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Abstract

Let a norm on the set Mn of real or complex n-by-n matrices be given. We
investigate the question of finding the largest constants αn and βn such that
for each A ∈ Mn the average of the norms of its (n−1)-by-(n−1) principal
submatrices is at least αn times the norm of A, and such that the maximum
of the norms of those principal submatrices is at least βn times the norm
of A.

For a variety of classical norms including induced `p-norms, weakly uni-
tarily invariant norms, and entrywise norms we give lower and upper bounds
for αn and βn. In several cases αn and βn are explicitly determined.
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1. Notation and Introduction

For n ∈ N := {1, 2, 3, . . . } let Mn denote the set of real or complex square
matrices of order n. The following notation is used where A = (aij) ∈Mn:

I the n× n identity matrix

E the n× n matrix of all 1’s

ei the i-th column of I

Jk I − ekeTk , 1 ≤ k ≤ n

Ak JkAJk, the matrix A with k-th row and column set to zero

A{k} the principal submatrix by deleting the k-th row and column

diag(A) the matrix consisting of the diagonal of A

σi(A) the i-th singular value of A in decreasing order

r(A) max{|x∗Ax| | x ∈ Cn, x∗x = 1}, the numerical radius

%(A) the spectral radius

‖A‖p max{‖Ax‖p | ‖x‖p = 1}, the induced `p-norm, 1 ≤ p ≤ ∞
‖A‖U an arbitrary weakly unitarily invariant matrix norm

‖A‖(p)
(∑

i,j |aij|p
)1/p

, the entrywise p-norm for 1 ≤ p <∞
‖A‖(∞) maxi,j |aij|, the entrywise infinity norm

Let a matrix order n ≥ 2 and a norm ‖ · ‖ on Mn be fixed.1 This note is
about bounding the largest constants αn and βn satisfying

1

n

n∑
k=1

‖Ak‖ ≥ αn‖A‖ and max
1≤k≤n

‖Ak‖ ≥ βn‖A‖ for all A ∈Mn.2 (1)

Some conditions must be imposed on ‖ · ‖ to exclude pathological cases.3

Note that αn ≤ βn, αn ≤ (n − 2)/n, and βn ≤ 1 for any norm because

1We do not require the norm to be submultiplicative. For example, our results also
cover the numerical radius r(A). Actually, all our findings are valid for seminorms, i.e.,
‖A‖ = 0 ⇒ A = 0 is not needed.

2We prefer working with the embeddings Ak = JkAJk of the principal submatrices A{k}
of A into Mn rather than working with the A{k} ∈Mn−1 directly because this allows us to
consider only one single norm without taking care of dimensional inheritance properties.

3‖A‖ := |
∑

i,j aij | + ε
∑

i,j |aij | defines a norm on Mn for any ε > 0. The matrix
A := E − (n − 1)I fulfills ‖A‖ = n + n(2n − 3)ε and ‖Ak‖ = 2(n − 1)(n − 2)ε for all
k ∈ {1, . . . , n}, so that αn and βn defined in (1) become arbitrarily small for ε→ 0.
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A := e1e
T
2 fulfills Ak = A for k 6= 1, 2 and A1 = 0 = A2, implying

1

n

n∑
k=1

‖Ak‖ =
n− 2

n
‖A‖ and max

1≤k≤n
‖Ak‖ ≤ ‖A‖. (2)

Furthermore, αn = (n− 2)/n and βn = 1 are simultaneously attained by the
entrywise infinity norm (with n ≥ 3 for βn).

For many common norms asymptotically sharp bounds for αn and βn
will be derived. In several cases the exact values of αn and βn are explicitly
determined. The results are summarized in Table 1 in which the third and
fourth column either state exact values or enclosing intervals for αn and βn.

