On norms of principal submatrices

F. Bünger ${ }^{\text {a }}$, M. Lange ${ }^{\text {a }}$, S.M. Rump ${ }^{\text {a,b }}$
${ }^{a}$ Hamburg University of Technology, Institute for Reliable Computing, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
${ }^{b}$ Visiting Professor at Waseda University, Faculty of Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
Email: florian.buenger@tuhh.de, m.lange@tuhh.de, rump@tuhh.de

Abstract

Let a norm on the set M_{n} of real or complex n-by- n matrices be given. We investigate the question of finding the largest constants α_{n} and β_{n} such that for each $A \in M_{n}$ the average of the norms of its ($\mathrm{n}-1$)-by- $(\mathrm{n}-1)$ principal submatrices is at least α_{n} times the norm of A, and such that the maximum of the norms of those principal submatrices is at least β_{n} times the norm of A.

For a variety of classical norms including induced ℓ^{p}-norms, weakly unitarily invariant norms, and entrywise norms we give lower and upper bounds for α_{n} and β_{n}. In several cases α_{n} and β_{n} are explicitly determined.

Key words: matrix norms, principal submatrices, norm inequalities 2010 MSC: 15A60, 15A45

1. Notation and Introduction

For $n \in \mathbb{N}:=\{1,2,3, \ldots\}$ let M_{n} denote the set of real or complex square matrices of order n. The following notation is used where $A=\left(a_{i j}\right) \in M_{n}$:

I	the $n \times n$ identity matrix						
E	the $n \times n$ matrix of all 1 's						
e_{i}	the i-th column of I						
J_{k}	$I-e_{k} e_{k}^{T}, 1 \leq k \leq n$						
A_{k}	$J_{k} A J_{k}$, the matrix A with k-th row and column set to zero						
$A_{\{k\}}$	the principal submatrix by deleting the k-th row and column						
$\operatorname{diag}(A)$	the matrix consisting of the diagonal of A						
$\sigma_{i}(A)$	the i-th singular value of A in decreasing order						
$r(A)$	$\max \left\{\left\|x^{*} A x\right\| \mid x \in \mathbb{C}^{n}, x^{*} x=1\right\}$, the numerical radius						
$\varrho(A)$	the spectral radius						
$\\|A\\|_{p}$	$\max \left\{\\|A x\\|_{p} \mid\\|x\\|_{p}=1\right\}$, the induced ℓ^{p}-norm, $1 \leq p \leq \infty$						
$\\|A\\|_{U}$	an arbitrary weakly unitarily invariant matrix norm						
$\\|A\\|_{(p)}$	$\left(\sum_{i, j}\left\|a_{i j}\right\|^{p}\right)^{1 / p}$, the entrywise p-norm for $1 \leq p<\infty$						
$\\|A\\|_{(\infty)}$	$\max _{i, j}\left\|a_{i j}\right\|$, the entrywise infinity norm						

Let a matrix order $n \geq 2$ and a norm $\|\cdot\|$ on M_{n} be fixed. ${ }^{1}$ This note is about bounding the largest constants α_{n} and β_{n} satisfying

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\| \geq \alpha_{n}\|A\| \quad \text { and } \quad \max _{1 \leq k \leq n}\left\|A_{k}\right\| \geq \beta_{n}\|A\| \quad \text { for all } A \in M_{n} .^{2} \tag{1}
\end{equation*}
$$

Some conditions must be imposed on $\|\cdot\|$ to exclude pathological cases. ${ }^{3}$ Note that $\alpha_{n} \leq \beta_{n}, \alpha_{n} \leq(n-2) / n$, and $\beta_{n} \leq 1$ for any norm because

[^0]$A:=e_{1} e_{2}^{T}$ fulfills $A_{k}=A$ for $k \neq 1,2$ and $A_{1}=0=A_{2}$, implying
\[

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|=\frac{n-2}{n}\|A\| \quad \text { and } \quad \max _{1 \leq k \leq n}\left\|A_{k}\right\| \leq\|A\| \tag{2}
\end{equation*}
$$

\]

Furthermore, $\alpha_{n}=(n-2) / n$ and $\beta_{n}=1$ are simultaneously attained by the entrywise infinity norm (with $n \geq 3$ for β_{n}).

