
Accurate Sum and Dot Product with Applications

Takeshi Ogita and Siegfried M. Rump and Shin’ichi Oishi

Abstract— In a recent paper the authors presented a new
and very fast algorithm for accurate computation and inclu-
sion of the sum and dot product of floating point numbers.
In this paper we show that the algorithms can be used to
compute a very accurate inclusion of the solution of systems
of linear equations. As a basic building block, accurate solution
of linear equations has applications in very many areas.

I. ACCURATE SUMMATION

Let F denote the set of floating point numbers, and Fn,
Fn×n the set of vectors, matrices over those, respectively.
For x ∈ Fn, the computation of an accurate approximation
of

∑
xi is a most basic task in numerical analysis. Accord-

ingly, there is a huge number of papers dealing with this
problem, and Higham [5] denotes an entire chapter to it.
For bibliographical references see [5], [10].

Recently, the authors of this paper presented a new and
very fast method for this problem and for the computation
of dot products [10]. The approach uses only basic floating
point operations, no special architecture and no special
operations. The speed of the new approach stems from the
facts that

• no sorting input data is necessary,
neither

i) by absolute value nor
ii) by exponent,

• the algorithms contain not a single
branch,

• no extra precision besides working
precision is necessary,

• no access to mantissa or exponent
is necessary.

(1)

That makes the algorithms not only fast but also widely
applicable because they are executable on every standard
hardware. To our knowledge all existing algorithms fail to
satisfy one or more of the listed properties. However, each
is important for a really fast algorithm.

The new methods are based on so-called error-free trans-
formations. Denote by fl(·) the result of an expression
where every operation is executed in floating point in some
given working precision. It is well known that floating point

published in Proceedings of 2004 IEEE International Symposium on
Computer Aided Control Systems Design, Taipei, pages 152155, 2004

Graduate School of Science and Engineering, Waseda University, 3-4-1
Okubo Shinjuku-ku, Tokyo 169-8555, Japan, ogita@waseda.jp

Institut für Informatik III, Technische Universität Hamburg-
Harburg, Schwarzenbergstraße 95, Hamburg 21071, Germany,
rump@tu-harburg.de

Department of Computer Science, School of Science and Engineer-
ing, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555,
Japanoishi@waseda.jp

operations according to the IEEE 754 floating point standard
[6] are of maximum accuracy, that is

|a ◦ b− fl(a ◦ b)| ≤ eps |a ◦ b|
and

|a ◦ b− fl(a ◦ b)| ≤ eps |fl(a ◦ b)|
for all a, b ∈ F and for ◦ ∈ {+,−, ·, /} provided no
underflow occurs. Here eps denotes the relative rounding
error unit. For IEEE 754 double precision it is eps =
2−53 ∼ 1.2 · 10−16. In case of underflow, a tiny constant of
size 2−1073 has to be added to the estimations.

It is known that for every pair of floating point numbers
a, b ∈ F, the error of the sum x := fl(a + b) is again a
floating point number, that is for all a, b ∈ F there exist
x, y ∈ F with

x := fl(a + b) and x + y = a + b. (2)

The transformation (a, b) → (x, y) can be regarded as an
error-free transformation of the pair (a, b) into the best
floating point approximation x of the sum and into the
exact error y. Fortunately, there is a very fast algorithm
to compute (x, y) due to Knuth [7]:

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b + z))

Algorithm 1: Error-free transformation of the sum of two
floating point numbers
Note that this algorithm has all properties listed in (1); it
uses solely ordinary floating point addition and subtraction.
An alternative approach is based on an algorithm by Dekker
[3]:

function [x, y] = TwoSum1(a, b)
x = fl(a + b)
if |a| ≥ |b|

y = fl(b− (x− a))
else

y = fl(a− (x− b))

Algorithm 2: Error-free transformation of sum with
branch
If one counts the branch as well as every addition or
subtraction as one flop, then the Algorithm 1 requires 6
flops compared to 4 flops for Algorithm 2. The results of
both algorithms are always identical. One might expect a
50% slower performance of Algorithm 1. As we will see,
due to the fact that branches have very negative effects on
compiler optimization, the opposite is the case.

Simple floating point operations are of maximum ac-
curacy in IEEE 754. However, composite operations may

· · ·p1

p2

π2

p3

q2 q3

π3 πn−1

pn

πn
TwoSum TwoSum

qn

TwoSum

Fig. 1. Cascaded error-free transformation

bear an arbitrarily large relative error due to the limited
computing precision. To compute the sum of n numbers
pi, the simple idea in [10] is to cascade Algorithm 1. This
looks as follows.

