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VERIFIED SOLUTIONS OF LINEAR SYSTEMS WITHOUT DIRECTED ROUNDING ∗

TAKESHI OGITA † , SIEGFRIED M. RUMP ‡ , AND SHIN’ICHI OISHI §

Abstract. This paper is concerned with the accuracy of an approximate solution to the exact solution of linear systems

including the verification of nonsingularity of the system matrix. There are a number of self-validating algorithms to compute

guaranteed error bounds on approximate solutions with directed rounding using the rounding mode controlled instructions

defined by the IEEE 754 standard for floating-point arithmetic. In this paper we will propose a verification method without

using directed rounding. That means, guaranteed error bounds on approximate solutions can be calculated only in round-to-

nearest mode. Numerical results will be presented showing properties and limits of the proposed verification method.
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1. Introduction. We are concerned with the problem of verifying the accuracy of an approximate
solution x̃ of a linear system

Ax = b,(1.1)

where A is a real n × n matrix and b is a real n-vector. If A is nonsingular, there exists a unique exact
solution x∗ := A−1b and we are aiming on calculating some κ ∈ R with

‖x̃ − x∗‖∞ ≤ κ.(1.2)

We also aim on verifying nonsingularity of A by the method. There are a number of self-validating algorithms
(cf., for example, [9, 11]) to verify the nonsingularity of A and to compute some κ satisfying (1.2). These
algorithms use directed roundings defined in IEEE 754 standard for floating-point arithmetic [1].

Most of today’s digital computers support the IEEE 754. Using the rounding mode controlled instruc-
tions defined in the IEEE 754, self-validating algorithms have been implemented in numerical libraries, e.g.
ACRITH-XSC [13], C-XSC [6], PROFIL/BIAS [7] and INTLAB [10]. Among them INTLAB, which is de-
veloped by the second author, is a fast Matlab toolbox. Using INTLAB, we can easily switch the rounding
mode by the setround function. The setround function has already been a built-in function as

system dependent(’setround’,mode)

on Matlab version 5.3 or later [12] under Windows OS. A good introduction into INTLAB is [2].

However, we sometimes encounter situations where the rounding mode in floating-point arithmetic cannot be
switched in the verification process because of the compiler or programming language in use. For example,
most of FORTRAN77 compilers (e.g. g77 in GNU Compiler Collection) do not support it. Moreover, the
lack of floating-point arithmetic in Java has been pointed out by Kahan and Darcy [4]. In such situations,
we are forced to use partially the object files created by a different compiler which can realize the switch
of rounding mode. For example, one may use the Java Native Interface (JNI) to handle those situations.
Furthermore, the implementation of directed rounding is still not standardized even if the compiler in use

∗This research was partially supported by Core Research for Evolutional Science and Technology (CREST) program, Japan

Science and Technology Agency (JST).
†CREST, JST and Faculty of Science and Engineering, Waseda University, Tokyo 169-0072, Japan (ogita@waseda.jp).
‡Institut für Informatik III, Technische Universität Hamburg-Harburg, Schwarzenbergstraße 95, Hamburg 21071, Germany

(rump@tu-harburg.de).
§Faculty of Science and Engineering, Waseda University and CREST, JST, Tokyo 169-0072, Japan (oishi@waseda.jp).

1



supports it. We often use the different compilers on several platform, so that the way to call the function
of controlling the rounding mode is also different. Therefore, programs using directed rounding become less
portable. To maintain the portability with FORTRAN77, the INTLIB [5], which is developed by Kearfott
et al., simulates the directed rounding by multiplying computed results by (1 ± ε) for an appropriate ε ≥ 0.
However, such simulations of the directed rounding sometimes slow down computations significantly.

