1,
the difference between two successive numbers is never greater than the ufp of
any of these numbers, i.e.

|δk| ≤
ufp(sleft(k) + sright(k))

2
≤ µ

2
< µ.

Finally, the limit on n and ξk ≤ u imply∑
j∈Nr

ξj ≤ (n− 1)u ≤ β − 1

2
=
µ− λ

2λ
.

Since all assumptions in Theorem 5 are satisfied, (15) implies (8).
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4 Estimate depending on the height of the eval-
uation tree

The objective of this section is the proof of a new error estimate for binary
floating-point summation depending on the height of the summation tree rather
than on the number of summands. As before, we will first show a much more
general result for perturbations of sums of real numbers from which the validity
of the corresponding floating-point result stated in Section 2 follows. Having
said that, treating arbitrary α-ary trees in Theorem 7 instead of just binary
trees is rather due to technical reasons than in favor of the generality. In fact,
the consideration of α-ary trees actually simplifies the notation.

Theorem 7. Let an α-ary tree T with root r and height h be given. For an
inner node j of T , denote the set of leaves of the corresponding subtree by Lj
and the set of all its inner nodes including j by Nj. To each leaf i of T associate
a real number xi. Moreover, let positive real numbers b, ε as well as β ≥ α be
given, and let two numbers

δj ∈ R and bj ∈ {0} ∪ {βmb | m ∈ Z} (21)

be assigned to each inner node j of T . Suppose that for each inner node j

|δj | ≤ bj ≤ ε

(∑
i∈Lj

|xi|+
∑

i∈Nj\{j}

|δi|

)
. (22)

If h is restricted by

h ≤ 2
√
chε
−1 − 1 with ch :=

{
β−1 − β−2 if α = β

1− αβ−1 otherwise,
(23)

then ∑
i∈Nr

|δi| ≤ hε
∑
i∈Lr

|xi|. (24)

Proof. The proof is by induction on the height h. However, we replace the right
inequality of (24) by

∑
i∈Nr

|δi| ≤ hε
∑
i∈Lr

|xi| − (η − h) max

{
br − ε

∑
i∈Lr

|xi|, 0

}
, (25)

where η := 2
√
chε−1−1. This induction hypothesis is stronger than (24) because

η ≥ h by (23). For ease of notation we specify δk := 0 for all leaves k ∈ Lr.
For h = 1, condition (22) implies |δr| ≤ br ≤ ε

∑
i∈Lr |xi| which is (25).

Suppose that (25) is true for trees with height up to } := h− 1 ≥ 1, and denote

11



by Cj the set of children of an inner node j. The induction hypothesis, (22),
and η − } > 0 imply∑
i∈Nr

|δi| = |δr|+
∑
j∈Cr

∑
i∈Nj

|δi|

≤ br +
∑
j∈Cr

(
}ε
∑
i∈Lj

|xi| − (η − }) max

{
bj − ε

∑
i∈Lj

|xi|, 0

})

= br + }ε
∑
i∈Lr

|xi| − (η − }) max

{ ∑
j∈Cr

max

{
bj − ε

∑
i∈Lj

|xi|, 0

}
, 0

}

≤ br + }ε
∑
i∈Lr

|xi| − (η − }) max

{ ∑
j∈Cr

(
bj − ε

∑
i∈Lj

|xi|

)
, 0

}

= br + }ε
∑
i∈Lr

|xi| − (η − }) max

{ ∑
j∈Cr

bj − ε
∑
i∈Lr

|xi|, 0

}
.

We proceed by case distinction. First, suppose br ≤ ε
∑
i∈Lr |xi|. Then the max

expression in (25) is zero, and∑
i∈Nr

|δi| ≤ br + }ε
∑
i∈Lr

|xi| − (η − }) max{
∑
j∈Cr

bj − ε
∑
i∈Lr

|xi|, 0} ≤ hε
∑
i∈Lr

|xi|

implies (25). Secondly, suppose br > ε
∑
i∈Lr |xi| and br ≤

∑
j∈Cr bj . Then

∑
i∈Nr

|δi| ≤ br + }ε
∑
i∈Lr

|xi| − (η − }) max

{
br − ε

∑
i∈Lr

|xi|, 0

}

= br + }ε
∑
i∈Lr

|xi| − (η − })

(
br − ε

∑
i∈Lr

|xi|

)