Each box represents an application of Algorithm 1. So
(2) implies p1 + p2 = π2 + q2, π2 + p3 = π3 + q3, etc., so
that

n∑

i=1

pi = πn +
n∑

i=2

qi. (3)

Also note that πn = fl(
∑n

i=1 pi), so that πn is the result of
ordinary floating point summation, and the qi represent the
exact error of that approximation.

In [10] it is shown that adding up the errors in ordinary
floating point and adding this to πn yields a result of the
same quality as if computing in quadruple precision. The
algorithm is as follows.

function res = Sum1(p)
for i = 2 : n

[pi, pi−1] = TwoSum(pi, pi−1)

res = fl
((

n−1∑
i=1

pi

)
+ pn

)

Algorithm 3: Cascaded summation

Theorem 1: Suppose Algorithm 3 (Sum1) is applied to
arbitrary floating point numbers pi ∈ R, 1 ≤ i ≤ n. Define
s :=

∑n
i=1 pi and set S :=

∑n
i=1 |pi|. Denote by res

the result of Algorithm 3. Then, also in the presence of
underflow,

|res− s| ≤ eps |s|+ c2S, (4)

where eps denotes the relative rounding error unit and c :=
neps /(1− neps).

The proof is given in [10]. If the ordinary summation∑n
i=1 pi would be executed in quadruple precision and the

result rounded to double precision, then essentially the best
achievable error estimate would be like (4).

We mention that the cascade presented in Fig. 1 can be
staggered so that the accuracy of the final result is as if
computed in k-fold precision. For details see [10].

Algorithm 3 can also be implemented using Algorithm 2
(TwoSum1) instead of Algorithm 1 (TwoSum). The latter
costs 6 flops compared to 4 flops for the former counting
the if-statement as one flop. Following are computing times
in microseconds for the summation of randomly generated
vectors of different lengths.

Instead of a decrease of 50% in performance when using
TwoSum we observe an increase in performance of about

TABLE I
COMPUTING TIMES FOR ALGORITHM 3 USING TwoSum1 OR TwoSum

Algorithm 3 with
n TwoSum1 TwoSum

100 0.90 0.62
10000 88 61

1000000 8844 6625

that size. It shows the effect of the lack of optimal code
optimization.

II. ACCURATE DOT PRODUCTS

For vectors x, y ∈ Fn, the dot product xT y is
∑n

i=1 xiyi.
In order to apply the accurate summation algorithms pre-
sented in the last section, all we need is a representation of
the products xiyi as the sum of two floating point numbers.
A first idea is to split xi and yi in two halves and use
all cross products. However, the usual splitting of a 53-bit
double precision number would result in a 26-bit and a 27-
bit part, so that one cross product could be 54 bits long and
not representable in double precision.

Amazingly, there is an algorithm by Dekker [3] splitting
a 53-bit double precision number without error into two
26-bit numbers.

function [x, y] = Split(a)
factor = 227 + 1
c = fl(factor · a)
x = fl(c− (c− a))
y = fl(a− x)

Algorithm 4: Error-free split of a floating point number into
two parts

It seems absurd that a 53-bit number can be split into two
26-bit numbers. However, the trick is that one sign bit is
used for the splitting. Note also that no individual access to
mantissa or exponent of the input a is necessary, standard
floating point operations suffice.

Algorithm 4 satisfies x + y = a for all a ∈ F provided
no underflow occurs. With this we can formulate an error-
free transformation of a product a · b of two floating point
numbers a, b ∈ F into the sum of two floating point numbers
x + y = a · b with x, y ∈ F and x = fl(a · b). The algorithm
due to Veltkamp [3] is as follows.

function [x, y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x− a1 · b1)− a2 · b1)− a1 · b2))

Algorithm 5: Error-free transformation of the product of
two floating point numbers

With this we have all ingredients to present a fast and
accurate algorithm for the dot product xT y.

function res = Dot1(x, y)
[p, s] = TwoProduct(x1, y1)
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl(s + (q + r))

res = fl(p + s)

Algorithm 6: Dot product in doubled working precision

The result of Algorithm 6 satisfies an error estimate as
if computed in quadruple precision. Note however that all
presented algorithms satisfy all properties listed in (1). In
[10] the following is proved.

