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Abstract: In this paper we study the generation of an ill-conditioned integer matrix A = [aij ]

with |aij | ≤ μ for some given constant μ. Let n be the order of A. We first give some upper

bounds of the condition number of A in terms of n and μ. We next propose new methods

to generate extremely ill-conditioned integer matrices. These methods are superior to the

well-known method by Rump in some respects, namely, the former has a simple algorithm

to generate a larger variety of ill-conditioned matrices. In particular we propose a method

to generate ill-conditioned matrices with a choice of desirable singular value distributions as

benchmark matrices.
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1. Introduction
Extremely ill-conditioned matrices are required to examine the quality of verified numerical compu-

tations for solving simultaneous linear equations [1–6]. Here an ill-conditioned matrix means that its

condition number Cond(A) = ‖A‖‖A−1‖ is 1016 or larger in IEEE 754 binary64 (double precision)

arithmetic. Though the condition number of a matrix is the most important index in numerical anal-

ysis, its properties such as upper bounds for integer matrices discussed in this paper have not been

fully investigated [1, 12–14].

Once S. Rump [7] proposed a method to generate extremely ill-conditioned matrices with floating-

point entries. The method is now most well-known and a modification is used as the standard tool to

generate an ill-conditioned matrix in INTLAB (see “randmat”). However, since his method is based

on Pell’s equation (which is well-known in number theory) with a limited number of solutions, there

is not so much variety of matrices to be generated. Therefore we are seeking alternative methods to

obtain a greater variety of ill-conditioned matrices. Moreover we are interested in a priori specifiable

singular value distributions. Up to now several methods [8–11] which may be considered as extensions

of Rump’s method [7] were proposed. In this paper we give new generation methods of ill-conditioned
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integer matrices1.

Section 2 introduces to the subject and summarizes related previous results. Throughout the paper

μ denotes a large positive integer such as 108, 1016 or 253 (but μ = 10 or less may also, theoretically,

be permissible). We are aiming to generate extremely ill-conditioned n×n integer matrices A = [aij ]

with |aij | ≤ μ.

In Section 3 several upper bounds of the 2-norm condition number are shown in terms of n and μ,

in particular for specific distributions of the singular values of A. The results in Section 3 are closely

related to Section 5. In Section 4 we give a new generation method2 for extremely ill-conditioned

matrices. The method may be regarded as a modification of Rump’s method [7] and has the following

features in comparison with Rump’s original method [7] and its extensions [8–10]: (i) the algorithm

is simpler, (ii) the obtainable condition number is roughly the same as for previous methods, and

(iii) it can generate a greater variety of matrices. The obtained matrices are somewhat similar to a

companion matrix. Some numerical examples are shown for illustration.

The matrices generated up to Section 4 in this paper as well as those by previous methods [7–11],

in particular by Rump’s method, bear the drawback that the first n− 1 singular values are large and

not far from the first one, the spectral norm, whereas only the n-th singular value is extremely small.

This implies that the inverse of those matrices is very near to a matrix with rank one (see examples in

Section 4). This may not necessarily be preferable for a benchmark matrix. Therefore we consider in

Section 5 some desirable distributions of singular values of a matrix and give partial solutions to the

generation problem by using some special types of matrices. We will see that the condition number

of the obtained matrices is nearly optimal in some sense. Numerical examples show good agreement

with theory.

2. Preliminaries
The main purpose of this paper is to generate an n× n integer matrix A = [aij ] which satisfies

|aij | ≤ μ (i, j = 1, 2, · · · , n) (1)

and whose condition number Cond(A) = ‖A‖‖A−1‖ is extremely large3. It is obvious that the

maximally achievable condition number of A increases monotonically with μ. In this paper we assume4

|det(A)| = 1. (2)

Note that Eq. (2) can be achieved only under very delicate relations among the entries aij , in

particular when n and μ are large.

We will briefly summarize previous results.

2.1 Rump’s method[7]
One of the key points of Rump’s method is to find a 2× 2 integer matrix V s.t.

V =

[
P kQ

Q P

]
, det (V ) = det

([
P kQ

Q P

])
= 1, (3)

where k is a prescribed small positive integer5. The integers P and Q are very large (depending on

the desired condition number), such as 1050, and are chosen to satisfy Pell’s equation

1Though our final matrices are to be floating-point matrices, we discuss about the generation of integer matrices
due to the same reason as in [7].

2The matrices generated in this paper as well as in the previous ones [7–9] are very sparse. For example, there are few
elements equal to ±1, and the number of nonzero elements not equal to ±1 is only about cn, where c = 2 or c = 3. For
practical use we can derive dense matrices by multiplying them by appropriate matrices P with |det(P )| = 1 from left
and/or right. We can also add rows or columns by similar operations. Note, however, that this may change the condition
number.

3The infinity norm ‖A‖∞ defined by maxi
∑n

j=1 |aij | is often used in verified numerical analysis, but the spectral norm

‖A‖2 is also used in this paper. Similarly, both Cond∞(A) and Cond2(A) are used. See also Eqs. (10) and (11).
4This is not a strict condition, but proved to be important to generate ill-conditioned integer matrices.
5The symbols n and V in Eqs. (1) and (3) are different from those in the Rump’s paper [7]. The order “2(n+ 1)” of

the matrix in [7] is written as “n” in this paper.
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P 2 − kQ2 = 1, (4)

from which det(V ) = 1 in Eq. (3) follows. Utilizing V in Eq. (3), Rump constructed an n × n (n is

even) integer matrix A in Eq. (1.6) of [7] and showed by rather tricky calculations that

Cond∞(A) = ‖A‖∞‖A−1‖∞ ≥ (P + kQ)2. (5)

Under the reasonable assumption that P , Q ∼ μn/2 we have

Cond∞(A) ≥ (P + kQ)2 ∼ 4μn. (6)

This shows that Cond2(A) can be extremely large in Rump’s method.

2.2 Previous extensions of Rump’s method
Rump’s algorithm can be generalized by replacing V in Eq. (3) with the following two kinds of matrices

[8–10].

2.2.1 Replacing V by more general type of a 2 × 2 matrix

The matrix V in Eq. (3) was generalized into

V ′ =
[

P F

Q G

]
, det(V ′) = PG−QF = 1. (7)

For prescribed large integers P and Q having no common factor, e.g.,

P = 2k, Q = 3m

P = 2k15k211k3 , Q = 3m17m2

}
, (8)

we can find F and G satisfying Eq. (7) by using the extended Euclidean algorithm. The equations

corresponding to Eqs. (5) and (6) also hold for this case. This method greatly enlarges the class of

generated matrices.

