Conservatism of the Circle Criterion Solution of a Problem posed by A. Megretski

Siegfried M. Rump

Abstract

In the collection of open problems in mathematical systems and control theory [1] Alexandre Megretski posed a problem from which it follows how conservative the well-known circle criterion may be. We solve this problem.

Keywords- circle criterion, robust stabilization, PerronFrobenius

In [8] Alexandre Megretski posed a problem ${ }^{1}$ (Problem 30) with certain implications: in harmonic analysis a connection between the time domain and frequency domain multiplications, in control theory the conservatism of the circle criterion, the possiblility of robust stabilization of a second-order uncertain system using a linear and time-invariant controller, and the conjectured finiteness of the gap between the minimum in some specially structured non-convex quadratic optimization problem and its natural relaxation (cf. [1, Problem 30]). Part 3 of the posed problem is as follows ($\sigma_{\max }$ denotes the largest singular value).
PROBLEM. Does there exist a finite constant $\gamma>0$ with the following feature: for any cyclic $n-b y-n$ real matrix ${ }^{2}$

$$
H=\left[\begin{array}{cccc}
h_{0} & h_{1} & \ldots & h_{n-1} \tag{1}\\
h_{n-1} & h_{0} & \ldots & h_{n-2} \\
& & \vdots & \\
h_{1} & h_{2} & \ldots & h_{0}
\end{array}\right]
$$

such that $\sigma_{\max }(H) \geq \gamma$, there exists a non-zero real vector x such that $\left|y_{i}\right| \geq\left|x_{i}\right|$ for all $i=0,1, \ldots, n-1$ where

$$
x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right], y=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right]=H x
$$

As Megretski mentions, the solution of this problem implies positive answers to the other two subproblems posed under problem number 30 in [1]. We solve the problem in the affirmative by giving narrow bounds for γ depending on the dimension of the matrix. We prove the following theorem.

Theorem 1: For any matrix $H \in \mathbf{R}^{n \times n}$ of the form (1) with

$$
\sigma_{\max }(H) \geq(3+2 \sqrt{2}) \cdot n
$$

there exists some nonzero $x \in \mathbf{R}^{n}$ with

$$
\begin{equation*}
\left|(H x)_{\nu}\right| \geq\left|x_{\nu}\right| \quad \text { for } 1 \leq \nu \leq n . \tag{2}
\end{equation*}
$$

Furthermore, there exists a sequence of matrices $H_{(n)} \in$ $\mathbf{R}^{n \times n}, 1 \leq n \in \mathbf{N}$, with

[^0]and
\[

$$
\begin{array}{ll}
\sigma_{\max }\left(H_{(n)}\right) \geq \frac{1}{2} n & \text { for } n \text { odd } \\
\sigma_{\max }\left(H_{(n)}\right) \geq \frac{1}{4} n & \text { for } n \text { even, }
\end{array}
$$
\]

such that for all $n \in \mathbf{N}$ there does not exist a nonzero vector $x \in \mathbf{R}^{n}$ with (2).

For the solution of Megretski's problem we need the extension of classical Perron-Frobenius theory from nonnegative to arbitrary real matrices [10]. This theory was developed to solve (cf. [11]) the conjecture that the componentwise distance to the nearest singular matrix is proportional to the reciprocal of its (componentwise) condition number [3, p.18], [5, p.140].

For a real matrix $A \in \mathbf{R}^{n \times n}$ define the real spectral radius [9] to be

$$
\rho_{0}(A):=\max \{|\lambda|: \lambda \text { real eigenvalue of } A\}
$$

and $\rho_{0}(A):=0$ if A has no real eigenvalue. The set of signature matrices is defined by

$$
\left\{S \in \mathbf{R}^{n \times n}: S \text { diagonal with }\left|S_{i i}\right|=1 \text { for } 1 \leq i \leq n\right\}
$$

Throughout the paper we will use absolute value of vectors and matrices and comparison of those componentwise. Thus, for example, $\left\{D \in \mathbf{R}^{n \times n}: D\right.$ diagonal with $\left.|D| \leq I\right\}$ consists of all diagonal matrices with $-1 \leq D_{i i} \leq 1$ for $i \in\{1, \ldots, n\}$.

The sign-real spectral radius [10] is defined by

$$
\begin{equation*}
\rho_{0}^{S}(A):=\max _{|\tilde{S}|=I} \rho_{0}(\tilde{S} A) \tag{3}
\end{equation*}
$$

It maximizes the real spectral radius when multiplying the rows of A independently by ± 1. This quantity generalizes many properties of the Perron root $\rho(A)$ of nonnegative matrices to general real matrices. Among the characterizations we need are the following.