Theorem 2: Let xi, yi ∈ F, 1 ≤ i ≤ n, be given and
denote by res the result of Algorithm 6 (Dot1). Then, if no
underflow occurs,

|res− xT y| ≤ eps |xT y|+ c2|xT | |y|,
where eps denotes the relative rounding error unit and c :=
neps /(1− neps).

We mention that as in the case of summation a cascaded
algorithm can be used to calculate an approximation to xT y
as if computed in k-fold precision. We also note that there
is a beautiful relation to the condition number of the dot
product, namely

∣∣∣∣
res− xT y

xT y

∣∣∣∣ ≤ eps +
1
2
c2 · cond (xT y).

This shows the maximum size of the relative error of res
[10].

III. APPLICATIONS

Several applications of our algorithm are now in order.

A. Application to linear systems

There are a number of so-called self-validating algorithms
to compute an inclusion of the solution of a system of linear
equations Ax = b [9], [13], [1], [11]. One example uses the
so-called Krawczyk operator [8]. Let A ∈ Rn×n, b ∈ Rn

be given as well as x̃ ∈ Rn, R ∈ Rn×n and X ∈ IRn. Here
IRn denotes the set of n-dimensional interval vectors. For
details concerning intervals and interval operations cf. [9].
Assume

R · (b−Ax̃) + (I −RA) ·X ⊆ int(X), (5)

where all operations are interval operations, I denotes the
identity matrix and int(X) denotes the interior of X . Then
it follows [13] that
• A and R are nonsingular, and
• A−1b ∈ x̃ + X .

Note that there are no additional assumptions on R, x̃ or
X; the assertion is true in any case. In order to satisfy
assumption (5), R should be chosen to be an approximate
inverse of A and x̃ to be an approximate solution of Ax = b.

TABLE II
RESULTS WITHOUT AND WITH RESIDUAL ITERATION

condition number 105 109 1013

max. rel. err. x̃ 4.7e-12 2.8e-08 1.9e-04
max. rel. err. xk 1.8e-16 1.8e-16 1.8e-16
number of iterations 3 3 5
ratio computing time 1.38 1.38 1.65

We stress again that no explicit assumption on that need to
be verified.

There is much to say haw to determine an appropriate X
and how to build an algorithm for computing an inclusion
of A−1b. The interested reader is referred to [12]. An
easy-to-use and public domain Matlab toolbox for interval
computations is INTLAB [14]. Included in there is also a
self-validating algorithm verifylss for linear systems.
It also covers over- and underdetermined as well as sparse
linear systems.

The accuracy of an approximate solution x̃ of Ax = b
can be improved by a residual iteration. This requires an
accurate calculation of the residual Ax̃ − b. It is known
that an approximate solution accurate to the last bit can
be calculated if the residual Ax̃ − b can be calculated in
quadruple precision (with result rounded to double) [5]. But
exactly this is done by Algorithm 6.

Assume an approximate solution x̃ ≈ A−1b has been
computed using an LU -decomposition with partial pivoting.
For y ∈ Rn denote by solve(y) the approximate solution of
the linear system Ax = y using the previously computed
LU -decomposition. This solution process costs O(n2) op-
erations. Then

x0 = x̃;
xk+1 = xk + solve(b−Axk) for k = 1, 2, . . .

represents a residual iteration. Suppose the residual b−Axk

is computed using Algorithm 6. Then the following table
shows the number of iterations and achieved maximum
relative error for 1000 × 1000 linear systems of different
condition numbers with averaged results of 100 randomly
generated linear systems. We display the maximum rela-
tive error of the initial approximative x̃ without residual
correction. The additional computing time is determined
by the number of residual iterations, whereas one iteration
costs only O(n2) operations. Therefore the additional costs
to achieve high accuracy are moderate. In the last row of
Table II we display the ratio of computing time with residual
refinement divided by the one without residual refinement.
The additional cost depend on the condition number and
is between 30 and 70 per cent. For larger dimensions the
additional cost decreases.