A main point of this paper is to show that we can verify the nonsingularity of A and to compute an error
κ satisfying (1.2) without directed rounding. We suppose that all floating-point operations are executed in
round-to-nearest mode. Under such condition, we will propose a fast self-validating algorithm for linear sys-
tems. Moreover, it is intended to achieve the computational speed using a priori error estimates. Numerical
results will be presented showing properties and limits of the proposed verification method.

2. Floating-point arithmetic. We start by stating some well-known properties on floating-point
numbers. Let R denote the set of real numbers. Let F be a set of floating-point numbers abiding by IEEE
754 standard. It is well known that F is symmetric, i.e., x ∈ F ⇒ −x ∈ F, so that |x| is exact for x ∈ F.
Throughout this paper, we assume that the operations in fl (·) is all executed by floating-point arithmetic in
given rounding mode (default is round-to-nearest). Throughout the paper we assume that no overflow occurs.
This usually leads to a premature stop of calculations, so we do not have to check for this. Furthermore, we
assume that the system in this paper supports the gradual underflow, which is a requirement of IEEE 754.

Let u and u be the unit roundoff and the underflow unit, respectively (especially, u = 2−53 and u = 2−1074

in IEEE 754 double precision). Here, we denote the smallest (positive) normalized floating-point number by
uN := u · u−1. For a, b ∈ F

a + b = (1 + ε)fl (a + b) for |ε| ≤ u, and(2.1)

a · b = (1 + δ)fl (a · b) + η for |δ| ≤ u and |η| ≤ u.(2.2)

For a, b ∈ F, it holds that

(1 − u) |fl (a ◦ b)| ≤ |a ◦ b| ≤ (1 + u) |fl (a ◦ b)| for ◦ ∈ {+,−}(2.3)

(1 − u) |fl (a ◦ b)| − u ≤ |a ◦ b| ≤ (1 + u) |fl (a ◦ b)| + u for ◦ ∈ {·, /}(2.4)

including possible underflow. Obviously, it also holds for ◦ ∈ {·, /} that

|a| ◦ |b| ≤ (1 + u)max(fl (|a| ◦ |b|) ,uN).(2.5)

For later use, we cite here some definitions.

Definition 2.1. The constants γn and γ̃n for n ∈ N are defined by

γn :=
nu

1 − nu
and γ̃n := fl

(
nu

1 − nu

)
.(2.6)

When using γn and γ̃n, we implicitly assume that nu < 1.

Definition 2.2. The constants ζn for n ∈ N is defined by

ζn := (1 + u)n − 1.(2.7)

We present some fundamental properties relating u, u, γn, γ̃n and ζn. Some of them have already been
presented in Higham’s excellent book [3, e.g. Lemma 3.3].
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Lemma 2.3. Let u and u be the unit roundoff and the underflow unit. Let γ̃n and ζn for n ∈ N be as in
Definition 2.1 and Definition 2.2. The following relations hold:

(1 + u)n ≤ 1
(1 − u)n

≤ 1
1 − nu

(2.8)

(1 + u)pζn ≤ ζn+p(2.9)

ζn + ζp ≤ ζn+p(2.10)

ζn ≤ γ̃n(2.11)

Moreover, the following relations hold for a ∈ F:

|a|
1 − nu

≤ fl
(

max(|a| ,uN)
1 − (n + 1)u

)
(2.12)

ζn |a| ≤ fl (γ̃n+1 max(|a| ,uN))(2.13)

where uN := u · u−1. In particular, for uN ≤ |a| ∈ F

|a|
1 − nu

≤ fl
( |a|

1 − (n + 1)u

)
(2.14)

ζn |a| ≤ fl (γ̃n+1 |a|) .(2.15)

Proof. The proof of Lemma 2.3 is deferred to Appendix A.

Some of the usual formulas for γn apply to ζn like (2.9) and (2.10). We can check more. However, it seems
not true that

ζn

(1 − u)m
≤ ζm+n.

