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OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO
SINGULARITY

SIEGFRIED M. RUMP ∗

Abstract. In this note we give lower and upper bounds for the optimal p-norm condition number achievable by two-sided

diagonal scalings. There are no assumptions on the irreducibility of certain matrices. The bounds are shown to be optimal

for the 2-norm. For the 1-norm and inf-norm the (known) exact value of the optimal condition number is confirmed. We give

means how to calculate the minimizing diagonal matrices. Furthermore, a class of new lower bounds for the componentwise

distance to the nearest singular matrix is given. They are shown to be superior to existing ones.

1. Introduction and notation. Through the paper let A be an n × n nonsingular real matrix. The
condition number of A is defined by

κp(A) := lim
ε→0

sup
‖∆A‖p≤ε‖A‖p

(‖(A + ∆A)−1 −A−1‖p

ε‖A−1‖p

)
,

where ‖ · ‖p denotes the Hölder p-norm, 1 ≤ p ≤ ∞. It is well known (cf. [4, Theorem 6.4,7.2]) that

κp(A) = lim
ε→0

sup
{‖∆x‖p

ε‖x‖p
: Ax = b = (A + ∆A)(x + ∆x), ‖∆A‖p ≤ ε‖A‖p

}

= ‖A−1‖p‖A‖p.

The question arises what is the minimum condition number achievable by two-sided diagonal scaling, i.e.
the value of

µp := inf
D1,D2∈Dn

κp(D1AD2),(1)

where Dn ⊆ Mn(IR) denotes the set of n × n diagonal matrices with positive diagonal elements. Various
results are known (cf. [4, Section 7]). Especially for the ∞-norm Bauer [2] shows (cf. [4, Theorem 7.8,
Exercise 7.9])1

µ∞ = %(|A−1||A|) if |A−1||A| and |A||A−1| are irreducible,(2)

% denoting the spectral radius. In the following we derive general two sided bounds for µp including (2)
without irreducibility condition. We will prove

µp ≤ %(|A−1||A|) ≤ n2 min(1/p,1−1/p) · µp.(3)

The bounds differ at most by a factor n (for the 2-norm). For p ∈ {1,∞} the exact value of µp is %(|A−1||A|)
for general A, and we show that the bounds in (3) are sharp for the 2-norm. Furthermore, the minimizing
diagonal matrices can be calculated explicitly.

Finally, the results are used to derive new lower bounds for the componentwise distance to the nearest
singular matrix. The bounds are shown to be superior to existing ones. Frequently, the derived methods
allow to calculate the exact value of the componentwise distance to the nearest singular matrix. This
seems remarkable because Polak and Rohn [7] showed that the computation of this number is NP -hard.
Computational results of matrices up to dimension n = 50 are presented.

Throughout the paper we will use absolute value and comparison of matrices always entrywise. For example,
|Ẽ| ≤ E is equivalent to |Ẽij | ≤ Eij for all i, j.
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1The starting point of this paper was the question by N. Higham whether the irreduciblility assumptions in [4, Theorem

7.8] can be omitted.
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2. A result from matrix theory. In this section we will prove the following theorem.

Theorem 2.1. Let A1, . . . , Ak ∈ Mn(IR) be given and denote by m, 0 ≤ m ≤ k, the number of nonnegative
matrices among the Aν . For fixed p, 1 ≤ p ≤ ∞, define

µ := inf
D1,...,Dk∈Dn

‖D−1
1 A1D2‖p · ‖D−1

2 A2D3‖p · . . . · ‖D−1
k AkD1‖p.(4)

Then for α := nmin(1/p,1−1/p) we have

µ ≤ %(|A1||A2| . . . |Ak|) ≤ αk−mµ.(5)

The inequalities are equalities if all Aν are nonnegative. The left bound is sharp for all p and all n. For
p = 2, the right bound is sharp at least for the infinitely many values of n, where a Hadamard matrix exists.

Before we prove Theorem 2.1 we need some auxiliary results. First we generalize a result by Albrecht [1] to
arbitrary nonnegative matrices.

Lemma 2.2. Let nonnegative M ∈ Mn(IR) be given. Then for all p, 1 ≤ p ≤ ∞,

inf
D∈D

‖D−1MD‖p = %(M).