Theorem 2: For $A \in \mathbf{R}^{n \times n}$ the following is true: i) $\rho_{0}^{S}(A)=\min \{0 \leq r \in \mathbf{R}: \operatorname{det}(r I-S A) \geq 0$ for all $|S|=I\}$.
ii) For $0 \leq r \in \mathbf{R}$ and $\operatorname{det}(r I-A) \neq 0$ it is

$$
\rho_{0}^{S}(A)<r \quad \Leftrightarrow \quad(r I-A)^{-1}(r I+A) \in \mathcal{P},
$$

where \mathcal{P} denotes the class of matrices with all principal minors positive.
iii) $\rho_{0}^{S}(A)=\max _{0 \neq x \in \mathbf{R}^{n}} \min _{x_{i} \neq 0}\left|\frac{(A x)_{i}}{x_{i}}\right|$.
iv) For $0 \leq r \in \mathbf{R}$ it is

$$
\rho_{0}^{S}(A) \geq r \quad \Leftrightarrow \quad \exists 0 \neq x \in \mathbf{R}^{n}:|A x| \geq r|x| .
$$

The parts are proven in [10, Theorems 2.3, 2.13, 3.1] and $i v$) is a consequence of $i i i)$. Part $i v$) gives a simple way to compute lower bounds of $\rho_{0}^{S}(A)$ for a given matrix A; upper bounds are difficult, in fact NP-hard to calculate [10, Theorem 3.5, Corollary 2.9].

The key to the solution of the PROBLEM are lower bounds for ρ_{0}^{S} depending on the geometric mean of cycles. Given a cycle $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \subseteq\{1, \ldots, n\}, 1 \leq|\mu|:=k \leq$ n, it is

$$
\left|\prod A_{\mu}\right|^{1 /|\mu|}=\left|A_{\mu_{1} \mu_{2}} \cdot \ldots \cdot A_{\mu_{k-1} \mu_{k}} \cdot A_{\mu_{k} \mu_{1}}\right|^{1 / k} .
$$

Note that the diagonal elements of A form cycles of length 1.

Theorem 3: For $A \in \mathbf{R}^{n \times n}$ and a cycle $\mu \subseteq\{1, \ldots, n\}$ it is

$$
\rho_{0}^{S}(A) \geq(3+2 \sqrt{2})^{-1} \cdot\left|\prod A_{\mu}\right|^{1 /|\mu|}
$$

Proof: [11, Theorem 4.4]
These results give the key to solve the PROBLEM. For the solution we need some more notation. A matrix of type (1) are is called circulant in matrix theory [6]. Denoting the permutation matrix $P \in \mathbf{R}^{n \times n}$ with $p_{12}=\ldots=p_{n-1, n}=$ $p_{n 1}=1$ it is

$$
\begin{align*}
H & =\operatorname{circ}\left(h_{0}, \ldots, h_{n-1}\right) \\
& =\left(\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & \ldots & h_{n-1} \\
h_{n-1} & h_{0} & h_{1} & \ldots & h_{n-2} \\
\ddots & \ddots & \ddots & & \\
h_{1} & h_{2} & h_{3} & \ldots & h_{0}
\end{array}\right) \tag{4}\\
& =\sum_{\nu=0}^{n-1} h_{\nu} P^{\nu} \in \mathbf{R}^{n \times n} .
\end{align*}
$$

Note that indices of h are running form 0 to $n-1$. Circulants have a number of interesting properties [2], among them that circulants are normal, i.e. $H=Q \Lambda Q^{*}$ for unitary $Q \in \mathbf{C}^{n \times n}$ and diagonal $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{n}\right)$. The eigenvalues of every circulant H can be ordered such that

$$
Q:=n^{-1 / 2} \cdot\left(\begin{array}{ccccc}
1 & 1 & 1 & & 1 \tag{5}\\
1 & \omega & \omega^{2} & & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & & \omega^{(n-1)(n-1)}
\end{array}\right)
$$

diagonalizes H, where $\omega=e^{2 \pi i / n}$. Hence for every circulant H,

$$
\begin{equation*}
\sigma_{\max }(H)=\|H\|_{2}=\|\Lambda\|_{2}=\rho(H) \tag{6}
\end{equation*}
$$

where ρ denotes the spectral radius.
With these preliminaries we can prove the first part of Theorem 1. Given a circulant H as in (1) with $\|H\|_{2} \geq(3+$ $2 \sqrt{2}) n$, it follows by Perron-Frobenius theory [12, Theorem 2.8]

$$
\begin{align*}
(3+2 \sqrt{2}) n \leq\|H\|_{2} & =\rho(H) \leq \rho(|H|) \\
& =\sum_{\nu=0}^{n-1}\left|h_{\nu}\right| \leq n \cdot \max _{0 \leq \nu \leq n-1}\left|h_{\nu}\right| \tag{7}
\end{align*}
$$

The diagonals form cycles with geometric mean $\left|h_{\nu}\right|$, and by (7), $\max \left|h_{\nu}\right| \geq 3+2 \sqrt{2}$. Hence, Theorem 3 implies $\rho_{0}^{S}(H) \geq 1$, and Theorem 2, iv) proves the first part of Theorem 1 .