For a real matrix A = [aij ], we denote by |A| the nonnegative matrix consisting of entrywise absolute values
|aij |. For a real vector x, we apply this definition similarly. We denote the maximum norm of a real n-vector
x = (x1, . . . , xn)T and a real m × n matrix A = [aij ] by

‖x‖∞ := max
1≤i≤n

|xi| and ‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij | ,

respectively.

The following is a well-known result for floating-point computation of a summation.

Lemma 2.4 (e.g. Higham [3]). For p ∈ F
n, the following inequality holds including the presence of underflow:∣∣∣∣∣fl

(
n∑

i=1

pi

)
−

n∑
i=1

pi

∣∣∣∣∣ ≤ γn−1

n∑
i=1

|pi| .(2.16)

Lemma 2.4 can slightly be improved into Lemma 2.5 by introducing a new concept ζn := (1+u)n−1 instead
of γn.

Lemma 2.5. For p ∈ F
n, the following inequality holds including the presence of underflow:∣∣∣∣∣fl

(
n∑

i=1

pi

)
−

n∑
i=1

pi

∣∣∣∣∣ ≤ ζn−1

n∑
i=1

|pi| .(2.17)
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We also present the following lemma for dot product.

Lemma 2.6. For x, y ∈ F
n, the following inequality holds including the presence of underflow:∣∣fl (xT y

)− xT y
∣∣ ≤ ζn|xT | |y| + nu.(2.18)

Note that (2.17) and (2.18) are independent of the order of execution of floating-point additions and multi-
plications. From this, we have the following theorem.

Theorem 2.7. For x, y ∈ F
n, the following inequality holds including the presence of underflow:∣∣fl (xT y

)− xT y
∣∣ ≤ fl

(
γ̃2n+1|xT | |y|)+ (n + 1)u.(2.19)

For later use, we present some relations between exact and floating-point vector and matrix operations.

Lemma 2.8. Let x, y ∈ F
n and A ∈ F

m×n. Let e = (1, . . . , 1)T ∈ R
n. Then the following relations hold:

n∑
i=1

|xi| ≤ (1 + u)n−1fl

(
n∑

i=1

|xi|
)

(2.20) ∣∣xT
∣∣ |y| ≤ (1 + u)nfl

(∣∣xT
∣∣ |y|)+ nu(2.21)

‖x‖∞ = fl (‖x‖∞)(2.22)

|A| e ≤ (1 + u)n−1fl (|A| e)(2.23)

|A| |x| ≤ (1 + u)nfl (|A| |x|) + nu · e(2.24)

‖A‖∞ ≤ (1 + u)n−1fl (‖A‖∞) .(2.25)

Proof. We prove only (2.25), the other statements follow similarly. By definition of the maximum norm we
have

‖A‖∞ = ‖|A| e‖∞ .

By (2.22) and (2.23), it follows that

‖|A| e‖∞ ≤ ∥∥(1 + u)n−1fl (|A| e)∥∥∞ = (1 + u)n−1 ‖fl (|A| e)‖∞ = (1 + u)n−1fl (‖|A| e‖∞) ,

which implies (2.25).

3. Verification theory. We present in the following a fundamental theorem to calculate the error
bounds on approximate solutions of systems of linear equations.

Theorem 3.1 (e.g. Oishi and Rump [9]). Let A be a real n × n matrix and b an real n-vector. Let x̃ be an
approximate solution of Ax = b and R a preconditioner of A. If

‖RA − I‖∞ < 1(3.1)

for I denoting the n × n identity matrix, then A is nonsingular and

∥∥x̃ − A−1b
∥∥
∞ ≤ ‖R(Ax̃ − b)‖∞

1 − ‖RA − I‖∞
.(3.2)
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A good choice of R may be an approximate inverse of A. We want to calculate an upper bound on ‖RA − I‖∞
and on ‖R(Ax̃ − b)‖∞ such that α, β ∈ F and

‖RA − I‖∞ ≤ α and ‖R(Ax̃ − b)‖∞ ≤ β,(3.3)

respectively. If α < 1, then A is nonsingular and

∥∥x̃ − A−1b
∥∥
∞ ≤ β

1 − α
.(3.4)

After having α and β, we can calculate the error bound as follows:

Theorem 3.2. Let A, b and x̃ be as in Theorem 3.1, and let α and β satisfy (3.3) and α, β ∈ F. If α < 1,
then A is nonsingular and

∥∥x̃ − A−1b
∥∥
∞ ≤ fl

((
max(β,uN)

1 − α

)
/(1 − 3u)

)
(3.5)

including the possible underflow.