Proof. Albrecht [1] proved this result for irreducible M . Furthermore, he proved the infimum to be a
minimum in that case and gave explicit formulas for the minimizing D depending on the left and right
Perron vector of M . For general M , we may assume without loss of generality M to be in its irreducible
normal form

M =




M11 . . . M1k

. . .
...

0 Mkk


 ,(6)

where the Mνν , 1 ≤ ν ≤ k denote an irreducible or a 1× 1 zero matrix. This is because (6) is achieved by a
permutational similarity transform PT MP and ‖D−1PT MPD‖p = ‖(PDPT )−1MPDPT ‖p with diagonal
PDPT . By Albrecht’s theorem there are Dνν ∈ D of appropriate size such that

‖D−1
ν MννDν‖p = %(Mνν).

Set D = diag(D1, εD2, . . . , ε
k−1Dk) ∈ Dn. Then

D−1MD =




D−1
1 M11D1 O(ε)

. . .

0 D−1
k MkkDk


 ,

a block upper triangular matrix with O(ε) terms above the block diagonal. Therefore

‖D−1MD‖p = max
ν
‖D−1

ν MννDν‖p +O(ε)

= max
ν

%(Mνν) +O(ε) = %(M) +O(ε).
(7)

Using Albrecht’s result a D with (7) can be constructed explicitly for every ε > 0. For the 2-norm and
irreducible nonnegative M this is particularly easy. Denote r := %(M) > 0, Mx = rx > 0, MT y = ry > 0
and define D ≥ 0 such that D−1x = Dy. Then for N := D−1MD,

NT N ·Dy = NT D−1MD ·D−1x = rNT D−1x

= rDMT D−1 ·Dy = r2Dy,

showing Dy > 0 to be the Perron vector of NT N ≥ 0, and therefore ‖D−1MD‖2 = r.
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For the proof of Theorem 2.1 and general M we also need

‖M‖p ≤ ‖ |M | ‖p ≤ nmin(1/p,1−1/p) · ‖M‖p,(8)

which is true for all M ∈ Mn(IR) and all 1 ≤ p ≤ ∞ (cf. [4, exercise 6.15]).

Proof of Theorem 2.1. First we transform the definition of µ into the minimization of the p-norm of a
certain matrix. Define the block cyclic matrix

A =




0 A1

0 A2

. . .

Ak−1

Ak 0



∈ Mkn(IR).(9)

Then ‖A‖p = max
1≤ν≤k

‖Aν‖p because the p-norm is invariant under row or column permutations. For D :=

diag(D1, . . . , Dn) ∈ Dkn it follows

‖D−1AD‖p = max
1≤ν≤k

‖D−1
ν AνDν+1‖ with k + 1 interpreted as 1.(10)

This and the infimum in (4) imply

µ1/k ≤ inf
D∈D

‖D−1AD‖p.(11)

Now we can prove the inequalities in (5). Suppose, according to Lemma 2.2, D̃ ∈ Dkn is given such that
%(|A|) + ε = ‖D̃−1|A|D̃‖p. Then by (11) and (10),

µ1/k ≤ ‖D̃−1AD̃‖p ≤ ‖D̃−1|A|D̃‖p = %(|A|) + ε.

But the cyclicity of A defined by (9) implies %(|A|) = %(|A1| . . . |Ak|), and this proves the left inequality in
(4). For the right inequality suppose D̃1, . . . , D̃k ∈ Dn be given such that

µ + ε = ‖D̃−1
1 A1D̃2‖p · . . . · ‖D̃−1

k AkD̃1‖p.

Then by (8),

µ + ε ≥ α−(k−m) · ‖D̃−1
1 |A1|D̃2‖p · . . . · ‖D̃−1

k |Ak|D̃1‖p

≥ α−(k−m) · ‖D̃−1
1 |A1| · |A2| · . . . · |Ak|D̃1‖p

≥ α−(k−m) · %(D̃−1
1 |A1| · . . . · |Ak|D̃1)

= α−(k−m) · %(|A1| · . . . · |Ak|).

The left inequality in (5) is obviously sharp for all Aν equal to the identity matrix I. Let p = 2 and let H be
an n× n Hadamard matrix, i.e. |Hij | = 1 for all i, j, and HT H = nI. Define Aν = n−1/2H for 1 ≤ ν ≤ n.
Then the Aν are orthogonal, and obviously µ = 1. On the other hand, %(|A1| · . . . · |An|)k = nk/2 = αk, such
that the right inequality in (5) is sharp for p = 2 and infinitely many values of n. The theorem is proved.