= hε
∑
i∈Lr

|xi| − (η − h)

(
br − ε

∑
i∈Lr

|xi|

)

proves (25) for the second case. Finally, it remains to show the validity of (25)
for

br > ε
∑
i∈Lr

|xi| and br >
∑
j∈Cr

bj . (26)

Due to (21), all summands bj on the right-hand side of the right inequality
have to be less than or equal to β−1br. Moreover, since equality is not allowed,
α = β and |Cr| ≤ α require at least one summand to be less or equal to β−2br.
Therefore,

∑
k∈Cr

|δk| ≤
∑
k∈Cr

bk ≤

{
(α− 1)β−1br + β−2br if α = β

αβ−1br otherwise.

12



By definition of ch both right most terms are equal to (1− ch)br, so that∑
k∈Cr

|δk| ≤ (1− ch)br. (27)

Furthermore, (22) and the induction hypothesis give

br − ε
∑
i∈Lr

|xi| ≤ ε
∑

i∈Nr\{r}

|δi| = ε
∑
j∈Cr

∑
i∈Nj

|δi| ≤ (h− 1)ε2
∑
i∈Lr

|xi|. (28)

Then the induction hypothesis, (27), (26), and (28) yield

∑
i∈Nr

|δi| ≤ br +
∑
k∈Cr

(
|δk|+

∑
j∈Ck

∑
i∈Nj

|δi|

)

≤ br +
∑
k∈Cr

(
|δk|+

∑
j∈Ck

(
(h− 2)ε

∑
i∈Lj

|xi|

))
= br +

∑
k∈Cr

|δk|+ (h− 2)ε
∑
i∈Lr

|xi|

≤ (2− ch)br + (h− 2)ε
∑
i∈Lr

|xi|

= hε
∑
i∈Lr

|xi| − (η − h)

(
br − ε

∑
i∈Lr

|xi|

)

+ (η − h+ 2)

(
br − ε

∑
i∈Lr

|xi|

)
− chbr

< hε
∑
i∈Lr

|xi| − (η − h) max

{
br − ε

∑
i∈Lr

|xi|, 0

}
+ (η − h+ 2)(h− 1)ε2

∑
i∈Lr

|xi| − chε
∑
i∈Lr

|xi|.

The quadratic expression (η − h + 2)(h − 1) has its maximum at h = 3
2 + η

2 .
This implies

(η − h+ 2)(h− 1)ε2 ≤
(

1

2
+
η

2

)2

ε2 =

(
1

2
+

2
√
chε−1 − 1

2

)2

ε2 = chε

and finishes the proof.

Proposition 3 now follows as a corollary of the result given above. As in
the previous section, for the discussion of the results regarding some m-digit
floating-point number system in base β, we again make use of the unit in the
first place notation, i.e., ufp(sk) denotes the largest power of β less than or
equal to |sk|, with the convention ufp(0) := 0.

13



Proof of Proposition 3. Let T denote the considered summation tree, where to
each inner node j of T we associate the respective intermediate summation result
sj including the perturbations δi. Using the notation as in Theorem 7 it follows
sj =

∑
i∈Lj xi +

∑
i∈Nj δi. Furthermore, let b = ε = η, where η = u in case of

nearest-addition and η = 2u in case of faithful-addition. Define bj := η ufp(sj)
for all inner nodes j. This definition of bj complies with the assumption (21),
i.e., bj ∈ {0} ∪ {βmη | m ∈ Z}. Moreover,

|δj | ≤ bj = η ufp(sj) ≤ η|sj − δj | ≤ η

(∑
i∈Lj

|xi|+
∑

i∈Nj\{j}

|δi|

)

validates the assumption (22). Finally, for α = 2,

h ≤

{
η−

1
2 − 1 = 2

√
(β−1 − β−2)η−1 − 1 if β = α√

4− 8β−1η−
1
2 − 1 = 2

√
(1− αβ−1)η−1 − 1 otherwise

shows the equivalence of (23) and (9). Thus (10) follows.

Proof of Corollary 4. Let T denote the tree to the evaluation of the inner prod-
uct aT b, i.e., a tree with leaves a1, b1, a2, b2, . . . , an, bn, where all inner nodes
are added via +̃ and the leaf pairs ai, bi are multiplied via the corresponding
floating-point multiplication. Since underflow is barred, the tree T can be trans-
formed into a pure summation tree by replacing the leaf pairs ai, bi with xi, yi
satisfying aibi = xi + yi. The remainder of the argument follows from the proof
of Proposition 3.