Proof. By (2.3), (2.5) and (2.8), it follows that

β

1 − α
≤ β

(1 − u) · fl (1 − α)
≤ 1 + u

1 − u
· fl
(

max(β,uN)
1 − α

)
≤ 1

(1 − u)2
· fl
(

max(β,uN)
1 − α

)
.

From (2.8) and (2.12), we have the desired formula (3.5).

From (3.5), we see that any value α less than 1/2, say, is sufficient for a reasonable error estimation. So not
too much effort must be spent on estimating α. On the other hand, β is directly contributing to the quality
of the estimation, so that we should especially pay attention to the estimation for β.

4. Standard estimation. In this section, we present self-validating algorithms to calculate an upper
bound on

∥∥x̃ − A−1b
∥∥
∞ using a standard estimation.

For comparison of the algorithms with or without directed rounding, we shall first present standard algorithms
to calculate upper bounds on ‖RA − I‖∞ and ‖R(Ax̃ − b)‖∞ with directed rounding. Throughout this paper,
we express algorithms in Matlab-style, which is almost executable INTLAB code.

Algorithm 4.1 (Oishi and Rump [9]). Standard calculation of α and β such that ‖RA − I‖∞ ≤ α and
‖R(Ax̃ − b)‖∞ ≤ β with directed rounding.

function [α, β] = std.rnd(A, b, x̃)
Compute a preconditioner R by a favorite algorithm % for example, R = inv(A)
setround(−1) % round-downward mode
G = fl (RA − I) ; r = fl (Ax̃ − b) ; % lower bound for RA − I and Ax̃ − b

setround(+1) % round-upward mode
G = fl (RA − I) ; r = fl (Ax̃ − b) ; % upper bound for RA − I and Ax̃ − b

α = fl
(∥∥max(|G| , ∣∣G∣∣)∥∥∞) ; % α ≥ ‖RA − I‖∞

rmid = (r + r)/2; rrad = rmid − r; % midpoint and radius of Ax̃ − b

setround(−1)
t = fl (R · rmid) ; % lower bound for R · rmid

setround(+1)
t = fl (R · rmid) ; % upper bound for R · rmid

β = fl
(∥∥max(|t| , ∣∣t∣∣) + |R| · rrad

∥∥
∞
)
; % β ≥ ‖R(Ax̃ − b)‖∞
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Note that Algorithm 4.1 is still valid in the presence of underflow. The algorithm shows that calculation of
α and β is considerably easy if directed rounding can be used. If an LU factorization (with partial pivoting)
has been excuted, we can compute R by some algorithms (e.g. LINPACK’s DGEDI and LAPACK’s DGETRI)
in 4

3n3 flops. Therefore, Algorithm 4.1 requires 16
3 n3 flops in total. On the other hand, an LU factorization

(or calculation of an approximate solution of Ax = b) requires 2
3n3 flops, so that the theoretical ratio of

computational cost is 8.

We next propose standard algorithms without directed rounding. Using Lemma 2.6 and considering the
presence of underflow, it holds for e = (1, . . . , 1)T that

|RA − I| ≤ fl (|RA − I|) + ζn+1(|R| |A| + I) + nu · eeT .