Nr. Norm αn
4 βn Example5

1 ‖ · ‖p , 1 ≤ p ≤ ∞
[
(n−1)(n−2)

n2 , n−2
n

] [
n−2
n
, n−1

n

]
E

1.1 ‖ · ‖2 , r(·)
[
(n−1)(n−2)

n2 , n−2
n

] [
n−2
n
, n−1
n+1

]
E − n−1

2
I

1.2 ‖ · ‖1 , ‖ · ‖∞ n−2
n

n−2
n−1 E − I

2 any weakly unitarily

[
(n−1)(n−2)

n2 , n−2
n

] [
(n−1)(n−2)

n2 , n−1
n

]
E

invariant norm

3 ‖ · ‖(p) , 1 ≤ p ≤ ∞ n−2
n

(
n−2
n

)1/p
E − I

Table 1: Bounds for αn and βn as in (1).

In what follows we will prove the statements in Table 1.

2. Hermitian matrices

For Hermitian A ∈Mn, denote the eigenvalues of A by

λ1 ≥ . . . ≥ λn

and for 1 ≤ k ≤ n the eigenvalues of A{k} ∈Mn−1 by

λk,1 ≥ . . . ≥ λk,n−1.
6

4Recall that the upper bound (n− 2)/n for αn is attained by A := e1e
T
2 for all norms.

5Example of a matrix realizing the upper bound or the exact value of βn. Based on
numerical evidence we conjecture that (n− 1)/(n+ 1) is the exact value of βn in Nr. 1.1.

6Recall that A{k} is the principal submatrix of order n − 1 of A obtained by deleting
the k-th row and column.
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Thompson [5] (see also [6]) showed

n∑
k=1

λ1 − λk,1
λ1 − λn

≤ 1

provided that λ1 6= λn. If λ1 ≥ −λn, this implies

n∑
k=1

λk,1 ≥ λn + (n− 1)λ1 ≥ (n− 2)λ1 = (n− 2)%(A) , (3)

and if λ1 < −λn application to −A gives

n∑
k=1

λk,n−1 ≤ λ1 + (n− 1)λn < (n− 2)λn = −(n− 2)%(A) .

Hence %(A{k}) = max(λk,1 , −λk,n−1) implies for Hermitian A

max
1≤k≤n

%(A{k}) ≥
1

n

n∑
k=1

%(A{k}) ≥
n− 2

n
%(A) , (4)

which is, of course, also true for λ1 = λn.7 The matrix A := E− n−1
2
I satisfies

max
1≤k≤n

%(A{k}) =
n− 1

n+ 1
%(A) . (5)

Thus, (4) and (5) supply the enclosure for βn stated in Nr. 1.1 of Table 1 for
the spectral norm ‖ · ‖2 and Hermitian A, where ‖A{k}‖2 = ‖Ak‖2 is used.
As a side note we remark that for positive semidefinite A, λn ≥ 0 and (3)
yield (cf. [3])

max
1≤k≤n

%(A{k}) ≥
1

n

n∑
k=1

%(A{k}) ≥
n− 1

n
%(A) .

This is sharp for A = E where

max
1≤k≤n

%(A{k}) =
1

n

n∑
k=1

%(A{k}) =
n− 1

n
%(A) .

7In fact, this well-known result of Thompson motivated this note.
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3. General matrices

Define Jk := I − ekeTk . Then Ak := JkAJk is the matrix obtained by setting
the k-th row and column of A to zero. The following splitting is easy to
check and crucial for our further considerations:

n∑
k=1

Ak = (n− 2)A+ diag(A) . (6)

3.1. A weak condition suitable for weakly unitarily invariant norms

Suppose that for all A = (aij) ∈Mn the following condition holds true:

‖diag(A)‖ ≤ ‖A‖ . (7)

By (6) and (7) applied to Ak for 1 ≤ k ≤ n, we have

(n− 2)‖A‖ = ‖
n∑

k=1

Ak − diag(A)‖ = ‖
n∑

k=1

(
Ak −

1

n− 1
diag(Ak)

)
‖

≤
n∑

k=1

(
‖Ak‖+

1

n− 1
‖diag(Ak)‖

)
≤

n∑
k=1

(
1 +

1

n− 1

)
‖Ak‖

=
n2

n− 1
· 1

n

n∑
k=1

‖Ak‖ ≤
n2

n− 1
max
1≤k≤n

‖Ak‖ ,

so that
(n− 1)(n− 2)

n2
‖A‖ ≤ 1

n

n∑
k=1

‖Ak‖ ≤ max
1≤k≤n

‖Ak‖ .