Remark 8. In case of nearest-addition it can be shown that inequality (24) in
Theorem 7 still holds valid if we substitute u

1+u for ε and replace condition (22)
with

|δj | ≤ bj ≤


u

1 + 2u
|sj | if |sj − δj | > |sj |

u |sj | otherwise,

(29)

where sj :=
∑
i∈Lj xi+

∑
i∈Nj δi. For nearest rounding this modification allows

us to replace the factor hu in the estimate (10) as well as (11) with the smaller
factor hu

1+u .

Since the replacement of the factor hu with hu
1+u seems of little practical

relevance and requires a considerably more complicated argument, we skip the
proof2 here.

Another remarkable fact is the sharpness of the estimate given in Theorem 7,
which has already been shown for the subcase of recursive summation in [4].
For the discussion of the bound on the height h, we will exploit the following
auxiliary result.

2a proof can be found at www.ti3.tuhh.de/rump/paper/BinTreeAppendix.pdf
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sr = (1 + 12u)64

sleft(r) = (1 + 12u)16

(1 + 12u)4

1 + 12u ( 3
2 + 16u)2

( 3
2 + 16u)8

sright(r) = ( 3
2 + 16u)32

(1 + 12u)8 ( 5
4 + 12u)32

Figure 1: Binary summation tree with exponential increasing error

Lemma 9. Consider a binary summation in IEEE 754 double floating-point
format with u = 2−53 in rounding to nearest mode. Let c ∈ F be an even positive
floating-point number, where the property even denotes that the last bit of the
mantissa is zero. Moreover, let c

8 lie in the normalized range of F. Then, there
exist even positive a, b ∈ F that satisfy

c = a +̃ b, c− (a+ b) = uufp(c), u ufp(a) + uufp(b) ≥ ( 3
5u− 4u2) c,

where ufp(c) denotes the largest power of 2 being strictly smaller than |c|.

Proof. For the specific choice a = ( 1
4 + 3u) ufp(c) and b = c− a− uufp(c), it is

straightforward to verify the statements.

As a consequence of this lemma, it is possible to generate a binary sum-
mation tree for IEEE 754 double floating-point format with an error growing
exponentially in h. In each step the growing factor is greater than or equal to
1 + 3

5u− 4u2, such that

sr −
∑
i∈Lr

xi ≥
((

1 + 3
5u− 4u2

)h − 1
) ∑
i∈Lr

|xi|.

This shows that a restriction on the height is mandatory although the upper
bound on h may not be sharp. Figure 1 demonstrates the reverse generation of
such a summation tree with root sr = (1 + 12u)64.

5 An estimate for recursive summation uniformly
bounded by 1

Before discussing some applications for the refined error bounds given in the pre-
vious sections, we will show another perturbation estimate for the specific case
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of recursive summation. Like the other bounds introduced in the sections above,
the following error estimate also improves upon previous worst case analyses of
summation errors. Unlike our other theorems, however, here no restriction on
n is necessary. Again, the given estimate not only regards the local relative
errors with respect to the corresponding intermediate sum but gives a tighter
bound in correspondence to the relative errors that are defined with respect to
the maximally possible sum of absolute values of the summands and absolute
values of the perturbations in the i-th step.

Since rounding to nearest implies by (7) that no error is greater than any of
the corresponding addends, apparently, the sum of absolute values of the errors∑n
i=1 |δi| is bounded by the sum of absolute values of the addends

∑n
i=1 |xi|.

This inequality is, however, not reflected by the factor nu proved in earlier
papers. The following theorem gives a sharp bound for the error of recursive
summation under the only assumption that the error introduced in the i-th step
is not greater than the i-th addend. As expected, the sharp estimate in (30)
is itself bounded by

∑n
i=1 |xi|. Indeed the introduced factor slowly converges

to 1 and is never greater than nu
1+u (respectively the sum of the corresponding

relative errors). Nevertheless, we mention that Theorem 10 is rather of theo-
retical interest than of practical relevance, in particular since the evaluation of∏n
i=1

1−u
1+u would be difficult in practice.