Therefore,

‖RA − I‖∞ ≤ ‖fl (RA − I)‖∞ + ζn+1(‖|R| |A|‖∞ + 1) + n2u.(4.1)

By (2.25), we have

‖fl (RA − I)‖∞ ≤ (1 + u)n−1α1,(4.2)

where α1 := fl (‖RA − I‖∞). By (2.24) and (2.23), it follows that

|R| |A| e ≤ (1 + u)n−1 |R| fl (|A| e)
≤ (1 + u)n−1(1 + u)nfl (|R| (|A| e)) + n(1 + u)n−1u · e
≤ (1 + u)2n−1fl (|R| (|A| e)) + n(1 + u)n−1u · e.

From this and (2.22), it holds that

‖|R| |A|‖∞ = ‖|R| |A| e‖∞ ≤ (1 + u)2n−1α2 + n(1 + u)n−1u,(4.3)

where α2 := fl (‖|R| (|A| e)‖∞). Inserting (4.2) and (4.3) to (4.1), it follows that

‖RA − I‖∞ ≤ (1 + u)n−1α1 + ζn+1

{
(1 + u)2n−1α2 + n(1 + u)n−1u + 1

}
+ n2u

≤ (1 + ζn−1)α1 + ζ3nα2 + ζn+1 + n(n + ζ2n)u.

If α1 < 1, then ζn−1α1 < ζn−1. From this and using n(n + ζ2n)u ≤ ζ2n, we have

‖RA − I‖∞ ≤ α1 + ζn−1 + ζ3nα2 + ζn+1 + ζ2n

≤ α1 + ζ3nα2 + 2ζ2n ≤ α1 + ζ3n(α2 + 2)

≤ α1 + (1 + u)−1ζ3n+2fl (α2 + 2)

≤ α1 + fl (γ̃3n+2(α2 + 2)) .

This proves the following theorem:

Theorem 4.2. Let A and R be a real n×n matrix and some preconditioner, respectively. Assume (3n+2)u <

1. Let α1 and α2 be defined by

α1 := fl (‖RA − I‖∞) and α2 := fl (‖|R| (|A| e)‖∞) .

If α1 < 1, then the following inequality holds including the presence of underflow:

‖RA − I‖∞ ≤ fl
(

α1 + fl (γ̃3n+2(α2 + 2))
1 − 2u

)
.(4.4)
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We next evaluate ‖R(Ax̃ − b)‖∞. We assume that rmid, rrad ∈ F
n and rrad ≥ 0 satisfying

rmid − rrad ≤ Ax̃ − b ≤ rmid + rrad(4.5)

are given. From (4.5), it follows that

|R(Ax̃ − b)| ≤ |R · rmid| + |R| · rrad.(4.6)

Using (2.18),

|R · rmid| ≤ fl (|R · rmid|) + ζn |R| · |rmid| + nu · e.(4.7)

Inserting (4.7) into (4.6), we have

|R(Ax̃ − b)| ≤ fl (|R · rmid|) + |R| (ζn |rmid| + rrad) + nu · e.(4.8)

Here,

ζn |rmid| ≤ fl (γ̃n+1 max(|rmid| ,uN · e)) =: t.(4.9)

Therefore,

|R| (ζn |rmid| + rrad) + nu · e ≤ |R| (t + rrad)

≤ (1 + u) |R| · fl (t + rrad) + nu · e
≤ (1 + u) {(1 + u)nfl (|R| (t + rrad)) + nu · e} + nu · e
≤ (1 + u)n+1fl (|R| (t + rrad)) + n(2 + u)u · e
≤ (1 + u)n+1fl (|R| (t + rrad)) + 2(1 + u)uN · e
≤ (1 + u)n+2fl (|R| (t + rrad) + 2uN · e)
≤ fl

( |R| (t + rrad) + 2uN · e
1 − (n + 3)u

)
=: q.

Inserting this into (4.8),

|R(Ax̃ − b)| ≤ fl (|R · rmid|) + q ≤ (1 + u)fl (|R · rmid| + q) .