To prove the second part define
$H_{(n)}:= \begin{cases}\operatorname{circ}(0,1,1, \ldots, 1,-1,-1, \ldots,-1) & \text { for } n \text { odd } \\ \operatorname{circ}(0,1,1, \ldots, 1,0,-1,-1, \ldots,-1) & \text { for } n \text { even. }\end{cases}$
The first row of $H_{(n)}$ comprises of an equal number of $k:=\lfloor(n-1) / 2\rfloor$ components +1 and -1 . The eigenvalues $\lambda_{m}(H)$ of a circulant $H=\operatorname{circ}\left(h_{0}, \ldots, h_{n-1}\right) \in \mathbf{R}^{n \times n}$ are [2]

$$
\begin{equation*}
\lambda_{m}(H)=\sum_{\nu=0}^{n-1} h_{\nu} \omega^{m \nu}, \quad \omega=e^{2 \pi i / n} \tag{9}
\end{equation*}
$$

with orthonormal eigenvector matrix Q as in (5). The matrices $H=H_{(n)}$ as defined in (8) are skew-symmetric for every n. Thus eigenvalues are purely imaginary and

$$
\begin{aligned}
\|H\|_{2} & =\rho(H)=\left|\sum_{\nu=0}^{n-1} \omega^{\nu}\right| \\
& =2 \cdot \mathcal{I} m \sum_{\nu=0}^{\lfloor n / 2\rfloor} \omega^{\nu}
\end{aligned}
$$

For even dimension n it is $\sum_{\nu=0}^{n / 2} \omega^{\nu}=\frac{\omega^{n / 2}-1}{\omega-1}=\frac{-2}{\omega-1}$ because $\omega^{n / 2}=0$. For odd dimension we proceed similarly and a computation yields

$$
\left\|H_{(n)}\right\|_{2}= \begin{cases}2 \cdot \cot \frac{\pi}{n} & \text { for } n \text { even } \\ \left(1+\cos \frac{\pi}{n}\right) \cot \frac{\pi}{n}+\sin \frac{\pi}{n} & \text { for } n \text { odd }\end{cases}
$$

In any case one verifies

$$
\begin{equation*}
\left\|H_{(n)}\right\|_{2} \geq 2 \cdot \cot \frac{\pi}{n} \geq \frac{n}{2} \quad \text { for } n \geq 4 \tag{10}
\end{equation*}
$$

To proceed further we need a slightly different upper bound for ρ_{0}^{S} which can be proven using Theorem 2, ii) and a continuity argument. We choose to give a different (from [10]) and simple proof of the following. A similar argument has been used in [7].

Lemma 4: Let $A \in \mathbf{R}^{n \times n}$ and $0<r \in \mathbf{R}$ be given. If $r I-A$ is nonsingular and all minors of the Cayley transform

$$
C=(r I-A)^{-1}(r I+A)
$$

are nonnegative, then $\rho_{0}^{S}(A) \leq r$.
Proof: With $C \in \mathcal{P}_{0}$, the class of matrices with all minors nonnegative, it is $C \cdot(I-D) \in \mathcal{P}_{0}$ for every diagonal D with $0 \leq D \leq I$, and also $C(I-D)+D \in \mathcal{P}_{0}$ (by expanding the determinant, see also [4, Theorem 5.26]). It is

$$
C(I-D)+D=(r I-A)^{-1}(r I+A-2 A D)
$$

For $D=\frac{1}{2} I$ and $r I-A$ being nonsingular it follows $\operatorname{det}(r I-$ $A)^{-1}>0$, and using all possiblilities $|D|=I$ it follows $\operatorname{det}(r I-A S)=\operatorname{det}(r I-S A) \geq 0$ for all $|S|=I$. Theorem 2 , i) finishes the proof.

For n odd and $k=(n-1) / 2$ the eigenvalues of $H=H_{(n)}$ compute to

$$
\lambda_{m}(H)=\frac{1-\omega^{(k-1) m}}{1+\omega^{(k-1) m}} \quad \text { for } 0 \leq m \leq n-1
$$

Therefore, the eigenvalues of the Cayley transform ($I-$ $H)^{-1}(I+H)$ are the roots of unity, and a computation yields
$(I-H)^{-1}(I+H)=Q \cdot \operatorname{diag}\left(\omega^{-(k+1) m}\right)_{0 \leq m \leq n-1} \cdot Q^{*}=P^{k}$
with P being the permutation matrix $\operatorname{circ}(0,1,0, \ldots, 0)$. Because n is odd, every minor of P and of every power of P is nonnegative. Thus Lemma 4 shows $\rho_{0}^{S}(H) \leq 1$. By $|H x| \geq|x|$ for $x=(1,1,0, \ldots, 0)^{T}$ and Theorem 2, iv) it follows $\rho_{0}^{S}\left(H_{(n)}\right)=1$ for n odd.