Theorem 10. Let x, ε ∈ Rn be given. Define vectors δ, s ∈ Rn such that
s1 = x1 + δ1 = x1(1 + ε1) and

sk = xk + sk−1 + δk = (xk + sk−1)(1 + εk)

for 2 ≤ k ≤ n. For every index k = 1, . . . , n suppose that |δk| ≤ |xk| and define

ξk :=
|δk|∑k

i=1 |xi|+
∑k−1
i=1 |δi|

and qk :=

k∏
i=1

1− ξi
1 + ξi

with the convention 0
0 := 0. Then∣∣∣∣∣sn −

n∑
i=1

xi

∣∣∣∣∣ ≤
n∑
i=1

|δi| ≤
1− qn
1 + qn

n∑
i=1

|xi|. (30)

Both inequalities in (30) are sharp in the sense that for arbitrary positive x1 and
ε ∈ [0, 1)n, there exist x2, . . . , xn such that the inequalities become equalities.
Moreover,

1− qn
1 + qn

≤
n∑
i=1

ξi ≤
n∑
i=1

|εi|. (31)

Remark 11. It will be clear from (36) in the proof that the first inequality
in (31) is strict if δi−1δi 6= 0 for some i ∈ {2, . . . , n}. That shows that the
factor 1−qn

1+qn
in (30) is better than the sum of relative errors ξi with respect to

the maximally possible sum of absolute values of the summands and absolute
values of the perturbations, and a fortiori better than the sum of relative errors
|εi| of the individual sums.
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Proof. We first prove (30). The only assumption in Theorem 10, namely |δk| ≤
|xk|, implies ξk ≤ 1 for all k ∈ {1, . . . , n}. If ξj = 1 for some index j, then
qj = 0 = qn and therefore 1−qn

1+qn
= 1. In this case the validity of (30) is an

immediate consequence of |δk| ≤ |xk|. Thus, we may henceforth assume without
loss of generality that qn > 0, which means that q1, q2, . . . , qn is a monotonically
decreasing sequence of positive numbers.

The proof of (30) is by induction on n, whereas the validity for n = 1 is
evident. Henceforth, assume that equation (30) holds valid up to n − 1. By
definition we have sn −

∑n
i=1 xi =

∑n
i=1 δi, so that∣∣∣∣∣sn −

n∑
i=1

xi

∣∣∣∣∣ ≤ |δn|+
n−1∑
i=1

|δi|.

First, assume

2qn−1

1 + qn−1

n−1∑
i=1

|xi| ≥
2qn

1 + qn

n∑
i=1

|xi|. (32)

The induction hypothesis, |δn| ≤ |xn|, and (32) imply

n∑
i=1

|δi| ≤ |xn|+
1− qn−1

1 + qn−1

n−1∑
i=1

|xi|

=

n∑
i=1

|xi| −
2qn−1

1 + qn−1

n−1∑
i=1

|xi|

≤
n∑
i=1

|xi| −
2qn

1 + qn

n∑
i=1

|xi|

=
1− qn
1 + qn

n∑
i=1

|xi|.

(33)

This proves (30) if (32) is satisfied. Secondly, suppose the opposite case, namely

2qn−1

1 + qn−1

n−1∑
i=1

|xi| <
2qn

1 + qn

n∑
i=1

|xi|. (34)

For all n > 1, the definitions of ξn and qn give

|δn| = ξn

(
n∑
i=1

|xi|+
n−1∑
i=1

|δi|

)
=
qn−1 − qn
qn−1 + qn

(
n∑
i=1

|xi|+
n−1∑
i=1

|δi|

)
.

17



Together with (34) and the induction hypothesis, we derive

n∑
i=1

|δi| =
qn−1 − qn
qn−1 + qn

(
n∑
i=1

|xi|+
n−1∑
i=1

|δi|

)
+

n−1∑
i=1

|δi|

=
qn−1 − qn
qn−1 + qn

n∑
i=1

|xi|+
2qn−1

qn−1 + qn

n−1∑
i=1

|δi|

≤ qn−1 − qn
qn−1 + qn

n∑
i=1

|xi|+
2qn−1

qn−1 + qn

1− qn−1

1 + qn−1

n−1∑
i=1

|xi|

≤ qn−1 − qn
qn−1 + qn

n∑
i=1

|xi|+
2qn

qn−1 + qn

1− qn−1

1 + qn

n∑
i=1

|xi|

=
1− qn
1 + qn

n∑
i=1

|xi| .