So from (2.8) and (2.12), we obtain the following theorem:

Theorem 4.3. Let A, b, x̃ and R be as in Theorem 3.1. Let rmid, rrad ∈ F
n satisfy

rmid − rrad ≤ Ax̃ − b ≤ rmid + rrad

and rrad ≥ 0. Let t and q be defined by

t := fl (γ̃n+1 max(|rmid| ,uN · e)) and q := fl
( |R| (t + rrad) + 2uN · e

1 − (n + 3)u

)
,

respectively. Then the following inequality holds in the presence of underflow:

‖R(Ax̃ − b)‖∞ ≤ fl
(‖|R · rmid| + q‖∞

1 − 2u

)
.(4.10)

It still remains the problem how to calculate rmid and rrad. Using (2.18), we can obtain

r1 − r2 ≤ Ax̃ − b ≤ r1 + r2,
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where

r1 := fl (Ax̃ − b) and r2 := ζn+1(|A| |x̃| + |b|) + nu · e.(4.11)

Using (2.3) and (2.24),

|A| |x̃| + |b| ≤ (1 + u)n+1fl (|A| |x̃| + |b|) + nu · e.

It follows that

r2 ≤ ζn+1{(1 + u)n+1fl (|A| |x̃| + |b|) + nu · e} + nu · e
≤ ζn+1(1 + u)n+1fl (|A| |x̃| + |b|) + n(1 + ζn+1)u · e
≤ ζ2n+2fl (|A| |x̃| + |b|) + ζ2n+2u−1uN · e
≤ ζ2n+3fl

(
(|A| |x̃| + |b|) + u−1uN · e)

≤ fl
(
γ̃2n+4

{
(|A| |x̃| + |b|) + u−1uN · e}) =: r3 ∈ F

n.

Here, we used n(1 + ζn+1)u ≤ ζ2n+2u−1uN. Thus, we can use Theorem 4.3 by setting r1 and r3 to rmid and
rrad, respectively.

Remark 4.4. The calculation of residual Ax̃ − b usually causes big cancellation. This means that the
radius rrad may be much larger than the absolute value of the midpoint rmid when using usual floating-point
arithmetic. In such case, the quality of β calculated by the algorithms in this paper may be poor. Provided
we can prove ‖RA− I‖∞ ≤ α < 1, the quality of our error bounds is determined by the quality of the bound
β. Thus any algorithm for a more accurate computation of the residual Ax̃ − b (cf., e.g. [8]) will improve
our error bounds.

We can now present an algorithm for calculating upper bounds on α and β by floating-point arithmetic only
in round-to-nearest.

Algorithm 4.5. Calculation of α and β such that ‖RA − I‖∞ ≤ α and ‖R(Ax̃ − b)‖∞ ≤ β without directed
rounding.

function [α, β] = std(A, b, x̃)
if (3n + 2)u ≥ 1, error(’verification failed.’), end
Compute a preconditioner R by a favorite algorithm
α1 = fl (‖RA − I‖∞) ;
if α1 ≥ 1, error(’verification failed.’), end
α2 = fl (‖|R| (|A| e)‖∞) ;

α = fl
(

α1 + fl (γ̃3n+2(α2 + 2))
1 − 2u

)
;

rmid = fl (Ax̃ − b) ;
rrad = fl

(
γ̃2n+4

{
(|A| |x̃| + |b|) + u−1uN · e}) ;

t = fl (γ̃n+1 max(|rmid| ,uN · e)) ;

q = fl
( |R| (t + rrad) + 2uN · e

1 − (n + 3)u

)
;

β = fl
(‖|R · rmid| + q‖∞

1 − 2u

)
;

Algorithm 4.5 requires 10
3 n3 flops in total, so that the theoretical ratio of computational cost to the LU

factorization is 5. Basically, it holds in Algorithm 4.5 that

α ∼ α1 + cnu · cond(A),
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Table 5.1

