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Abstract. In a recent paper by Campos and Mendoza an explicit formula was given for the limit probability distribution

of the leading digit of an. Computations for 1 ≤ n ≤ N , N large require a multiple precision arithmetic and are very slow. We

use a method proposed by Campos and Mendoza to perform computations in ordinary floating point. With the help of interval

arithmetic all results are rigorous.

1. The problem and its solution. For the following let fixed integers a, b ≥ 2 be given. Denote the
leading digit in the b-adic expansion of an by ldigit(an, b). That means for

an =
−∞∑
ν=m

βν · bν it is ldigit(an, b) = βm.(1.1)

The usual conventions apply, i.e. 0 ≤ βν < b, βm 6= 0 and |{ν : βν = b − 1}| < ∞. This implies that the
representation (1.1) is unique. Define

ϕN (k) := |{1 ≤ n ≤ N : ldigit(an, b) = k}|.

Then obviously
b−1∑
k=1

ϕN (k) = N , and in [3] it has been shown that

lim
N→∞

ϕN (k)/N = logb(1 + 1/k).

In order to run some numerical examples we need to compute, for given n, the leading digit of an in its
b-adic expansion. Fortunately, this can be reduced to a simple test involving logarithms.

Lemma 1.1. [3] For given a, b ≥ 2 and n ∈ IN it is

ldigit(an, b) = k ⇔ logb k ≤ nα− bnαc < logb(k + 1),

where α := logb a.

Proof. It is bm ≤ an < bm+1 iff m = blogb anc = bnαc. Therefore

ldigit(an, b) = k iff k · bm ≤ an < (k + 1)bm iff logb k + bnαc ≤ nα < logb(k + 1) + bnαc.

Therefore, the problem of computing ϕN (k) reduces to check

nα− bnαc ∈ [logb k, logb(k + 1)] for 1 ≤ n ≤ N.(1.2)

Rigorous results are produced if logarithms are computed with error bounds. Problems will occur if nα−bnαc
is exactly equal to logb k because in that case (1.2) cannot be satisfied unless nα−bnαc is computed without
error. But nα−bnαc = log k implies an = bm · k. This is, for example, true if an has only digit in the b-adic
expansion.

The following Matlab programm [2] uses the interval toolbox Intlab [4] to compute ϕn(N). Special care is
taken for the case an = k < b.
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function f(a,b,N)

p = zeros(b-1,1);

logb = log(intval(b));

alpha = log(intval(a))/logb;

nmin = 1;

while a^nmin<b

nmin = nmin+1;

end

n = nmin:N;

for k=1:b-1

K = intval(k);

x = n*alpha;

x = x - floor(x.inf);

logb_k = log(K)/logb;

logb_k1 = log(K+1)/logb;

I = ( logb_k <= x ) & ( x < logb_k1 );

p(k) = sum(I);

end

I = a.^(1:nmin-1);

p(I) = p(I) + 1;

p, sum(p)

Algorithm 1.2. Rigorous computation of ϕk(N)

Finally, we sum the computed values ϕN (k), 1 ≤ k ≤ b− 1 and check
b−1∑
k=1

ϕn(k) = N . Because the check for

(1.2) is rigorous, this proves correctness of the result. Otherwise we use Matlab vector notation and think
the program is self-explaining.

For b = 10, N = 105 and a ∈ {2, 3} the program produces the following results.

k ϕN (k) for a = 2 ϕN (k) for a = 3 logb(1 + 1/k)
1 30102 30101 0.30103
2 17611 17611 0.17609
3 12492 12492 0.12494
4 9692 9692 0.09691
5 7919 7917 0.07918
6 6695 6696 0.06695
7 5797 5799 0.05799
8 5116 5116 0.05115
9 4576 4576 0.04576

Table 1.3. ϕN (k) for a = 2 and a = 3
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Computing time was 5.1 seconds on a 300 MHz PentiumI Laptop. The numbers coincide with Figure 1 in
[1] (except the typo 3n → 2n). The results in Table 1.3 are completely rigorous and demonstrate the ease of
use of interval arithmetic and INTLAB.
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