This finishes the proof of (30).
To show that both estimates in (30) are sharp, let arbitrary positive x1 and

ε ∈ [0, 1)n be given. The summands x2, . . . , xn to be defined are nonnegative.
In that case, together with the non-negativity of the relative errors εk, we have
δk ≥ 0, and therefore ε1 = ξ1 as well as

εk =
δk

xk + sk−1
=

δk

xk +
∑k−1
i=1 xi +

∑k−1
i=1 δi

=
|δk|∑k

i=1 |xi|+
∑k−1
i=1 |δi|

= ξk

for all k = 2, . . . , n. The equalities εk = ξk, in turn, imply

∀1 ≤ k ≤ n : qk =

k∏
i=1

1− εi
1 + εi

and therefore also εk =
qk−1 − qk
qk−1 + qk

,

where we use the convention q0 := 1. Define

xk :=
1

qk

qk−1 − qk
1 + qk−1

k−1∑
i=1

xi for k = 2, . . . , n. (35)

Since the qk are monotonically decreasing and positive, the xk are well-defined
and nonnegative.

We proceed by induction to prove that the assumption |δk| ≤ |xk| is satisfied
for all k, and that there are equalities in (30). For n = 1, we have s1 − x1 =
δ1 = ε1x1 = 1−q1

1+q1
x1 ≤ x1. Suppose that, up to k ≤ n − 1, (30) is satisfied

with equalities. Then, by the non-negativity of all quantities, the induction
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hypothesis, and (35), we have

δk = εk

(
xk +

k−1∑
i=1

xi +

k−1∑
i=1

δi

)

=
qk−1 − qk
qk−1 + qk

(
1

qk

qk−1 − qk
1 + qk−1

k−1∑
i=1

xi +

k−1∑
i=1

xi +
1− qk−1

1 + qk−1

k−1∑
i=1

xi

)

=
qk−1 − qk
qk−1 + qk

1

qk

qk−1 + qk
1 + qk−1

k−1∑
i=1

xi

= xk

for k = 2, . . . , n. Furthermore, the definition of xk given in (35) implies

2qn−1

1 + qn−1

n−1∑
i=1

|xi| =
2qn

1 + qn

n−1∑
i=1

|xi|+
2qn

1 + qn

1

qn

qn−1 − qn
1 + qn−1

n−1∑
i=1

|xi|

=
2qn

1 + qn

n−1∑
i=1

|xi|+
2qn

1 + qn
|xn|

=
2qn

1 + qn

n∑
i=1

|xi|.

Hence, the assumption (32) is satisfied with equality. As a consequence, both
inequalities in (33) can be replaced with equalities, so that (30) holds true with
equalities as well.

Finally, for the proof of (31), we exploit 1−q1
1+q1

= ξ1 as well as

qn ≤ qn−1 ≤ 1 =⇒ (1−qn−1)(1−qn) ≥ 0 =⇒ 1+qnqn−1 ≥ qn−1+qn. (36)

For n > 1 we then derive

1− qn
1 + qn

− 1− qn−1

1 + qn−1
=

2(qn−1 − qn)

1 + qn−1 + qn + qn−1qn
≤ qn−1 − qn
qn−1 + qn

= ξn ≤ |εn|,

and a telescope sum using q0 = 1 shows (31).

6 Applications

In the final section we improve some well-known error bounds into new ones
without higher order terms in u. We denote by s = float(expression) the result of
the expression with each operation replaced by the corresponding floating-point
operation. The evaluation may be in any order but, if applicable, respecting
parentheses. First, consider a sum of products

s :=

n∑
i=1

m∏
j=1

xij for xij ∈ F. (37)
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Provided (n+m− 2)u < 1, the standard Wilkinson-type error estimate gives∣∣∣∣∣float
( n∑
i=1

m∏
j=1

xij
)
− s

∣∣∣∣∣ ≤ γn+m−2

n∑
i=1

m∏
j=1

|xij |

using the classical γk := ku
1−ku . Exploiting Proposition 1 and Theorem 1.2 in [6]

this can be improved as follows.