Evaluation of an upper bound α on ‖RA − I‖∞ for A being a 1000 × 1000 random matrix.

cond(A) Alg. 4.1 Alg. 4.5
103 8.11e-11 1.86e-08
105 5.45e-09 1.31e-06
107 3.78e-07 9.23e-05
109 3.43e-05 8.49e-03
1011 2.81e-03 6.52e-01
1013 2.25e-01 *
1015 * *
∗ verification failed (α ≥ 1)

Table 5.2

Evaluation of an upper bound β for ‖R(A�x − b)‖∞ for A being a 1000 × 1000 random matrix.

cond(A) Alg. 4.1 Alg. 4.5
103 1.68e-12 1.28e-08
105 1.11e-10 8.94e-07
107 7.50e-09 6.33e-05
109 7.11e-07 5.83e-03
1011 5.91e-05 4.48e-01
1013 4.95e-03 3.75e+01
1015 4.26e-01 3.52e+03

where cn is a constant related to n and cond(A) := ‖A‖2‖A−1‖2. If α1 ≥ 1, then the computed R is
essentially not good preconditioner for A. Now we assume that α1 < 1, then Algorithm 4.5 can be applied
to the problem with condition number cond(A) satisfying

cond(A) � (cnu)−1.

This restriction is not avoidable as long as a priori error estimates such as Lemma 2.6 are used.

We stress that only round-to-nearest is used in the verification process by Algorithm 4.5. Thus we can obtain
α and β without directed rounding.

5. Numerical results. We shall present the results of numerical experiments showing properties and
limits of the proposed verification methods. All computations in this section are done by Intel Pentium IV
3.46GHz CPU and Matlab 7.0.4 with IEEE 754 double precision arithmetic.

First, we evaluate the accuracy and the limits of the proposed verification methods. Let A be a 1000 ×
1000 matrix whose elements are floating-point random numbers distributed in [−1, 1]. Here, the matrix
is constructed by the Higham’s test matrix randsvd for floating-point matrices with specified condition
number [3]. Therefore, the condition number of A can be controlled, so that we vary it from 103 to 1015.
Let b := fl (A · e) for e = (1, . . . , 1)T ∈ R

n. This means that the residual Ae − b can be expected to be
small, and the exact solution A−1b is corrupted by rounding errors in the computation of b, but satisfies
‖e − A−1b‖ ≤ O(u)cond(A). In Tables 5.1, 5.2 and 5.2, the results of upper bounds α on ‖RA − I‖∞,
β on ‖R(Ax̃ − b)‖∞ and on

∥∥x̃ − A−1b
∥∥
∞ by the standard verification algorithm with directed rounding

(Algorithm 4.1) and the proposed verification algorithm (Algorithm 4.5) are displayed. Note that our
algorithms verify nonsingularity of A if error bounds are computed (i.e. α < 1).

Table 5.1 shows that Algorithm 4.1 is more stable than Algorithm 4.5. It seems to be near the best possible
result if we can use the directed rounding and if we do not use higher precision or similar techniques.
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Table 5.3

Evaluation of an upper bound on
���x − A−1b

��
∞ for A being a 1000 × 1000 random matrix.

cond(A) Alg. 4.1 Alg. 4.5
103 1.68e-12 1.28e-08
105 1.11e-10 8.94e-07
107 7.50e-09 6.33e-05
109 7.11e-07 5.88e-03
1011 5.93e-05 1.29e+01
1013 6.39e-03 *
1015 * *
∗ verification failed (α ≥ 1)

Table 5.4

Elapsed time [sec] for LU factorization and the proposed methods and their ratio.

n LU Alg. 4.1 Alg. 4.5
500 0.14 0.99 (7.0) 0.71 (5.0)

1000 0.95 7.1 (7.5) 4.99 (5.3)
1500 3.0 23.1 (7.7) 16.0 (5.3)
2000 6.9 54.1 (7.9) 36.9 (5.4)
2500 13.1 105 (8.0) 71.1 (5.4)
3000 22.3 180 (8.1) 122 (5.5)
3500 34.9 287 (8.2) 193 (5.5)
4000 51.6 434 (8.4) 290 (5.6)

Algorithm 4.5 is applicable to condition numbers up to 1011.