2.2.2 Replacing V by a 3 × 3 matrix

The discussion similar to Eqs. (3) and (7) is possible for this case.

3. Upper bounds of condition number of matrices in terms of µ

In this section we show some upper bounds of Cond2(A), the condition number of a matrix A with

respect to the spectral norm6, in terms of μ. As before, the general assumptions for this section are

| det(A)| = 1 and |aij | ≤ μ for 1 ≤ i, j ≤ n. (9)

As we see, the condition numbers with infinity norm and the spectral norm are related by [12, 13]:

1√
n
‖A‖2 ≤ ‖A‖∞ ≤ √

n‖A‖2 (10)

∴ 1

n
Cond2(A) ≤ Cond∞(A) ≤ nCond2(A). (11)

This means that concerning large condition numbers both norms give almost the same value. So

in this paper we use both norms conveniently; we use mainly the spectral norm in Sections 3 and 5

and the infinity norm in Section 4. Though our aim is to generate ill-conditioned integer matrices,

we discuss on real matrices in most of Sections 3 and 5.

6The spectral norm is the matrix norm induced by the Euclidean vector norm, i.e. ‖A‖2 := max‖x‖=1 ‖Ax‖. It follows

‖A‖2 =
√

�(ATA), where � denotes the spectral radius.
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3.1 Condition number of A in terms of µ for special singular value distributions
Let the eigenvalues of AAT be λi > 0 (i = 1, 2, · · · , n), so that σi ≡ √

λi (i = 1, 2, · · · , n) are the

singular values of A. We use decreasing order, i.e.

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ λn(> 0), (σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn−1 ≥ σn > 0) (12)

Here λi are the solutions of the characteristic equation

det(λ1−AAT ) = λn − tr(AAT )λn−1 + · · ·+ (−1)ndet(AAT ) = 0, (13)

where “tr(X)” denotes the trace of a matrix X and “1” denotes the identity matrix. Note that

tr(AAT ) is equal to the Frobenius norm ‖A‖2F . Using |aij | ≤ μ it follows

n∑
i=1

λi = ‖A‖2F = tr(AAT ) =
n∑

i,j=1

a2ij ≤ n2μ2, (14)

and therefore

‖A‖2 = σ1 =
√

λ1 ≤ ‖A‖F ≤ nμ. (15)

An obvious estimation for Cond2(A) uses

Cond2(A) =
σ1

σn
=

σ1

∏n−1
i=1 σi∏n

i=1 σi
=

σ1

∏n−1
i=1 σi

| det(A)| = σ1

n−1∏
i=1

σi ≤ σn
1 ≤ nnμn. (16)

This can be improved as follows, in particular allowing to use information not only on the maximum

size of the elements |aij |, but also on their individual size and distribution. For any positive definite

n×n-matrix B, Hadamard’s determinant inequality [Horn/Johnson: Matrix Analysis, Theorem 7.8.1]

yields

det(B) ≤
n∏

i=1

bii.

For any matrix B with | det(B)| = 1 we have |(B−1)ii| = | det(B(i))|, where B(i) is the matrix B

after deleting the i-th row and column. Applying this to the positive definite matrix B := AAT and

using that B(i) is, as a principal submatrix, positive definite as well, shows

((AAT )−1)ii ≤
∏
j �=i

(AAT )jj ≤ (nμ2)n−1, (17)

so that

‖A−1‖22 = ‖(AAT )−1‖2 ≤ tr((AAT )−1) ≤ nnμ2(n−1). (18)

Putting things together yields the estimation

Cond2(A) = ‖A‖2‖A−1‖2 ≤ nn/2+1μn. (19)

An even better estimation is obtained by

Theorem 1(Guggenheimer, et al. [14], 1995): For an arbitrary real n× n matrix A we have

Cond2(A) <
2

|det(A)|
(‖A‖F

n

)n
2

. (20)

Using | det(A)| = 1 and ‖A‖F ≤ n2μ2 yields for our case

cond2(A) < 2nn/2μn. (21)

This estimation seems almost sharp as for matrices with a singular value distribution of AAT like

λ1 ≈ 2γ and λ2 = λ3 = . . . = λn−1 ≈ γ (22)
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for some constant γ, and choosing λn according to det(AAT ) =
∏

λi = 1. Moreover, from Eqs. (2)

and (13) we have for n ≥ 2 that

λ1λ2λ3 · · ·λn = 1 (23)

λ1 + λ2 + λ3 + · · ·+ λn = tr(AAT ) (24)

Cond22(A) =
λ1

λn
, i.e., Cond2(A) =

√
λ1

λn
=

σ1

σn
. (25)

Note that all estimations so far are valid for any real matrix satisfying the assumptions (9). Bounds

for the condition number of integer matrices satisfying (9) may be sharper, however, we think that

the difference is not too big.

A very large condition number as in (21) is achieved for a specific singular value distribution as in

(22). So we may ask:

Question 1: If the distribution of λi(i = 1, 2, · · · , n) differs significantly from Eq. (22), how does the

upper bound of Cond2(A) change?

Next we try to examine the relation between the distribution of λi and an upper bounds of Cond2(A)

subject to | det(A)| = 1 and |aij | ≤ μ. We consider the following special distributions of eigenvalues

λi.

1. Case where λ1...n take only two distinct values, i.e.,

λ1 = λ2 = · · · = λk, λk+1 = λk+2 = · · · = λn. (26)

In particular we consider some special case of Eq. (26):

1a. Case of k = 1, i.e.,

λ1 > λ2 = λ3 = · · · = λn, (27)

1b. Case of k = n/2 (provided n is even)

λ1 = λ2 = · · · = λn/2, λn/2+1 = λn/2+2 = · · · = λn, (28)

1c. Case of k = n− 1, i.e.,

λ1 = λ2 = · · · = λn−1 > λn. (29)

2. Case where λ1...n have logarithmically uniform distribution, i.e.,

λ1 = r2λ2 = r4λ3 = · · · = r2iλi+1 = · · · = r2(n−1)λn (r > 1). (30)

3. Case where λ1...n take only three distinct values as

λ1 = λ2 = · · · = λk > λk+1 = λk+2 = · · · = λn−l = 1 > λn−l+1 = λn−l+2 = · · · = λn, (31)

Problem 1: For each eigenvalue distribution in Eqs. (26)–(31) determine Cond2(A) in Eq. (25) under

the restrictions (9).