For many common norms asymptotically sharp bounds for α_{n} and β_{n} will be derived. In several cases the exact values of α_{n} and β_{n} are explicitly determined. The results are summarized in Table 1 in which the third and fourth column either state exact values or enclosing intervals for α_{n} and β_{n}.

Nr.	Norm	$\boldsymbol{\alpha}_{\boldsymbol{n}}{ }^{4}$	$\boldsymbol{\beta}_{\boldsymbol{n}}$	Example 5				
1	$\\|\cdot\\|_{p}, 1 \leq p \leq \infty$	$\left[\frac{(n-1)(n-2)}{n^{2}}, \frac{n-2}{n}\right]$	$\left[\frac{n-2}{n}, \frac{n-1}{n}\right]$	E				
1.1	$\\|\cdot\\|_{2}, r(\cdot)$	$\left[\frac{(n-1)(n-2)}{n^{2}}, \frac{n-2}{n}\right]$	$\left[\frac{n-2}{n}, \frac{n-1}{n+1}\right]$	$E-\frac{n-1}{2} I$				
1.2	$\\|\cdot\\|_{1},\\|\cdot\\|_{\infty}$	$\frac{n-2}{n}$						
2	any weakly unitarily invariant norm 3	$\left.\\| \cdot \frac{(n-1)(n-2)}{n^{2}}, \frac{n-2}{n}\right]$	$E-I$					
$\left[\frac{(n-1)(n-2)}{n^{2}}, \frac{n-1}{n}\right]$	E							
$\left(\frac{n-2}{n}\right)^{1 / p}$	$E-I$							

Table 1: Bounds for α_{n} and β_{n} as in (1).
In what follows we will prove the statements in Table 1.

2. Hermitian matrices

For Hermitian $A \in M_{n}$, denote the eigenvalues of A by

$$
\lambda_{1} \geq \ldots \geq \lambda_{n}
$$

and for $1 \leq k \leq n$ the eigenvalues of $A_{\{k\}} \in M_{n-1}$ by

$$
\lambda_{k, 1} \geq \ldots \geq \lambda_{k, n-1} \cdot{ }^{6}
$$

[^1]Thompson [5] (see also [6]) showed

$$
\sum_{k=1}^{n} \frac{\lambda_{1}-\lambda_{k, 1}}{\lambda_{1}-\lambda_{n}} \leq 1
$$

provided that $\lambda_{1} \neq \lambda_{n}$. If $\lambda_{1} \geq-\lambda_{n}$, this implies

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{k, 1} \geq \lambda_{n}+(n-1) \lambda_{1} \geq(n-2) \lambda_{1}=(n-2) \varrho(A) \tag{3}
\end{equation*}
$$

and if $\lambda_{1}<-\lambda_{n}$ application to $-A$ gives

$$
\sum_{k=1}^{n} \lambda_{k, n-1} \leq \lambda_{1}+(n-1) \lambda_{n}<(n-2) \lambda_{n}=-(n-2) \varrho(A)
$$

Hence $\varrho\left(A_{\{k\}}\right)=\max \left(\lambda_{k, 1},-\lambda_{k, n-1}\right)$ implies for Hermitian A

$$
\begin{equation*}
\max _{1 \leq k \leq n} \varrho\left(A_{\{k\}}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \varrho\left(A_{\{k\}}\right) \geq \frac{n-2}{n} \varrho(A) \tag{4}
\end{equation*}
$$

which is, of course, also true for $\lambda_{1}=\lambda_{n} .{ }^{7}$ The matrix $A:=E-\frac{n-1}{2} I$ satisfies

$$
\begin{equation*}
\max _{1 \leq k \leq n} \varrho\left(A_{\{k\}}\right)=\frac{n-1}{n+1} \varrho(A) . \tag{5}
\end{equation*}
$$

Thus, (4) and (5) supply the enclosure for β_{n} stated in Nr. 1.1 of Table 1 for the spectral norm $\|\cdot\|_{2}$ and Hermitian A, where $\left\|A_{\{k\}}\right\|_{2}=\left\|A_{k}\right\|_{2}$ is used. As a side note we remark that for positive semidefinite $A, \lambda_{n} \geq 0$ and (3) yield (cf. [3])

$$
\max _{1 \leq k \leq n} \varrho\left(A_{\{k\}}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \varrho\left(A_{\{k\}}\right) \geq \frac{n-1}{n} \varrho(A) .
$$