Proposition 12. Let xij ∈ F with 1 ≤ i ≤ n and 1 ≤ j ≤ m be given for a
set F of floating-point numbers to base β. Assume floating-point addition and
multiplication in rounding to nearest. Furthermore, suppose

m ≤ β− 1
2u−

1
2 , n ≤ 1 +

β − 1

2
u−1, and m ≤ n. (38)

If no multiplication causes underflow, then∣∣∣∣∣float
( n∑
i=1

m∏
j=1

xij
)
− s

∣∣∣∣∣ ≤ (n+m− 2)u

n∑
i=1

m∏
j=1

|xij |. (39)

For binary floating-point numbers m ≤ u−
1
2 suffices for (39) to hold true.

Remark 13. Note that for m = 2 the estimate of Proposition 12 includes the
error bound |float(xT y)− xT y| ≤ nu|x|T |y| for a floating-point computation of
the dot product of two vectors x, y ∈ Fn. That was first proved in [2], however,
without restriction on n.

Proof. For 1 ≤ i ≤ n denote pi := float(
∏m
j=1 xij). Then (38) and [6, Theorem

1.2] imply ∣∣∣∣∣pi −
m∏
j=1

xij

∣∣∣∣∣ ≤ (m− 1)u

m∏
i=1

|xij |

for 1 ≤ i ≤ n. Denoting the left-hand side in (39) by ∆ and again using (38),
Proposition 1 gives

∆ =

∣∣∣∣∣float
( n∑
i=1

pi
)
−

n∑
i=1

pi +

n∑
i=1

(
pi −

m∏
j=1

xij

)∣∣∣∣∣
≤ (n− 1)u

1 + (n− 1)u

n∑
i=1

|pi|+ (m− 1)u

n∑
i=1

m∏
j=1

|xij |

≤
(

(n− 1)u

1 + (n− 1)u
(1 + (m− 1)u) + (m− 1)u

) n∑
i=1

m∏
j=1

|xij |,

and m ≤ n finishes the argument.
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A direct application of Proposition 12 is a bound on the error of a Vander-
monde matrix times a vector. Let

Vij = αij for 0 ≤ i, j ≤ n

for given αj ∈ F. Then (V x)i =
n∑
j=0

αijxj , so that for a vector x ∈ Fn+1, starting

with index 0, we obtain

|float(V x)− V x| ≤ diag(nu, nu + u, . . . , 2nu) |V | |x| ≤ 2nu |V | |x|.

Another application is a new error estimate for blocked summation. Let a
vector x ∈ Fmn be given and consider blocked floating-point summation of all
elements of x with fixed block size m, that is,

s := float

(
n∑
i=1

( m∑
j=1

xij

))
. (40)

Then the standard Wilkinson-type error estimate |s−
∑
ij xij | ≤ γn+m−2

∑
ij |xij |

can be improved as follows.

Proposition 14. Let xij ∈ F with 1 ≤ i ≤ n and 1 ≤ j ≤ m be given for a set F
of floating-point numbers to base β. Assume floating-point addition in rounding
to nearest and suppose

max(m,n) ≤ 1 +
β − 1

2
u−1. (41)

Then s as defined in (40) satisfies∣∣∣∣s−∑
ij

xij

∣∣∣∣ ≤ (n+m− 2)u
∑
ij

|xij |. (42)

Proof. Denoting the left-hand side in (42) by ∆ and proceeding as in the proof
of Proposition 12, we obtain

∆ ≤
(

(n− 1)u

1 + (n− 1)u

(
1 +

(m− 1)u

1 + (m− 1)u

)
+

(m− 1)u

1 + (m− 1)u

)∑
i,j

|xij |.

The result then follows by

p

1 + p

(
1 +

q

1 + q

)
+

q

1 + q
= p+ q +

pq − p2 − q2 − (p+ q)pq

(1 + p)(1 + q)
≤ p+ q,

where p and q are substitutes for (n− 1)u and (m− 1)u, respectively.

Finally, we mention without proof another application of the sharper esti-
mate in Proposition 1. For given A ∈ Fm×n, y ∈ Fm, and x ∈ Fn, the standard
Wilkinson-type error bound for the floating-point computation of yTAx reads
|float(yTAx)− yTAx| ≤ γm+n |y|T |A| |x|. If max(m,n) ≤ u−1 and n+m ≥ 10,
this bound can be improved to

|float(yTAx)− yTAx| ≤ (m+ n)u |y|T |A| |x|.
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