Thus, all norms satisfying (7) fulfill

βn ≥ αn ≥ (n− 1)(n− 2)/n2 . (8)

Indeed, this lower bound for αn and βn is realized by the norm

‖A‖ :=
n∑

k=1

max

(
|akk|,

1

2
max
j 6=k
|akj|,

∣∣ n∑
j=1

akj
∣∣) , (9)

which fulfills (7) and for which A := E − n
2
I gives ‖A‖ = n2/2 and

max
1≤k≤n

‖Ak‖ =
1

n

n∑
k=1

‖Ak‖ =
(n− 1)(n− 2)

2
=

(n− 1)(n− 2)

n2
‖A‖ .
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It is well known that weakly unitarily invariant norms ‖ · ‖U fulfill (7). This
is easily seen as follows (cf. [1]). Let A = (aij) ∈ Mn be given, let ω be
a primitive n-th root of unity, and consider the unitary diagonal matrix
V := diag(1, ω, ω2, . . . , ωn−1). Then,

diag(A) =
1

n

n−1∑
k=0

V ∗kAV k ,

wherefore weak unitary invariance of ‖ · ‖U implies

‖diag(A)‖U ≤
1

n

n−1∑
k=0

‖V ∗kAV k‖U = ‖A‖U .

It is easy to see that ‖vvT‖U = vTv‖e1eT1 ‖U for each v ∈ Cn. Therefore, the
matrix A = E ∈ Mn fulfills ‖A‖U = n‖e1eT1 ‖U and ‖Ak‖U = (n− 1)‖e1eT1 ‖U
for k ∈ {1, . . . , n}, so that

max
1≤k≤n

‖Ak‖U =
n− 1

n
‖A‖U . (10)

Summarizing, (8), (10), and the first equality in (2) supply

αn ∈
[

(n− 1)(n− 2)

n2
,
n− 2

n

]
and βn ∈

[
(n− 1)(n− 2)

n2
,
n− 1

n

]
(11)

for any weakly unitarily invariant norm. This is stated in Nr. 2 of Table 1.
However, we could not find an example of a weakly unitarily invariant norm
for which αn attains the lower bound (n − 1)(n − 2)/n2, and by strong nu-
merical evidence we conjecture that αn = (n− 2)/n for these norms. If true,
this is also the exact value of βn for the Schatten 1-norm; for all n ≥ 3 the
ratio (n−2)/n is realized for the permutation matrix mapping (1, . . . , n) into
(3, . . . , n, 1, 2).

3.2. A stronger condition suitable for `p-norms and the numerical radius

Now suppose that, instead of (7), the following stronger condition holds true
for all A = (aij) ∈Mn, k ∈ {1, . . . , n}, and c ∈ C:

‖A‖ ≥ ‖akkekeTk ‖ and ‖Ak + ceke
T
k ‖ ≤ max

(
‖Ak‖, ‖cekeTk ‖

)
. 8 (12)

8In [4] and [2] the maximum property N(A⊕B) = max
(
N(A), N(B)

)
of certain induced

matrix norms N(·) on direct sums A ⊕ B was introduced and characterized; the second
part ‖Ak + ceke

T
k ‖ ≤ max

(
‖Ak‖, ‖cekeTk ‖

)
of (12) is a weakening of that property.
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In plain English, first, the norm of a matrix is bounded from below by the
norm of akkeke

T
k , the matrix having akk as k-th diagonal entry and zeros

elsewhere, and second, replacing the k-th row and column of A by zeros but
the k-th diagonal element by c, the norm of the resulting matrix Ak+ceke

T
k is

bounded from above by the norm of Ak or by the norm of the matrix ceke
T
k .