This is sharp for $A=E$ where

$$
\max _{1 \leq k \leq n} \varrho\left(A_{\{k\}}\right)=\frac{1}{n} \sum_{k=1}^{n} \varrho\left(A_{\{k\}}\right)=\frac{n-1}{n} \varrho(A) .
$$

[^2]
3. General matrices

Define $J_{k}:=I-e_{k} e_{k}^{T}$. Then $A_{k}:=J_{k} A J_{k}$ is the matrix obtained by setting the k-th row and column of A to zero. The following splitting is easy to check and crucial for our further considerations:

$$
\begin{equation*}
\sum_{k=1}^{n} A_{k}=(n-2) A+\operatorname{diag}(A) \tag{6}
\end{equation*}
$$

3.1. A weak condition suitable for weakly unitarily invariant norms

Suppose that for all $A=\left(a_{i j}\right) \in M_{n}$ the following condition holds true:

$$
\begin{equation*}
\|\operatorname{diag}(A)\| \leq\|A\| \tag{7}
\end{equation*}
$$

By (6) and (7) applied to A_{k} for $1 \leq k \leq n$, we have

$$
\begin{aligned}
(n-2)\|A\| & =\left\|\sum_{k=1}^{n} A_{k}-\operatorname{diag}(A)\right\|=\left\|\sum_{k=1}^{n}\left(A_{k}-\frac{1}{n-1} \operatorname{diag}\left(A_{k}\right)\right)\right\| \\
& \leq \sum_{k=1}^{n}\left(\left\|A_{k}\right\|+\frac{1}{n-1}\left\|\operatorname{diag}\left(A_{k}\right)\right\|\right) \leq \sum_{k=1}^{n}\left(1+\frac{1}{n-1}\right)\left\|A_{k}\right\| \\
& =\frac{n^{2}}{n-1} \cdot \frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\| \leq \frac{n^{2}}{n-1} \max _{1 \leq k \leq n}\left\|A_{k}\right\|
\end{aligned}
$$

so that

$$
\frac{(n-1)(n-2)}{n^{2}}\|A\| \leq \frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\| \leq \max _{1 \leq k \leq n}\left\|A_{k}\right\|
$$

Thus, all norms satisfying (7) fulfill

$$
\begin{equation*}
\beta_{n} \geq \alpha_{n} \geq(n-1)(n-2) / n^{2} \tag{8}
\end{equation*}
$$

Indeed, this lower bound for α_{n} and β_{n} is realized by the norm

$$
\begin{equation*}
\|A\|:=\sum_{k=1}^{n} \max \left(\left|a_{k k}\right|, \frac{1}{2} \max _{j \neq k}\left|a_{k j}\right|,\left|\sum_{j=1}^{n} a_{k j}\right|\right) \tag{9}
\end{equation*}
$$

which fulfills (7) and for which $A:=E-\frac{n}{2} I$ gives $\|A\|=n^{2} / 2$ and

$$
\max _{1 \leq k \leq n}\left\|A_{k}\right\|=\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|=\frac{(n-1)(n-2)}{2}=\frac{(n-1)(n-2)}{n^{2}}\|A\| .
$$

It is well known that weakly unitarily invariant norms $\|\cdot\|_{U}$ fulfill (7). This is easily seen as follows (cf. [1]). Let $A=\left(a_{i j}\right) \in M_{n}$ be given, let ω be a primitive n-th root of unity, and consider the unitary diagonal matrix $V:=\operatorname{diag}\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right)$. Then,

$$
\operatorname{diag}(A)=\frac{1}{n} \sum_{k=0}^{n-1} V^{* k} A V^{k}
$$

wherefore weak unitary invariance of $\|\cdot\|_{U}$ implies

$$
\|\operatorname{diag}(A)\|_{U} \leq \frac{1}{n} \sum_{k=0}^{n-1}\left\|V^{* k} A V^{k}\right\|_{U}=\|A\|_{U}
$$