In these special types of eigenvalue distributions (Eqs. (26)–(31)) there are two independent vari-

ables, i.e., λ1 and λn for example, in Cases (1) and (3) and r and λ1 in Case (2). On the other hand

there are two equations, i.e., Eqs. (23) and (24). So these equations can be solved for λi in principle

and the condition number Cond2(A) in Eqs. (25) can also be determined.

For example in Case 1 (with restriction (26)) we can proceed as follows. We have

1 = | det(A)| =
n∏

i=1

λi = λk
1λ

n−k
n , (32)

so that

Cond2(A)2 =
λ1

λn
= λ

1+ k
n−k

1 = λ
n

n−k

1 . (33)
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Using (24) and (14) yields

kλ1 ≤ n2μ2 − (n− k)λn ≤ n2μ2 (34)

and proves

Cond2(A) ≤ [ nμ√
k

] n
n−k . (35)

This implies that with increasing value of k the maximally achievable condition number decreases

substantially. For example, for k ≈ n/2, i.e. about n/2 large singular values, matrices satisfying (9)

can have condition numbers only up to about 2nμ2.

The rigorous analytical solution for λi as well as Cond2(A) seems difficult. However, we are only

interested in a reasonable estimate, so we give only upper bounds of Cond2(A) in Table I. The

quantities in Column 2 of Table I show analytical upper bounds of Cond2(A) for each case. Note that

they are almost the same as the rigorous solutions of Problem 1, in particular when n is large.

Table I. Upper bounds for typical λi distributions.

Cases Upper bounds in terms of μ Upper bounds for sparse cases

Optimum case (Eq. (22)) 2nn/2μn 2cn/2μn

Case 1 (Eq. (25))
(

nµ√
k

) n
n−k

(
cnµ2

k

) n
2(n−k)

Case 1a (Eq. (27)) nμ (n 	 1)
√
cnμ (n 	 1)

Case 1b (Eq. (28)) 2nμ2 2cμ2

Case 1c (Eq. (29)) nn/2μn (n 	 1) cn/2μn (n 	 1)

Case 2 (Eq. (30)) n2μ2 cnμ2

Case 3 (Eq. (31))
(

nµ√
k

) k+l
l

(
cnµ2

k

) k+l
2l

k = l in Case 3 n2µ2

k
cnµ2

k

In some entries of Table I a comment “n 	 1” occurs. It means that the displayed bound is

essentially true up to a nasty factor like n
√
n which is near 1 for larger values of n.

In the above table the Case 2 is of specific interest. This reflects a geometric distribution of the

singular values, from the largest to the smallest. In some sense this seems particularly desirable, it

is also the default in Matlab’s “randsvd” function to generate random-like matrices with a specified

condition number. In this case (30) implies

Cond2(A)2 =
λ1

λn
= r2(n−1). (36)

To estimate r we set α := r−2 and have

1 = | det(A)| =
n∏

i=1

λi = λ1 · αλ1 · . . . · αn−1λ1 = λn
1α

n(n−1)
2 , (37)

so that α = r−2 and (14) imply

rn(n−1) = λn
1 ≤ (n2μ2)n (38)

and therefore

Cond2(A) ≤ n2μ2. (39)

In other words, for a matrix with integer entries limited by 1016 the maximally achievable condition

number is about 1032n2, so there are no such extremely ill-conditioned matrices with this desirable

distribution of singular values. The estimation for Case 3 is similarly derived.
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3.2 Upper bounds of condition number of sparse matrices
For sparse matrices as mentioned in footnote 2 on page 2, i.e. few entries ±1, about c entries of size μ

and otherwise zero entries, β = ‖A‖2F is limited by about cnμ2 rather than n2μ2. Inserting this into

(20) improves the estimation of the maximal condition number into

Cond2(A) < 2cn/2μn where |det(A)| = 1 (40)

as shown in the third column of the first row of Table I. Note that the right-most quantity in Eq. (40)

is extremely large for large n.

Estimations for the largest admissible condition number for sparse matrix pattern and depending

on the distribution of the singular values are shown in the rightmost column of Table I. Practical

experience suggests that these bounds are almost sharp.

From Table I we see that

1. If the distribution of singular values of the matrices A and A−1 are somehow similar (i.e, in

Cases 1b, Case 2 and Case 3(k = l)), then the maximally achievable condition number is rather

small (only about μ2).

2. Extremely large condition numbers may only be realized when the number of small eigenvalues

is considerably smaller compared to the number of large eigenvalues.

3. In particular the desirable geometric distribution of singular values does not allow extremely

large condition numbers unless μ, i.e. the maximum absolute value of the matrix entries, is

extremely large.

4. Generation of ill-conditioned matrix similar to companion matrix

4.1 Generation method
In this section we propose a generation method of an ill-conditioned matrix which has a similar form

to a companion matrix and which can be regarded as a half size of that in Rump [7].

Let A be an n× n integer matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 · · · an−1 an
1 −ν1 0 0 · · · 0 0

0 1 −ν2 0 · · · 0 0

0 0 1 −ν3 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · −νn−2 0

0 0 0 0 · · · 1 −νn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Without loss of generality we can assume7

νi > 0 (i = 1, 2, · · · , n− 1) (42)

We also assume

0 < νi ≤ μ (i = 1, 2, · · · , n− 1), |ai| ≤ μ (i = 1, 2, · · · , n) (43)

We determine ai (i = 1, · · · , n) such that

((((a1ν1 + a2)ν2 + a3)ν3 + a4)ν4 + · · · )νn−1 + an = 1 (44)

This condition corresponds to the Pell equation in [7]. Referring to Eq. (44), we will describe how to

determine ai.

Step 1: From Eq. (44) we see that 1− an must be divided by νn−1, i.e.,

1− an ≡ 0 (mod νn−1) (45)

7If ν1 < 0, then we can change it into positive by multiplying both the second column and the third row by −1. By
applying a similar operation to ν2, ν3, · · · , νn−1 in this order, we can make all νi positive.
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We define kn−1 as

1− an
νn−1

≡ kn−1 (46)

where kn−1 may be 0, ±1, ±2, ±3, · · · and by Eqs. (46) and (43)

an = 1− νn−1kn−1 (47)

|an| = |1− νn−1kn−1| ≤ μ (48)

have to be satisfied. From Eq. (48) we have

−μ ≤ 1− νn−1kn−1 ≤ μ ∴ −μ+ 1 ≤ νn−1kn−1 ≤ 1 + μ (49)

from which we have
−μ+ 1

νn−1
≤ kn−1 ≤ 1 + μ

νn−1
(50)

Though we can choose kn−1 satisfying Eq. (50) arbitrarily,

kn−1 =

[
1 + μ

2νn−1

]
(> 0) and

[
1− μ

2νn−1

]
(< 0) ([·] means the Gauss notation) (51)

are reasonable candidates for kn−1. Then an is determined by Eq. (47).