Indeed, (12) implies (7) as seen by applying the second inequality in (12)
successively to diag(A) and then using the first inequality in (12), so that

‖diag(A)‖ ≤ max
1≤k≤n

‖akkekeTk ‖ ≤ ‖A‖.

It is straightforward to check that the `p-norms ‖A‖p, 1 ≤ p ≤ ∞, and
the numerical radius r(A) fulfill (12). Contrary, the second inequality in (12)
is, for example, not satisfied for the Frobenius norm or, more generally, for
the Schatten p-norms if 1 ≤ p <∞. Also the Ky Fan k-norms for k ≥ 2 and
the entrywise p-norms ‖A‖(p) for 1 ≤ p <∞ do not fulfill (12).

For A = (aij) ∈Mn and B[k] := Ak− akkekeTk the splitting (6) transforms
into

(n− 2)A =
n∑

k=1

Ak − diag(A) =
n∑

k=1

B[k]. (13)

For each k ∈ {1, . . . , n}, the first inequality in (12) implies ‖akkekeTk ‖ ≤ ‖A`‖
for all ` 6= k. Thus, again using (12),

‖B[k]‖ ≤ max
(
‖Ak‖, ‖akkekeTk ‖

)
and max

1≤k≤n
‖B[k]‖ ≤ max

1≤k≤n
‖Ak‖ .

By (13), it follows

(n− 2)‖A‖ = ‖
n∑

k=1

B[k]‖ ≤ n max
1≤k≤n

‖B[k]‖ ≤ n max
1≤k≤n

‖Ak‖

and therefore
n− 2

n
‖A‖ ≤ max

1≤k≤n
‖Ak‖.

Thus, norms satisfying (12) fulfill

βn ≥
n− 2

n
. (14)
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One may ask whether this is also a lower bound for αn for such norms.
However, this is not true as seen by the following norm derived from (9) by
replacing the outer sum by a maximum:

‖A‖ := max
1≤k≤n

(
|akk|,

1

2
max
j 6=k
|akj|,

∣∣ n∑
j=1

akj
∣∣) .

This norm fulfills (12) and the matrix A with first row (−(n− 2)/2, 1, . . . , 1)
and zeros elsewhere fulfills ‖A‖ = n/2, ‖A1‖ = 0, and ‖Ak‖ = (n− 2)/2 for
k 6= 1, so that

1

n

n∑
k=1

‖Ak‖ =
(n− 1)(n− 2)

2n
=

(n− 1)(n− 2)

n2
‖A‖ .

Thus, the lower bound (8) for norms satisfying (7) does not increase for
norms satisfying the stronger condition (12).

In conclusion, (8) and (14) prove the lower bounds stated in Nr. 1 and
Nr. 1.1 of Table 1. The upper bound for βn in Nr. 1 is realized by A := E for
all 1 ≤ p ≤ ∞. The upper bound for βn in Nr. 1.1 is realized by the matrix
A := E− n−1

2
I considered in (5) which is symmetric, so that spectral radius,

spectral norm, and numerical radius coincide. Note that condition (12) on
its own only implies the upper bound βn ≤ 1 as by the entrywise infinity
norm for n ≥ 3.