Table 5.3 shows that Algorithm 4.1 is more accurate than Algorithm 4.5. The results of Algorithm 4.5 are
worse by about factor 104 compared to these of Algorithm 4.1.

Next, we measure the speed of the proposed verification method. In Table 5.4, the elapsed time for Algorithms
4.1 and 4.5 are displayed. For comparison, the elapsed time for LU factorization is displayed, and its ratio
for each verification algorithms are also displayed in parentheses.

Table 5.4 shows that the actual (measured) computational cost for the verification algorithms is comparable
to that for LU factorization. Their ratios for LU factorization almost correspond to theoretical values.

6. Conclusions. We proposed a fast self-validating algorithm using only rounding to nearest for veri-
fying the nonsingularity of coefficient matrices and calculating rigorous error bounds for an approximate so-
lution of linear systems. Using the proposed method, we can not only achieve better portability of programs
but can also implement them with every compiler and on every platform provided that round-to-nearest
follows the IEEE 754 standard. Numerical results illustrated that the proposed method is less stable than
previous verification algorithms with directed rounding. However, it is applicable to ill-conditioned problems
to a certain extent. Finally, we stress that we can also apply the technique in this paper to faster verification
algorithms by using a priori error estimates in [9]. Then, we can develop an algorithm performing verification
in the same computing time as the one for standard Gaussian elimination.

Appendix A. Proofs of Lemma 2.3. In the following, we prove Lemma 2.3.

Proof of (2.8) For the first inequality, it holds that

1
1 − u

− (1 + u) =
1 − (1 + u)(1 − u)

1 − u
=

u2

1 − u
> 0,
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which implies

(1 + u)n <
1

(1 − u)n
.

The proof of the second inequality is by induction. Obviously, the equality holds for n = 1. If it
holds for n = k that

1
(1 − u)k

<
1

1 − ku
,

then
1

(1 − u)k+1
=

1
(1 − u)(1 − u)k

<
1

1 − u
· 1
1 − ku

<
1

1 − (k + 1)u
.

Proof of (2.9) From the definition of ζn, it follows that

(1 + u)pζn = (1 + u)p((1 + u)n − 1) ≤ (1 + u)n+p − 1 = ζn+p.

Proof of (2.10)

ζn+p − (ζn + ζp) = (1 + u)n+p − (1 + u)n − ζp

= (1 + u)n((1 + u)p − 1) − ζp = ζnζp ≥ 0.

Proof of (2.11) We prove ζn ≤ γn−1 because γn−1 ≤ γ̃n. The proof is by induction. Obviously, the
equality holds for n = 1. If it holds for n = k that ζk ≤ γk−1, then (1 + u)ζk ≤ (1 + u)γk−1 and

(1 + u)k+1 − (1 + u) ≤ (1 + u)
(k − 1)u

1 − (k − 1)u
.

It follows that

ζk+1 = (1 + u)k+1 − 1 ≤ (k − 1)u
1 − ku

+ u ≤ ku− ku2

1 − ku
≤ γk.

Proof of (2.12)

1
1 − nu

|a| = (1 + u)−1(1 + u)
|a|

1 − nu
≤ (1 + u)−1 |a|

1 − (n + 1)u
≤ fl

(
max(|a| ,uN)
1 − (n + 1)u

)
.

Proof of (2.13)

ζn |a| = (1 + u)−1(1 + u)ζn |a| ≤ (1 + u)−1ζn+1 |a| ≤ fl (γ̃n+1 max(|a| ,uN)) .
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