Step 2: Quite similarly we can derive equations corresponding to Eqs. (46)–(51).

For convenience let

kn = 1 (52)

Then we can calculate aj and kj recursively for j = n− 1, n− 2, · · · , 2 in the descent order as follows:

kj+1 − aj+1 ≡ 0 (mod νj) (53)

kj+1 − aj+1

νj
≡ kj , (kj = 0,±1,±2, · · · ) (54)

aj+1 = kj+1 − νjkj (55)

|aj+1| = |kj+1 − νjkj | < μ (56)

−μ+ kj+1

νj
< kj <

kj+1 + μ

νj
(57)

Similarly

kj =

[
kj+1 + μ

2νj

]
(> 0) and

[
kj+1 − μ

2νj

]
(< 0) (58)

are appropriate candidate of ki. Equation (58) is one of choices but we can choose kj arbitrarily in

Eq. (57).

Note that the case of j = n− 1 in Eqs. (53)–(58) corresponds to Step 1.

Step 3: Finally let

a1 ≡ k1 (59)

Since νi > 0 holds, some (but not all) of ai are necessarily negative (See Eq. (44)). We choose the

sign of ai, for example, as

a2i > 0, a2i+1 < 0, ∴ k2i < 0, k2i+1 > 0 (i = 1, 2, · · · , ) (60)

or

a2i < 0, a2i+1 > 0, ∴ k2i > 0, k2i+1 < 0 (i = 1, 2, · · · , ) (61)
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4.2 Condition number of A in Eq. (41)
In this section we evaluate the condition number of A in Eq. (41) with the infinity-norm. For this

purpose we first calculate the inverse matrix A−1. It can be calculated in a similar way as in [8] as

follows:

Let

H ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
∏n−1

1 νi
0 1 0 · · · 0 0

∏n−1
2 νi

0 0 1 · · · 0 0
∏n−1

3 νi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0 νn−2νn−1

0 0 0 · · · 0 1 νn−1

0 0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)

Then we have

A′ ≡ AH (63)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 a5 · · · an−2 an−1 an
1 −ν1 0 0 0 · · · 0 0 0
0 1 −ν2 0 0 · · · 0 0 0
0 0 1 −ν3 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 1 −νn−2 0
0 0 0 0 0 · · · 0 1 −νn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0
∏n−1

1 νi
0 1 0 0 · · · 0

∏n−1
2 νi

0 0 1 0 · · · 0
∏n−1

3 νi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 νn−2νn−1

0 0 0 0 · · · 0 νn−1

0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 · · · an−2 an−1 1
1 −ν1 0 0 · · · 0 0 0
0 1 −ν2 0 · · · 0 0 0
0 0 1 −ν3 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −νn−2 0
0 0 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(64)

Let

A′ =

[
U 1

W 0

]
(65)

U =
[
a1 a2 a3 · · · an−1

]
(66)

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν1 0 0 · · · 0

0 1 −ν2 0 · · · 0

0 0 1 −ν3 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −νn−2

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(67)

Then

(A′)−1 =

[
0 W−1

1 −UW−1

]
(68)

Here

W−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ν1 ν1ν2
∏3

1 νi · · · ∏n−2
1 νi

0 1 ν2 ν2ν3 · · · ∏n−2
2 νi

0 0 1 ν3 · · · ∏n−2
3 νi

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 νn−2

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(69)
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−UW−1 = − [ a1 a2 a3 · · · an−1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ν1 ν1ν2
∏3

1 νi · · · ∏n−2
1 νi

0 1 ν2 ν2ν3 · · · ∏n−2
2 νi

0 0 1 ν3 · · · ∏n−2
3 νi

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 νn−2

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≡ − [ K1, K2, K3, · · · , Kn−1

]
(70)

where

Kj ≡ a1

j−1∏
i=1

νi + a2

j−1∏
i=2

νi + · · ·+ aj (j = 1, 2, · · · , n− 1) (71)

i.e.,

K1 = a1
K2 = a1ν1 + a2
K3 = a1ν1ν2 + a2ν2 + a3

...

Kn−1 = a1
∏n−2

i=1 νi + · · ·+ an−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(72)

So we have the final form of A−1 as:

A−1 = H(A′)−1 (73)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
∏n−1

1 νi
0 1 0 · · · 0 0

∏n−1
2 νi

0 0 1 · · · 0 0
∏n−1

3 νi
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0 νn−2νn−1

0 0 0 · · · 0 1 νn−1

0 0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 ν1 ν1ν2 · · · ∏n−3
1 νi

∏n−2
1 νi

0 0 1 ν2 · · · ∏n−3
2

∏n−2
2 νi

0 0 0 1 · · · ∏n−3
3

∏n−2
3 νi

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 νn−2

0 0 0 0 · · · 0 1
1 −K1 −K2 −K3 · · · −Kn−2 −Kn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

∏n−1
1 νi 1−K1

∏n−1
1 νi ν1 −K2

∏n−1
1 νi · · · ∏n−2

1 νi −Kn−1

∏n−1
1 νi∏n−1

2 νi −K1

∏n−1
2 νi 1−K2

∏n−1
2 νi · · · ∏n−2

2 νi −Kn−1

∏n−1
2 νi∏n−1

3 νi −K1

∏n−1
3 νi −K2

∏n−1
3 νi · · · ∏n−2

3 νi −Kn−1

∏n−1
3 νi

· · · · · · · · · · · · · · ·
νn−1 −K1νn−1 −K2νn−1 · · · 1−Kn−1νn−1

1 −K1 −K2 · · · −Kn−1

⎤
⎥⎥⎥⎥⎥⎦ (74)

By the way we can show that

ki = Ki (i = 1, 2, · · · , n− 1) (75)

which can be easily derived by comparing Eq. (74) with Eq. (54).