The norms ‖·‖∞ and ‖·‖1 satisfy (12), but sharper estimates are possible.
Let i ∈ {1, . . . , n} be such that ‖A‖∞ =

∑n
j=1 |aij|. Then,

1

n

n∑
k=1

‖Ak‖∞ ≥ 1

n

∑
k 6=i

‖Ak‖∞ ≥
1

n

∑
k 6=i

∑
j 6=k

|aij| =
1

n

∑
k 6=i

(‖A‖∞ − |aik|)

=
n− 2

n
‖A‖∞ +

1

n
|aii| ≥

n− 2

n
‖A‖∞ ,

and using also (2) we conclude αn = (n− 2)/n.
Furthermore, if |ai`| ≤ 1

n−1‖A‖∞ for some ` with ` 6= i, then

‖A`‖∞ ≥
∑
j 6=`

|aij| = ‖A‖∞ − |ai`| ≥
(

1− 1

n− 1

)
‖A‖∞ =

n− 2

n− 1
‖A‖∞ .

If |ai`| ≥ 1
n−1‖A‖∞ for all ` 6= i, then, for all k 6= i, we have

‖Ak‖∞ ≥
∑
`6=i,k

|ai`| ≥
n− 2

n− 1
‖A‖∞ .
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Thus, in either case

max
k
‖Ak‖∞ ≥

n− 2

n− 1
‖A‖∞

and equality holds true for A = E − I. This yields βn = (n − 2)/(n − 1).
Transposing gives the same results for ‖ · ‖1. This proves Nr. 1.2 of Table 1.

3.3. Entrywise norms
Finally, we consider the entrywise p-norms ‖A‖(p) with 1 ≤ p ≤ ∞. For this
case we rewrite Equation (6) as follows:

n∑
k=1

Ak = (n− 2)
(
A− diag(A)

)
+ (n− 1)diag(A). (15)

Let p ∈ [1,∞). The two matrices D := diag(A) and A0 := A−D appearing
on the right-hand side of (15) fulfill A0 ◦D = 0 and we compute

(n− 2)p‖A‖p(p) = (n− 2)p(‖A0‖p(p) + ‖D‖p(p))
≤ (n− 2)p‖A0‖p(p) + (n− 1)p‖D‖p(p)
= ‖(n− 2)A0 + (n− 1)D‖p(p)

= ‖
n∑

k=1

Ak‖p(p) ≤ np

(
1

n

n∑
k=1

‖Ak‖(p)

)p

implying
n− 2

n
‖A‖(p) ≤

1

n

n∑
k=1

‖Ak‖(p) .

Using (2) again gives

αn =
n− 2

n
. (16)

Now, define Â := (|aij|p). Like before, the two matrices D̂ := diag(Â) and

Â0 := Â− D̂ fulfill Â0 ◦ D̂ = 0 and applying (15) to Â gives

(n− 2)‖A‖p(p) = (n− 2)(‖Â0‖(1) + ‖D̂‖(1))

≤ (n− 2)‖Â0‖(1) + (n− 1)‖D̂‖(1)
= ‖(n− 2)Â0 + (n− 1)D̂‖(1)

= ‖
n∑

k=1

Âk‖(1) ≤
n∑

k=1

‖Âk‖(1) =
n∑

k=1

‖Ak‖p(p)

≤ n max
1≤k≤n

‖Ak‖p(p) .
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Taking p-th roots supplies

max
1≤k≤n

‖Ak‖(p) ≥
(
n− 2

n

)1/p

‖A‖(p) . (17)

The matrix A := E − I satisfies

‖A‖(p) =
(
n(n−1)

)1/p
and ‖Ak‖(p) =

(
(n−1)(n−2)

)1/p
for all k

and thereby

max
1≤k≤n

‖Ak‖(p) =

(
n− 2

n

)1/p

‖A‖(p) .

Hence (17) is sharp. Taking limits gives

lim
p→∞

(
n− 2

n

)1/p

=

{
1 if n > 2,
0 if n = 2,

and we conclude

βn =

(
n− 2

n

)1/p

for 1 ≤ p ≤ ∞ (with 00 := 0 for n = 2). (18)

Summarizing, (16) and (18) prove Nr. 3 of Table 1. Note that ‖A‖(2) is the
Frobenius norm, so that (16) and (18) improve upon (11).
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