It is easy to see that $\left\|v v^{T}\right\|_{U}=v^{T} v\left\|e_{1} e_{1}^{T}\right\|_{U}$ for each $v \in \mathbb{C}^{n}$. Therefore, the matrix $A=E \in M_{n}$ fulfills $\|A\|_{U}=n\left\|e_{1} e_{1}^{T}\right\|_{U}$ and $\left\|A_{k}\right\|_{U}=(n-1)\left\|e_{1} e_{1}^{T}\right\|_{U}$ for $k \in\{1, \ldots, n\}$, so that

$$
\begin{equation*}
\max _{1 \leq k \leq n}\left\|A_{k}\right\|_{U}=\frac{n-1}{n}\|A\|_{U} . \tag{10}
\end{equation*}
$$

Summarizing, (8), (10), and the first equality in (2) supply

$$
\begin{equation*}
\alpha_{n} \in\left[\frac{(n-1)(n-2)}{n^{2}}, \frac{n-2}{n}\right] \quad \text { and } \quad \beta_{n} \in\left[\frac{(n-1)(n-2)}{n^{2}}, \frac{n-1}{n}\right] \tag{11}
\end{equation*}
$$

for any weakly unitarily invariant norm. This is stated in Nr. 2 of Table 1. However, we could not find an example of a weakly unitarily invariant norm for which α_{n} attains the lower bound $(n-1)(n-2) / n^{2}$, and by strong numerical evidence we conjecture that $\alpha_{n}=(n-2) / n$ for these norms. If true, this is also the exact value of β_{n} for the Schatten 1-norm; for all $n \geq 3$ the ratio $(n-2) / n$ is realized for the permutation matrix mapping $(1, \ldots, n)$ into (3, ... $n, 1,2$).
3.2. A stronger condition suitable for ℓ^{p}-norms and the numerical radius

Now suppose that, instead of (7), the following stronger condition holds true for all $A=\left(a_{i j}\right) \in M_{n}, k \in\{1, \ldots, n\}$, and $c \in \mathbb{C}$:

$$
\begin{equation*}
\|A\| \geq\left\|a_{k k} e_{k} e_{k}^{T}\right\| \quad \text { and } \quad\left\|A_{k}+c e_{k} e_{k}^{T}\right\| \leq \max \left(\left\|A_{k}\right\|,\left\|c e_{k} e_{k}^{T}\right\|\right) \cdot^{8} \tag{12}
\end{equation*}
$$

[^3]In plain English, first, the norm of a matrix is bounded from below by the norm of $a_{k k} e_{k} e_{k}^{T}$, the matrix having $a_{k k}$ as k-th diagonal entry and zeros elsewhere, and second, replacing the k-th row and column of A by zeros but the k-th diagonal element by c, the norm of the resulting matrix $A_{k}+c e_{k} e_{k}^{T}$ is bounded from above by the norm of A_{k} or by the norm of the matrix $c e_{k} e_{k}^{T}$.

Indeed, (12) implies (7) as seen by applying the second inequality in (12) successively to $\operatorname{diag}(A)$ and then using the first inequality in (12), so that

$$
\|\operatorname{diag}(A)\| \leq \max _{1 \leq k \leq n}\left\|a_{k k} e_{k} e_{k}^{T}\right\| \leq\|A\|
$$

It is straightforward to check that the ℓ^{p}-norms $\|A\|_{p}, 1 \leq p \leq \infty$, and the numerical radius $r(A)$ fulfill (12). Contrary, the second inequality in (12) is, for example, not satisfied for the Frobenius norm or, more generally, for the Schatten p-norms if $1 \leq p<\infty$. Also the Ky Fan k-norms for $k \geq 2$ and the entrywise p-norms $\|A\|_{(p)}$ for $1 \leq p<\infty$ do not fulfill (12).