Since we can verify that the magnitude of the (1, j) element of the matrix in Eq. (74) is larger than

that of (i, j) (i ≥ 2) element, we have
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‖A−1‖∞ =
n−1∏
1

νi +

∣∣∣∣∣1−K1

n−1∏
1

νi

∣∣∣∣∣+
∣∣∣∣∣ν1 −K2

n−1∏
1

νi

∣∣∣∣∣+ · · ·+
∣∣∣∣∣
n−2∏
1

νi −Kn−1

n−1∏
1

νi

∣∣∣∣∣
= (|k1|+ |k2|+ · · ·+ |kn−1|)

n−1∏
1

νi −
n−1∑
1

ki
|ki|νi (76)

‖A‖∞ = max

{
n∑
1

|ai|, max
i

(νi + 1)

}
(77)

Equation (76) can be obtained from the first row of Eq. (74).
Finally we have

Cond∞(A) = max

{
n∑
1

|ai|, max
i

(νi + 1)

}
·
{

n−1∑
1

|ki|
n−1∏
1

νi −
n−1∑
1

ki
|ki|νi

}
(78)

≥
n∑
1

|ai|
(

n−1∑
1

|ki|
n−1∏
1

νi −
n−1∑
1

νi

)
(79)

This corresponds to the Rump’s result in Eq. (5). If we choose ki 
= 0, then
∑n−1

1 |ki| ≥ n− 1. In

addition if νi 	 1, then

The right-hand side of Eq. (79) ≈
n∑
1

|ai|
n−1∑
1

|ki|
n−1∏
1

νi ≥ (n− 1)
n∑
1

|ai|
n−1∏
1

νi (80)

From Eqs. (76)–(80) we have a very rough estimation on Cond2(A) as

Cond∞(A)

{
> (n− 1)2μn−1 if νi ∼ μ, ||ai| ∼ μ

> (n− 1)μ
n+1
2 if |ai| ∼ μ, νi ∼ √

μ

This means that Eq. (81) are approximately same but are a little inferior to that in [7].

4.3 Considerations through examples
Example 1: Let

n = 4, μ = 10, ν1 = ν2 = ν3 = 5 (81)

We will choose ki and ai according to Eqs. (53)–(58). Since 1 − a4 must be divided by (ν3 =)5, we

have a4 = 1, −4, 6, −9, · · · . So we choose a4 = −9, for example. Then we have k3 = (1− a4)/5 = 2.

Since k3 − a3 must be divided by (ν2 =)5, we choose a3 = 7 and then k2 = −1. Since (k2 − a2)

must be divided by (ν1 =)5, we choose as a2 = −6 and then k1 = a1 = 1. Indeed we have ((1× 5 +

(−6))× 5 + 7)× 5 + (−9)) = 1.

We therefore have

A =

⎡
⎢⎢⎣

1 −6 7 −9

1 −5 0 0

0 1 −5 0

0 0 1 −5

⎤
⎥⎥⎦, A−1 =

⎡
⎢⎢⎣

125 −124 130 −225

25 −25 26 −45

5 −5 5 −9

1 −1 1 −2

⎤
⎥⎥⎦ (82)

from which we see that

Cond∞(A) = ‖A‖∞ · ‖A−1‖∞ = 13892 (83)

This nearly agrees with Eq. (81). Singular values of A are 14.109, 5.136, 4.421 and 0.003121. Then

we have

Cond2(A) ≈ 14.109

0.003121
≈ 4520.3

Thus A has a considerably large condition number even for such small μ and n.

Example 2: Let
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n = 4, μ = 1000, ν1 = ν2 = ν3 = 50 (84)

In a quite similar way as in Example 1 we will choose ki and ai according to Eqs. (53)–(58). We have

a4 = −799, a3 = 716, a2 = −864, and a1 = 17 as one of choices, i.e.,

A =

⎡
⎢⎢⎣

17 −864 716 −799

1 −50 0 0

0 1 −50 0

0 0 1 −50

⎤
⎥⎥⎦, A−1 =

⎡
⎢⎢⎣

125000 −2124999 1750050 −1997500

2500 −42500 35001 −39950

50 −850 700 −799

1 −17 14 −16

⎤
⎥⎥⎦ (85)

from which we see that

Cond∞(A) = ‖A‖∞ · ‖A−1‖∞ ≈ 13× 108 (86)

Singular values are 1378.6, 50.01, 49.38 and 0.0000003. Then we have

Cond2(A) =
1378.6

0.0000003
≈ 4.693 · 109

Thus the condition number of A is very large.

Note that in the above example A has three large singular values and one very small one singular

value, and A−1 is near to a matrix with rank one. As another example, we consider the case where

νi = 1 (i = 1, · · · , n− 1). Example 3 is the result for n = 4, μ = 1000 and �i= 1(i = 1, · · · , n).
Example 3:

A =

⎡
⎢⎢⎣

300 −590 850 −561

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎤
⎥⎥⎦, A−1 =

⎡
⎢⎢⎣

−1 301 −289 561

−1 300 −289 561

−1 300 −290 561

−1 300 −290 560

⎤
⎥⎥⎦ (87)

Cond∞(A) ≈ 1.6977× 106

Singular values are 1214.6, 1.438, 0.8003, and 0.0007155.

As is expected, λ1 	 λ2 ≈ λ3 	 λ4 holds but even in this case A−1 is near to a matrix with rank

one, since the smallest eigenvalue is extremely small compared to other ones.

5. Generation of more desirable ill-conditioned matrices
5.1 Preliminary
As seen from the above examples, inverse matrices with extremely large condition number are very

close to a matrix with rank one. One of the authors showed a more interesting example in which all

elements of A−1 have almost identical value. This property seems undesirable as a benchmark matrix

for verified numerical algorithm. In this section we propose some desirable properties for singular

values of A and give partial solutions to it.

Let an n × n integer matrix be A, where n = 2m. We would like to generate A such that the

condition number of A is very large and simultaneously that singular values of A have a desirable

distribution. Let singular values of A be σi (=
√
λi) (i = 1, 2, · · · , n) where σi and λi satisfy Eq. (12).

5.2 Desirable properties of A
The definition of the condition number ‖A‖‖A−1‖may suggest that it seems desirable that the singular

values of both A and A−1 have the same property. Therefore we consider that Cases (i)–(iii) below

are desirable as ill-conditioned benchmark matrices.

Case (i) σ1 = σ2 = σ3 = · · · = σm > 1 > σm+1 = σm+2 = · · · = σ2m (88)

Case (ii) σ1 = rσ2 = r2σ3 = · · · = r2m−2σ2m−1 = r2m−1σ2m (r > 1) (89)

Case (iii) σ1 = · · · = σl > σl+1 = · · · = σn−l = 1 > σn−l+1 = · · · = σn � 1 (90)

We call Cases (i), (ii) and (iii) “singular values with two levels (simply 2L case)”, “logarithmically

uniform singular value case (simply logarithmic case)”, and “singular values with three levels (simply
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3L case)”, respectively. Note that if A is an integer matrix, then Eq. (89) may be satisfied only

approximately.