For n even things are a little more complicated. One can show

$$
C:=(2 I-H)^{-1}(2 I+H)=\frac{1}{2} \operatorname{circ}(1, z, 1,1, z,-1)
$$

where z is a row vector of $\frac{n}{2}-1$ zeros. Some more involved computation shows that all minors of C are nonnegative and Lemma 4 implies $\rho_{0}^{S}(H) \leq 2$. For the signature matrix S with diagonal element $S_{\nu \nu}=-1$ for $\nu \in\left\{1, \frac{n}{2}+1\right\}$, and +1 otherwise it is $\operatorname{det}(2 I-S H)=0$, and by Theorem 2 , $i)$ it follows $\rho_{0}^{S}\left(H_{(n)}\right)=2$ for n even. Summarizing

$$
\rho_{0}^{S}\left(H_{(n)}\right)= \begin{cases}1 & \text { for } n \text { odd } \tag{11}\\ 2 & \text { for } n \text { even } .\end{cases}
$$

Replacing $H_{(2 n)}$ by $\frac{1}{2} H_{(2 n)}$ produces matrices H with $\rho_{0}^{S}(H)=1$ and $\sigma_{\max }(H) \geq \frac{n}{2}$ for n odd, and $\sigma_{\max }(H) \geq \frac{n}{4}$ for n even. This proves Theorem 1 for $n \geq 4$. A simple computation shows that it also holds for $n \leq 3$. Theorem 1 is proved.

Finally we remark that

$$
\rho_{0}^{S}(A)=\|H\| \quad \text { for a circulant } H \text { and } n \in\{1,2,4\}
$$

This is straightforward for $n \in\{1,2\}$ using the characterizations given before, and for $n=4, H=\operatorname{circ}\left(h_{0}, h_{1}\right.$, h_{2}, h_{3}) and using (9) one can show that

$$
\begin{aligned}
\|H\|=\rho(H)=\max (& \left|\left(h_{1}-h_{3}\right)+i\left(h_{0}-h_{2}\right)\right| \\
& \left.\left|h_{0}-h_{1}+h_{2}-h_{3}\right|,\left|\sum_{\nu=0}^{3} h_{\nu}\right|\right)
\end{aligned}
$$

Choosing suitable signature matrices S shows $\rho_{0}^{S}(H)=$ $\rho(H)=\|H\|$. This implies

Corollary 5: For a circulant $H \in \mathbf{R}^{n \times n}, n \in\{1,2,4\}$ it is

$$
\|H\| \geq 1 \quad \Leftrightarrow \quad \exists 0 \neq x \in \mathbf{R}^{n}:|H x| \geq|x|
$$

References

[1] V.D. Blondel, E.D. Sontag, M. Vidyasagar, and J.C. Willems. Open Problems in Mathematical Systems and Control Theory. Springer, 1999.
[2] P.J. Davis. Circulant Matrices. John Wiley, New York, 1979.
[3] J.W. Demmel. The Componentwise Distance to the Nearest Singular Matrix. SIAM J. Matrix Anal. Appl., 13(1):10-19, 1992.
[4] M. Fiedler. Special matrices and their applications in numerical mathematics. Martinus Nijhoff Publishers, Dordrecht, 1986.
[5] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 1996.
[6] R.A. Horn and Ch. Johnson. Matrix Analysis. Cambridge University Press, 1985.
[7] C.R. Johnson and M.J. Tsatsomeros. Convex Sets of Nonsingular and P-Matrices. LAMA, 38(3):233-239, 1995.
[8] A. Megretski. Problem 30: How conservative is the circle criterion? In V.D. Blondel, E.D. Sontag, M. Vidyasagar, and J.C. Willems, editors, Open Problems in Mathematical Systems and Control Theory, pages 149-151. Springer, London, 1999.
[9] J. Rohn. Systems of Linear Interval Equations. Linear Algebra Appl. 126, pages 39-78, 1989.
[10] S.M. Rump. Theorems of Perron-Frobenius type for matrices without sign restrictions. Linear Algebra and its Applications ($L A A$), 266:1-42, 1997.
[11] S.M. Rump. Ill-conditioned Matrices are componentwise near to singularity. SIAM Review (SIREV), 41(1):102-112, 1999.
[12] R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1962.

[^0]: ${ }^{1}$ The author wishes to thank P. Batra for pointing to this problem.
 ${ }^{2}$ Note indices run from 0 to $n-1$.