For $A=\left(a_{i j}\right) \in M_{n}$ and $B_{[k]}:=A_{k}-a_{k k} e_{k} e_{k}^{T}$ the splitting (6) transforms into

$$
\begin{equation*}
(n-2) A=\sum_{k=1}^{n} A_{k}-\operatorname{diag}(A)=\sum_{k=1}^{n} B_{[k]} . \tag{13}
\end{equation*}
$$

For each $k \in\{1, \ldots, n\}$, the first inequality in (12) implies $\left\|a_{k k} e_{k} e_{k}^{T}\right\| \leq\left\|A_{\ell}\right\|$ for all $\ell \neq k$. Thus, again using (12),

$$
\left\|B_{[k]}\right\| \leq \max \left(\left\|A_{k}\right\|,\left\|a_{k k} e_{k} e_{k}^{T}\right\|\right) \quad \text { and } \quad \max _{1 \leq k \leq n}\left\|B_{[k]}\right\| \leq \max _{1 \leq k \leq n}\left\|A_{k}\right\|
$$

By (13), it follows

$$
(n-2)\|A\|=\left\|\sum_{k=1}^{n} B_{[k]}\right\| \leq n \max _{1 \leq k \leq n}\left\|B_{[k]}\right\| \leq n \max _{1 \leq k \leq n}\left\|A_{k}\right\|
$$

and therefore

$$
\frac{n-2}{n}\|A\| \leq \max _{1 \leq k \leq n}\left\|A_{k}\right\| .
$$

Thus, norms satisfying (12) fulfill

$$
\begin{equation*}
\beta_{n} \geq \frac{n-2}{n} . \tag{14}
\end{equation*}
$$

One may ask whether this is also a lower bound for α_{n} for such norms. However, this is not true as seen by the following norm derived from (9) by replacing the outer sum by a maximum:

$$
\|A\|:=\max _{1 \leq k \leq n}\left(\left|a_{k k}\right|, \frac{1}{2} \max _{j \neq k}\left|a_{k j}\right|,\left|\sum_{j=1}^{n} a_{k j}\right|\right)
$$

This norm fulfills (12) and the matrix A with first row $(-(n-2) / 2,1, \ldots, 1)$ and zeros elsewhere fulfills $\|A\|=n / 2,\left\|A_{1}\right\|=0$, and $\left\|A_{k}\right\|=(n-2) / 2$ for $k \neq 1$, so that

$$
\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|=\frac{(n-1)(n-2)}{2 n}=\frac{(n-1)(n-2)}{n^{2}}\|A\|
$$

Thus, the lower bound (8) for norms satisfying (7) does not increase for norms satisfying the stronger condition (12).

In conclusion, (8) and (14) prove the lower bounds stated in Nr. 1 and Nr. 1.1 of Table 1. The upper bound for β_{n} in Nr. 1 is realized by $A:=E$ for all $1 \leq p \leq \infty$. The upper bound for β_{n} in Nr. 1.1 is realized by the matrix $A:=E-\frac{n-1}{2} I$ considered in (5) which is symmetric, so that spectral radius, spectral norm, and numerical radius coincide. Note that condition (12) on its own only implies the upper bound $\beta_{n} \leq 1$ as by the entrywise infinity norm for $n \geq 3$.

The norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ satisfy (12), but sharper estimates are possible. Let $i \in\{1, \ldots, n\}$ be such that $\|A\|_{\infty}=\sum_{j=1}^{n}\left|a_{i j}\right|$. Then,

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|_{\infty} & \geq \frac{1}{n} \sum_{k \neq i}\left\|A_{k}\right\|_{\infty} \geq \frac{1}{n} \sum_{k \neq i} \sum_{j \neq k}\left|a_{i j}\right|=\frac{1}{n} \sum_{k \neq i}\left(\|A\|_{\infty}-\left|a_{i k}\right|\right) \\
& =\frac{n-2}{n}\|A\|_{\infty}+\frac{1}{n}\left|a_{i i}\right| \geq \frac{n-2}{n}\|A\|_{\infty}
\end{aligned}
$$

and using also (2) we conclude $\alpha_{n}=(n-2) / n$.
Furthermore, if $\left|a_{i \ell}\right| \leq \frac{1}{n-1}\|A\|_{\infty}$ for some ℓ with $\ell \neq i$, then

$$
\left\|A_{\ell}\right\|_{\infty} \geq \sum_{j \neq \ell}\left|a_{i j}\right|=\|A\|_{\infty}-\left|a_{i \ell}\right| \geq\left(1-\frac{1}{n-1}\right)\|A\|_{\infty}=\frac{n-2}{n-1}\|A\|_{\infty}
$$

If $\left|a_{i \ell}\right| \geq \frac{1}{n-1}\|A\|_{\infty}$ for all $\ell \neq i$, then, for all $k \neq i$, we have

$$
\left\|A_{k}\right\|_{\infty} \geq \sum_{\ell \neq i, k}\left|a_{i \ell}\right| \geq \frac{n-2}{n-1}\|A\|_{\infty}
$$

Thus, in either case

$$
\max _{k}\left\|A_{k}\right\|_{\infty} \geq \frac{n-2}{n-1}\|A\|_{\infty}
$$

and equality holds true for $A=E-I$. This yields $\beta_{n}=(n-2) /(n-1)$. Transposing gives the same results for $\|\cdot\|_{1}$. This proves Nr. 1.2 of Table 1.