Then our problem is as follows:

Problem 2: Generate a variety of matrices satisfying Eqs. (88), (89) or (90) and making their

condition number as large as possible.

Readers may know that there is a standard tool (“randsvd”) in MATLAB to generate

Eq. (89). However due to the rounding a large condition number greater than 1016 are

usually not generated by “randsvd”. In this paper we aim 8 to generate integer matrices with

about 1016 < Cond(A) < 1032.

The subsequent results are partial solutions for Problem 2.

5.3 Matrix in consideration
To realize Eqs. (88), (89) and (90) we heuristically utilize the following special type of n×n matrices

A where n = 2m.

A =

[
1 B

0 1

]
(91)

Here 1 is a unit matrix of order m and B = [bij ] with |bij | ≤ μ is an m×m matrix9. Apparently A

satisfies det(A) = 1.

Then we have

A−1 =

[
1 −B

0 1

]
(92)

We have:

‖A‖∞ = ‖A−1‖∞ = 1 + ‖B‖∞ ≤ mμ+ 1 (|bij | ≤ μ) (93)

and therefore

Cond∞(A) = ‖A‖∞‖A−1‖∞ = ‖A‖2∞ ≤ (mμ+ 1)2 =
(n
2
μ+ 1

)2
(94)

Comparing this with Table I in Section 3, we guess that A in Eq. (91) may possibly realize near the

maximum condition number. Since

AAT =

[
1+BBT B

BT 1

]
, A−1(A−1)T =

[
1+BBT −B

−BT 1

]
, (95)

AAT and A−1(A−1)T have the same eigenvalues. Therefore we have:

Lemma 1: For the matrix A in Eq. (91) we have

λi =
1

λn−i
i.e., σi =

1

σn−i
(i = 1, 2, · · · ,m) (96)

Example 4:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 100 300 −600 200

0 1 0 0 500 −400 300 −200

0 0 1 0 100 300 −600 200

0 0 0 1 −800 900 −100 −700

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(97)

Cond∞(A) = 2274745.2

Singular values are σ1 = 1508.2, σ2 = 1030.0, σ3 = 392.81, σ4 = 1, σ5 = 1 = 1/σ4, σ6 = 0.0025458 =

1/σ3, σ7 = 0.0009708 = 1/σ2, and σ8 = 0.0006630 = 1/σ1. Note that in this example σ4 = σ5 = 1.

Concerning the singular values with σi = 1, see Lemma 2 in the subsequent subsection.
8Note that we cannot generate a matrix with extremely large condition number, i.e., Cond(A) > 1040 because of the

limitation due to the third and the fourth columns in Table I.
9We can derive similar results as Eqs. (92)–(115) below when B in Eq. (91) is a rectangular matrix but we will omit

it. For our purpose B should be an integer matrix but in the most part of this section B is assumed as a real matrix.
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5.4 Singular values of B and A
Let the singular value decomposition of B be

B = UΣBV
T (98)

where U and V are orthogonal matrices and

ΣB = diag [σB1, σB2, σB3, · · · , σBm] (99)

σB1 ≥ σB2 ≥ σB3 ≥ · · · ≥ σBm ≥ 0 (100)

We therefore have

ΣB = U−1B(V T )−1 (101)

and

A =

[
U 0

0 V

] [
1 ΣB

0 1

] [
UT 0

0 V T

]
(102)

AAT =

[
U 0

0 V

] [
1 ΣB

0 1

] [
UT 0

0 V T

] [
U 0

0 V

] [
1 0

ΣB 1

] [
UT 0

0 V T

]

=

[
U 0

0 V

] [
1+Σ2

B ΣB

ΣB 1

] [
UT 0

0 V T

]
(103)

Let

K ≡
[

1+Σ2
B ΣB

ΣB 1

]
(104)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + σ2
B1 · · · 0 σB1 · · · 0

0
. . . 0 0

. . . 0

0 · · · 1 + σ2
Bm 0 · · · σBm

σB1 · · · 0 1 · · · 0

0
. . . 0 0

. . . 0

0 · · · σBm 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(105)

We will calculate the eigenvalues of K, i.e., those of AAT . Let the characteristic polynomial of K be

φK(λ). Thus

φK(λ) = det(λ1−K)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ− (1 + σ2
B1) · · · 0 −σB1 · · · 0

0
. . . 0 0

. . . 0

0 · · · λ− (1 + σ2
Bm) 0 · · · −σBm

−σB1 · · · 0 λ− 1 · · · 0

0
. . . 0 0

. . . 0

0 · · · −σBm 0 · · · λ− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(106)

= det

([
λ− (1 + σ2

B1) −σB1

−σB1 λ− 1

]
⊕ · · · ⊕

[
λ− (1 + σ2

Bm) −σBm

−σBm λ− 1

])
(107)

=
m∏
i=1

[
λ2 − (2 + σ2

Bi)λ+ 1
]

(108)

Here ⊕ means the direct sum of matrices.

Therefore the eigenvalues of K are given as solutions of

λ2 − (2 + σ2
Bi)λ+ 1 = 0 (i = 1, 2, · · · ,m) (109)
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Let the solutions of Eq. (109) be

λi± =
2 + σ2

Bi ±
√

(2 + σ2
Bi)

2 − 4

2
=

2 + σ2
Bi ± σBi

√
σ2
Bi + 4

2
(i = 1, 2, · · · ,m) (110)

i.e.,

λi+ =
2 + σ2

Bi + σBi

√
σ2
Bi + 4

2
, λi− =

2 + σ2
Bi − σBi

√
σ2
Bi + 4

2
(111)

Note that

λ1+ ≥ λ2+ ≥ · · · ≥ λm+ ≥ 1 ≥ λm− ≥ λ(m−1)− ≥ · · · ≥ λ1−(> 0) (112)

λi+λi− = 1 (113)

The singular values σi (σ1 ≥ σ2 ≥ · · · ≥ σ2m) of A are given as

σi =
√

λi+ (i = 1, 2, · · · ,m) (114)

σi =
√

λ(2m−i+1)− (i = m+ 1,m+ 2, · · · , 2m) (115)

Eqs. (111), (114) and (115) show the relation between the singular values (= σi(i = 1, · · · , n)) of A

and those (= σBj)(j = 1, · · · , n) of B.

By the way we see from Eq. (111) that λi+ = λi− = 1 if and only if σBi = 0. We therefore have

Lemma 2: Let m0 be

m0 = m− rankB. (116)

Then the matrix A in Eq. (91) has 2m0 singular values with magnitude one.