The same principle can be applied to the verified inclu-
sion of a linear system Ax = b. For that purpose we need
an inclusion, i.e. lower and upper bounds for the residual
Ax̃− b. This is performed by the following modification of

TABLE III
ACCURACY OF INCLUSION AND RATIO COMPUTING TIME TO PURE

FLOATING- POINT

condition number 105 109 1013

max. rel. err. of Y 2.5e-09 1.5e-05 1.2e-01
ratio computing time 6.96 6.96 7.26

Algorithm 6.

function [res, err] = Dot1Err(x, y)
[p, s] = TwoProduct(x1, y1)
err = |s|
for i = 2 : n

[h, r] = TwoProduct(xi, yi)
[p, q] = TwoSum(p, h)
s = fl(s + (q + r))
err = fl(err + (|q|+ |r|))

res = fl(p + s)
err = fl(err/(1− (n + 2)eps))

Algorithm 7: Dot product in doubled working precision
with error bound

It follows [10] that the interval res±err is a valid inclusion
of the exact value of the dot product xT y. Note that again
only pure floating point operations are used and that the
algorithm satisfies all properties listed in (1).

Using Algorithm 7 we can provide an inclusion Y :=
x̃+X based on (5) of high accuracy. It is mainly based on
the previously mentioned residual iteration for x̃ and on the
accurate calculation of bounds for the residual b − Ax̃ by
Algorithm 7. The following table shows the accuracy of the
achieved inclusion and the ratio in computing time T/t for
several condition numbers. Here T denotes the computing
time to compute a validated inclusion Y , and t denotes the
time to compute an approximation by DGESV, the BLAS
[4] routine for solving a linear system. Both algorithms
are executed with residual refinement. Again we take the
average over 100 randomly generated samples.

There is a factor in computing time of about 7 we have to
pay. However, the result by the self-validating algorithm is
verified to be correct. That means, provided the hardware
and the architecture works correctly, the linear system is
proved to be solvable (i.e. the system matrix A is not
singular) and the computed interval vector Y is proved
to contain the exact solution A−1b of the linear system.
Using the newly developed algorithms for fast and accurate
computation of dot products the achieved inclusion is almost
of maximum accuracy.

B. Linear inequalities in control theory

Many design problems of control systems reduce to a
problem of solving the following linear inequality

α1A1 + α2A2 + · · ·+ αnAn + A0 < 0. (6)

Here, Ai’s are n×n symmetric matrices and αi’s are scalars
[2]. For a given set of αi’s, the left hand side of inequality
(6) is reducing to nothing but the problem of calculating
dot product.

IV. CONCLUSION

We presented fast algorithms for the accurate computa-
tion of sums and dot products. In combination with self-
validating methods they allow to compute verified inclu-
sions of the solution of linear systems of high quality. The
proof of correctness as well as the high accuracy of the
results may be important in sensitive areas such as certain
control problems.

REFERENCES

[1] G. Alefeld and G. Mayer. Interval Analysis: Theory and Applications.
J. Comput. Appl. Math., 121(1-2):421–464, 2000.

[2] S. Boyd, L. El GThaoui, E. Feron, and V. Balakrishnan. Linear
Matrix Inequalities in System and Control Theory, volume 15. SIAM,
Philadelphia, PA, 1994.

[3] T.J. Dekker. A Floating-Point Technique for Extending the Available
Precision. Numerische Mathematik, 18:224–242, 1971.

[4] J.J. Dongarra, J.J. Du Croz, I.S. Duff, and S.J. Hammarling. A set
of level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Software, 16:1–17, 1990.

[5] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM
Publications, Philadelphia, 2nd edition, 2002.

[6] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic,
1985.

[7] D.E. Knuth. The Art of Computer Programming: Seminumerical
Algorithms, volume 2. Addison Wesley, Reading, Massachusetts,
second edition, 1981.

[8] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen
mit Fehlerschranken. Computing, 4:187–201, 1969.

[9] A. Neumaier. Interval Methods for Systems of Equations. Ency-
clopedia of Mathematics and its Applications. Cambridge University
Press, 1990.

[10] T. Ogita, S.M. Rump, and S. Oishi. Fast and Accurate Computation
of Scalar Product. to appear, 2004.

[11] S. Oishi and S.M. Rump. Fast verification of solutions of matrix
equations. Numer. Math., 90(4):755–773, 2002.

[12] S.M. Rump. Verification Methods for Dense and Sparse Systems of
Equations. In J. Herzberger, editor, Topics in Validated Computations
— Studies in Computational Mathematics, pages 63–136, Elsevier,
Amsterdam, 1994.

[13] S.M. Rump. Self-validating methods. Linear Algebra and its
Applications (LAA), 324:3–13, 2001.

[14] S.M. Rump. INTLAB - Interval Laboratory, a Matlab
toolbox for verified computations, Version 3.1, 2002.
http://www.ti3.tu-harburg.de/rump/intlab/
index.html.