3.3. Entrywise norms

Finally, we consider the entrywise p-norms $\|A\|_{(p)}$ with $1 \leq p \leq \infty$. For this case we rewrite Equation (6) as follows:

$$
\begin{equation*}
\sum_{k=1}^{n} A_{k}=(n-2)(A-\operatorname{diag}(A))+(n-1) \operatorname{diag}(A) \tag{15}
\end{equation*}
$$

Let $p \in[1, \infty)$. The two matrices $D:=\operatorname{diag}(A)$ and $A_{0}:=A-D$ appearing on the right-hand side of (15) fulfill $A_{0} \circ D=0$ and we compute

$$
\begin{aligned}
(n-2)^{p}\|A\|_{(p)}^{p} & =(n-2)^{p}\left(\left\|A_{0}\right\|_{(p)}^{p}+\|D\|_{(p)}^{p}\right) \\
& \leq(n-2)^{p}\left\|A_{0}\right\|_{(p)}^{p}+(n-1)^{p}\|D\|_{(p)}^{p} \\
& =\left\|(n-2) A_{0}+(n-1) D\right\|_{(p)}^{p} \\
& =\left\|\sum_{k=1}^{n} A_{k}\right\|_{(p)}^{p} \leq n^{p}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|_{(p)}\right)^{p}
\end{aligned}
$$

implying

$$
\frac{n-2}{n}\|A\|_{(p)} \leq \frac{1}{n} \sum_{k=1}^{n}\left\|A_{k}\right\|_{(p)}
$$

Using (2) again gives

$$
\begin{equation*}
\alpha_{n}=\frac{n-2}{n} . \tag{16}
\end{equation*}
$$

Now, define $\hat{A}:=\left(\left|a_{i j}\right|^{p}\right)$. Like before, the two matrices $\hat{D}:=\operatorname{diag}(\hat{A})$ and $\hat{A}_{0}:=\hat{A}-\hat{D}$ fulfill $\hat{A}_{0} \circ \hat{D}=0$ and applying (15) to \hat{A} gives

$$
\begin{aligned}
(n-2)\|A\|_{(p)}^{p} & =(n-2)\left(\left\|\hat{A}_{0}\right\|_{(1)}+\|\hat{D}\|_{(1)}\right) \\
& \leq(n-2)\left\|\hat{A}_{0}\right\|_{(1)}+(n-1)\|\hat{D}\|_{(1)} \\
& =\left\|(n-2) \hat{A}_{0}+(n-1) \hat{D}\right\|_{(1)} \\
& =\left\|\sum_{k=1}^{n} \hat{A}_{k}\right\|_{(1)} \leq \sum_{k=1}^{n}\left\|\hat{A}_{k}\right\|_{(1)}=\sum_{k=1}^{n}\left\|A_{k}\right\|_{(p)}^{p} \\
& \leq n \max _{1 \leq k \leq n}\left\|A_{k}\right\|_{(p)}^{p} .
\end{aligned}
$$

Taking p-th roots supplies

$$
\begin{equation*}
\max _{1 \leq k \leq n}\left\|A_{k}\right\|_{(p)} \geq\left(\frac{n-2}{n}\right)^{1 / p}\|A\|_{(p)} \tag{17}
\end{equation*}
$$

The matrix $A:=E-I$ satisfies

$$
\|A\|_{(p)}=(n(n-1))^{1 / p} \quad \text { and } \quad\left\|A_{k}\right\|_{(p)}=((n-1)(n-2))^{1 / p} \quad \text { for all } k
$$

and thereby

$$
\max _{1 \leq k \leq n}\left\|A_{k}\right\|_{(p)}=\left(\frac{n-2}{n}\right)^{1 / p}\|A\|_{(p)}
$$