5.5 Orthogonal matrices
In this paper integer matrices whose all rows (and all columns) are orthogonal each other play an

important role. So we will describe them briefly.

Consider first the s-th order Hadamard matrix Hs. As an example H4 is given as

H4 =

⎡
⎢⎢⎣

1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1

⎤
⎥⎥⎦ (117)

The rows of H4 are orthogonal each other, and the Euclidean norm of each row is
√
4(= 2). Therefore

H4 is not a so-called orthogonal matrix but is rewritten as

H4 =
√
4

⎡
⎢⎢⎢⎣

1√
4

1√
4

1√
4

1√
4

− 1√
4

1√
4

− 1√
4

1√
4

− 1√
4

− 1√
4

1√
4

1√
4

1√
4

− 1√
4

− 1√
4

1√
4

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎝= 2

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

−1
2

1
2 −1

2
1
2

−1
2 −1

2
1
2

1
2

1
2 −1

2 −1
2

1
2

⎤
⎥⎥⎦
⎞
⎟⎟⎠ (118)

In general we have

‖Hs‖2 =
√
s,

(
i.e., 1√

s
Hs is an orthogonal matrix

)
(119)

If a (real) matrix Θ is equal to a scalar multiple (κ) of an orthogonal matrix, we call it an “e-

orthogonal matrix with magnitude κ”. Here κ is not necessarily an integer as shown above

and “e” is an abbreviation of “extended”. Therefore by Eq. (119) Hs is an e-orthogonal matrix with

magnitude
√
s. If Θ1 and Θ2 are e-orthogonal matrices with magnitude κ1 and κ2, then Θ1Θ2 is an

e-orthogonal matrix with magnitude κ1κ2. If Θ1 and Θ2 are e-orthogonal and κ1 = κ2(= κ), then

Θ1 ⊕Θ2 is an e-orthogonal matrix with magnitude κ. From these operations we can obtain a various

e-orthogonal matrices. In the later applications it is desirable to generate a variety of e-orthogonal

matrices with small magnitude.
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We will show some examples of integer e-orthogonal matrices.

Θ1 =

[
3 4

−4 3

]
= 5

[
3/5 4/5

−4/5 3/5

]
(= 5U1) (120)

Θ2 =

⎡
⎣ 3 4 0

−4 3 0

0 0 5

⎤
⎦ = 5

⎡
⎣ 3/5 4/5 0

−4/5 3/5 0

0 0 5

⎤
⎦ (= 5U2) (121)

Θ3 = Θ1Θ2, etc (122)

Θ4 = Θ1 ⊕Θ2 (provided that κ1 = κ2) (123)

Here U1 and U2 mean (real) unitary matrices.

An orthogonal matrix can be generated systematically from the well-known Cayley transform as

follows: Let Q be a (real) skew-symmetric matrix, i.e., QT = −Q. Then

(Û ≡)(1+Q)(1−Q)−1
(
= (1−Q)−1(1+Q)

)
(124)

is an orthogonal matrix. If Q is an integer matrix, then Ûdet(1−Q) is an integer e-orthogonal matrix

but Û is not.

Example 5: Let

Q =

[
0 1

−1 0

]
, det(1−Q) = det

([
1 −1

1 1

])
= 2

Then

Θ = 2

[
1 1

−1 1

]
1

2

[
1 1

−1 1

]
=

[
0 2

−2 0

]

This is a rather trivial example.

Example 6: Let

Q =

[
0 2

−2 0

]
, det(1−Q) = det

([
1 −2

2 1

])
= 5

Then

Θ = (1+Q)(1−Q)−1det(1−Q) = 5

[
1 2

−2 1

]
1

5

[
1 2

−2 1

]
= 5

[ −3/5 4/5

−4/5 −3/5

]

is an integer e-orthogonal matrix with magnitude 5.

5.6 Realization of Cases (i)–(iii) in Eqs. (88), (89) and (90 )
5.6.1 Case (i) (2L Case)

The condition

σ1 = σ2 = σ3 = · · · = σm (≡ σmax)

in Eq. (88) implies by Eqs. (114) and (111) that

σB1 = σB2 = · · · = σBm(≡ σB) (125)

Thus we have:

Lemma 3: Eq. (88) can be realized by the matrix in Eq. (91) if and only if B can be written as

B = σBU (σB > 0; U : arbitrary real orthogonal matrix) (126)

i.e., B should be an e-orthogonal matrix. Of course σB|uij | ≤ μ have to be satisfied for Eq. (1). Note

from Eqs. (88) and (125) that β in Eq. (14) is given as

β = 2m+mσ2
B (127)

Therefore we have
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‖B‖2 = σB (128)

‖A‖2 = σ1 =

√
2 + σ2

B1 + σB1

√
σ2
B1 + 4

2
≈ σB (129)

‖A−1‖2 = σ2m = 1/σ1 (130)

Cond2(A) =
σ1

σ2m
= σ2

1 ≈ σ2
B1 (131)

Though B in Eq. (126) is a real matrix in general, an approximate integer matrix A can be easily

obtained as Lemma 4.

Lemma 4: We can find a matrix A of the form in Eq. (91) such that its singular values satisfy

Eq. (88). An algorithm to get an integer matrix from the prescribed Cond2(A) is as follows:

(i) Determine σB = σ1 =
√

Cond2(A) by Eq. (131).

(ii) Let U be an integer e-orthogonal matrices with magnitude κ.

(iii) Determine B as

Σ =
σB

κ
1, B = UI(Σ) (132)

Here I(X) means an integer matrix obtained from the matrix X by rounding. The rounding produces

some errors, but it is no problem for our application.

Since we can choose U arbitrarily, we can generate a variety of matrices A.

For your information we have

σB ≤ ‖B‖∞ <
√
mσB (133)

σB + 1 ≤ ‖A‖∞ ≤ √
mσB + 1 (134)

(σB + 1)2 ≤ Cond∞(A) ≤ (
√
mσB + 1)2 (135)

cf. Eqs. (10) and (11)

On the other hand we have from Table I in Section 3:

Cond2(A) ≤ 2β

n
=

2(2m+mσ2
B)

n
= 2 + σ2

B. (136)

Comparing Eq. (131) with Eq. (133), we see that in this case Eq. (126) gives nearly maximum

condition number for A in Eq. (91).

5.6.2 Case ii) (Logarithmic Case)

We will consider the realization of Eq. (89). Let the singular value decomposition os B as

B = UΣV T (U and V are orthogonal matrices) (137)

Σ = diag [σB1, σB2, · · · , σBm], σB1 > σB2 > · · · > σBm > 1 (138)

From the first m equations of Eq. (89) and Eq. (111) we have

2 + σ2
B1 + σB1

√
σ2
B1 + 4 = r2

(
2 + σ2

B2 + σB2

√
σ2
B2 + 4

)

= r4
(
2 + σ2

B3 + σB3

√
σ2
B3 + 4

)
= · · ·
= r2(m−1)

(
2 + σ2

Bm + σBm

√
σ2
Bm + 4

)

= r2m
(
2 + σ2

Bm − σBm

√
σ2
Bm + 4

)
(139)

The last equation in Eq. (139) is derived from λm+ = r2λm− (See Eq. (112). Equation (139) implies

m equations, while there are m+1 variables (i.e., σBi(i = 1, · · · ,m) and r). So one of these variables

can be fixed and we can solve Eq. (139) for other m variables. Since
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Cond2(A) =
σ1

σ2m
= σ2

1 (140)

and

σ1 =

√
2 + σ2

B1 + σB1

√
σ2
B1 + 4

2
(141)

we regard σB1 as a known and the others as unknowns.

For simplicity we assume in practical case that

σBi > 2 (i = 1, 2, · · · ,m) (142)

Then

2 + σ2
Bi + σBi

√
σ2
Bi + 4 ≈ 2σ2

Bi (143)

holds.

The first (m− 1) equations of Eq. (139) are approximately written as follows:

2σ2
B1 = 2r2σ2

B2 = 2r4σ2
B3 = 2r6σ2

B4 = · · · = 2r2(m−1)σ2
Bm (144)

The last equation of Eq. (139) can be rewritten as

2 + σ2
Bm + σBm

√
σ2
Bm + 4 = r2

(
2 + σ2

Bm − σBm

√
σ2
Bm + 4

)
(145)

from which we have

r2 =
2 + σ2

Bm + σBm

√
σ2
Bm + 4

2 + σ2
Bm − σBm

√
σ2
Bm + 4

=
(2 + σ2

Bm + σBm

√
σ2
Bm + 4)2(2 + σ2

Bm)2 − σ2
Bm(σ2

Bm + 4)

=
(2 + σ2

Bm + σBm

√
σ2
Bm + 4)2

4
≈ σ4

Bm (146)

We therefore have

r2 ≈ σ4
Bm (147)

Substituting the above into Eqs. (144), we have

σ2
B1 = σ4

Bm · σ2
B2 = σ8

Bm · σ2
B3 = σ12

Bm · σ2
B4 = · · · = σ

4(m−1)
Bm · σ2

Bm (= σ4m−2
Bm ) (148)

from which we have

σBm = σ
1

2m−1

B1 (149)

σB2 =
σB1

σ2
Bm

=
σB1

σ
2

2m−1

B1

= σ
1− 2

2m−1

B1 = σ
2m−3
2m−1

B1 (150)

σB3 =
σB1

σ4
Bm

=
σB1

σ
4

2m−1

B1

= σ
1− 4

2m−1

B1 = σ
2m−5
2m−1

B1 (151)

Similarly we have in general

σBi = σ
2m−2i+1

2m−1

B1 (i = 2, 3, · · · ,m− 1,m) (152)

Thus we can determine σBi (i = 2, · · · ,m) so that Eq. (89) holds approximately.

Lemma 5: We can find a matrix A of the form in Eq. (91) such that its singular values satisfy

Eq. (89). An algorithm to get an integer matrix from the prescribed Cond2(A) is as follows:

(i) Determine σB1 = σ1 =
√

Cond2(A).

(ii) Determine σBi from Eq. (152).
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Fig. 1. Fig. 1 i-σi plot (i = 1, 2, · · · , 16) for Example 7.

(iii) Let U and V be an integer e-orthogonal matrices with magnitudes κ1 and κ2, respectively.

(iv) Determine B as

Σ =
1

κ1κ2
diag [σ1, σ2, · · · , σm], B = U (I(Σ))V T (153)

Since we can choose U and V arbitrarily, we can generate a variety of matrices A. Rounding errors

due to I(Σ) makes slight degradation from Eq. (89), but it is no problem for our application.

Example 7: Let n = 16, κ1 = κ2 = 2
√
2, and Cond2(A) = 1016.

So we have σ1 =
√
Cond2(A) = 108. Using Eq. (149), we find σBi and then B and A. Then the

singular values of A are as follows:

σ1 = 1.0 · 108, σ2 = 8.57696 · 106, σ3 = 7.35642 · 107, σ4 = 6.3096 · 104, σ5 = 5.4117 · 103,
σ6 = 4.6416 · 102, σ7 = 3.9811 · 10, σ8 = 3.4145, σk = 1/σn−k+1(k = m+ 1, · · · , n)

The relation i and σi are plotted in Fig. 1. As seen, the singular values distributed in very good

linearity. Note that the central part of the curve deviates slightly from the linearity. This is because

the rounding error is large when σBi is small. The condition number of A is given as 1.0 · 1016, as is
expected.

5.6.3 Case iii)(3L Case)

In order to realize 3L Case (Eq. (90), we set

B = G1DGT
2 (154)

where G1 and G2 are m× l submatrices composed of the first l columns of any e-orthogonal matrices

with magnitude κ1 and κ2 and D is a positive definite integer diagonal matrix, i.e.,

D = diag [d1, d2, · · · , dl] (155)

If we suppose that

d1 = d2 = · · · = dl (156)

then we can realize Eq. (90).

If we choose di as arbitrary positive values, then

σ1 ≥ σ2 ≥ · · · ≥ σl 	 1, σl+1 = · · · = σn−l = 1, 1 	 σn−l+1 ≥ · · · ≥ σn (157)

can be realized.
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6. Conclusions
This paper studies the generation of an integer ill-conditioned matrix A = [aij ] with |aij | ≤ μ. First

some upper bounds of the condition number of A are shown in terms of μ, Σi,ja
2
ij , and n.

Then an innovative generation method for extremely ill-conditioned integer matrices ia shown. This

method is superior to the original Rump’s method in some respects. i.e., the former (i) has a simpler

algorithm, and (ii) can generate more variety of ill-conditioned matrices than the latter.

The method as well as the previous ones [7–10] has a serious drawback. That is, the inverse A−1

is very close to a matrix with rank one. So finally in order to solve the above problems we propose a

desirable singular value distribution of ill-conditioned benchmark matrices and give partial solutions

to them.

Some of the upper bounds given in this paper seem much overestimated. So more tight upper

bounds shall be further studied in the future.
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