Hence (17) is sharp. Taking limits gives

$$
\lim _{p \rightarrow \infty}\left(\frac{n-2}{n}\right)^{1 / p}= \begin{cases}1 & \text { if } n>2 \\ 0 & \text { if } n=2\end{cases}
$$

and we conclude

$$
\begin{equation*}
\beta_{n}=\left(\frac{n-2}{n}\right)^{1 / p} \quad \text { for } 1 \leq p \leq \infty \quad\left(\text { with } 0^{0}:=0 \text { for } n=2\right) \tag{18}
\end{equation*}
$$

Summarizing, (16) and (18) prove Nr. 3 of Table 1. Note that $\|A\|_{(2)}$ is the Frobenius norm, so that (16) and (18) improve upon (11).

References

References

[1] R. Bhatia, MD. Choi, C. Davis, Comparing a matrix to its off-diagonal part, In: H. Dym, S. Goldberg, M.A. Kaashoek, P. Lancaster (eds) The Gohberg Anniversary Collection, Operator Theory: Advances and Applications 40/41, Birkhäuser, 1989.
[2] C.R. Johnson, Two submatrix properties of certain induced norms, Journal of Research of the National Bureau of Standards. Mathematical Sciences 79B(3,4) (1975) 97-102.
[3] C.R. Johnson, H.A. Robinson, Eigenvalue inequalities for principal submatrices, Linear Algebra and its Applications 37 (1981) 11-22.
[4] P. Lancaster, H. K. Farahat, Norms on direct sums and tensor products, Mathematics of Computation 26(118) (1972) 401-414.
[5] R.C. Thompson, Principal submatrices of normal and hermitian matrices, Illinois Journal of Mathematics 10 (2) (1966) 296-308.
[6] R.C. Thompson and P. McEnteggert, Principal submatrices II: the upper and lower quadratic inequalities, Linear Algebra and its Applications 1(2) (1968) 211-243.

[^0]: ${ }^{1}$ We do not require the norm to be submultiplicative. For example, our results also cover the numerical radius $r(A)$. Actually, all our findings are valid for seminorms, i.e., $\|A\|=0 \Rightarrow A=0$ is not needed.
 ${ }^{2}$ We prefer working with the embeddings $A_{k}=J_{k} A J_{k}$ of the principal submatrices $A_{\{k\}}$ of A into M_{n} rather than working with the $A_{\{k\}} \in M_{n-1}$ directly because this allows us to consider only one single norm without taking care of dimensional inheritance properties.
 ${ }^{3}\|A\|:=\left|\sum_{i, j} a_{i j}\right|+\varepsilon \sum_{i, j}\left|a_{i j}\right|$ defines a norm on M_{n} for any $\varepsilon>0$. The matrix $A:=E-(n-1) I$ fulfills $\|A\|=n+n(2 n-3) \varepsilon$ and $\left\|A_{k}\right\|=2(n-1)(n-2) \varepsilon$ for all $k \in\{1, \ldots, n\}$, so that α_{n} and β_{n} defined in (1) become arbitrarily small for $\varepsilon \rightarrow 0$.

[^1]: ${ }^{4}$ Recall that the upper bound $(n-2) / n$ for α_{n} is attained by $A:=e_{1} e_{2}^{T}$ for all norms.
 ${ }^{5}$ Example of a matrix realizing the upper bound or the exact value of β_{n}. Based on numerical evidence we conjecture that $(n-1) /(n+1)$ is the exact value of β_{n} in Nr.1.1.
 ${ }^{6}$ Recall that $A_{\{k\}}$ is the principal submatrix of order $n-1$ of A obtained by deleting the k-th row and column.

[^2]: ${ }^{7}$ In fact, this well-known result of Thompson motivated this note.

[^3]: ${ }^{8}$ In [4] and [2] the maximum property $N(A \oplus B)=\max (N(A), N(B))$ of certain induced matrix norms $N(\cdot)$ on direct sums $A \oplus B$ was introduced and characterized; the second part $\left\|A_{k}+c e_{k} e_{k}^{T}\right\| \leq \max \left(\left\|A_{k}\right\|,\left\|c e_{k} e_{k}^{T}\right\|\right)$ of (12) is a weakening of that property.