Note that there is in fact equality in (11) although this is, as remarked by a referee, not necessary for the
proof. This is because in optimality all norms ‖D−1

ν AνDν+1‖ must be equal, and to see this it suffices to
use suitable multiples Dν := ανI of the identity matrix.

Note that for A1 = . . . = Ak = Q being some orthogonal matrix, e.g. orth(rand(n)) in Matlab [5] notation,
freqently |Qij | is of the order n1/2 for all i, j, and %(|Q|) is of the order

√
n. This means that for general

orthogonal Q = A1 = . . . = Ak the right bound (5) is almost sharp.
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3. Optimal two-sided scaling. With these preparations we can state our two-sided bounds for the
optimal p-condition number with respect to two-sided diagonal scaling.

Theorem 3.1. Let nonsingular A ∈ Mn(IR) be given and let 1 ≤ p ≤ ∞. Define

µp := inf
D1,D2∈Dn

κp(D1AD2).

Then

µp ≤ %(|A−1| |A|) ≤ α2
p · µp

with αp := nmin(1/p,1−1/p). For p ∈ {1,∞} both inequalities are equalities. The left bound is sharp for all p.
For p = 2 the right inequality is sharp at least for the infinitely many values of n where an n× n Hadamard
matrix exists.

The proof is an immediate consequence of Theorem 2.1. Note that by the proof of Lemma 2.2 one may find
D1, D2 explicitly such that κp(D1AD2) approximates %(|A−1| |A|), a value not too far from the optimum.

For the computation of the true value of the minimum 2-norm condition number we mention the following.
By (10) and (11) we may transform the problem into

inf
D1,D2∈Dn

κ2(D1AD2) = inf
D∈D2n

‖D−1

(
0 A

A−1 0

)
D‖22.(12)

In 1990, Sezginer and Overton [9] gave an ingenious proof for the fact that for fixed M ∈ Mn(IR), the
function ‖e−DMeD‖2 is convex in the Dνν . This offers reasonable ways to compute µ2 by means of convex
optimization (see also [10]).

4. Componentwise distance to singularity. In [3] the componentwise distance to the nearest sin-
gular matrix ω(A,E) was investigated. It is defined by

ω(A,E) := min{α : |Ẽ| ≤ αE, det(A + Ẽ) = 0}.(13)

As before we will assume A to be nonsingular. A well known lower bound is

%(|A−1|E)−1 ≤ ω(A,E).(14)

This follows easily by

det(A + Ẽ) = 0 = det(I + A−1Ẽ), |Ẽ| ≤ α|E|, α = ω(A,E) ⇒
1 ≤ %(A−1Ẽ) ≤ %(|A−1| |Ẽ|) ≤ α · %(|A−1|E),

the latter deductions using classical Perron-Frobenius Theory.

In interval analysis this is a well known tool to show nonsingularity of an interval matrixA := [A−E,A+E] =
[Ã : A− E ≤ Ã ≤ A + E]. An interval matrix is called nonsingular, if all Ã ∈ A share this property. Now
%(|A−1|E) < 1 implies A to be nonsingular, and therefore an interval matrix with this property is called
strongly regular [6].

The lower bound (14) was for a long time the only known (simple) criterion for regularity of an interval
matrix. In [8, Corollary 1.10], we proved

[‖A−1‖2‖E‖2
]−1 ≤ ω(A,E).(15)

It was shown that for both criteria (14) and (15) there are examples where the one is satisfied and the other
is not.

Our analysis yields new lower bounds for ω(A,E) and henceforth new sufficient criteria for nonsingularity
of an interval matrix. The new lower bounds will be shown to be superior to the lower bound %(|A−1|E)−1.
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Note that a lower bond r ≤ ω(A,E) implies all matrices Ã with |Ã−A| < rE to be nonsingular. Also note
that the computation of ω(A,E) is known to be NP -hard [7].

The reciprocal of ‖A−1‖p‖E‖p is always a lower bound for ω(A,E). This is seen as before by

det(A + Ẽ) = 0 = det(I + A−1Ẽ), |Ẽ| ≤ αE, α = ω(A,E) ⇒
1 ≤ %(A−1Ẽ) ≤ ‖A−1‖p‖Ẽ‖p ≤ ‖A−1‖p‖‖ |Ẽ| ‖p ≤ α · ‖A−1‖p ‖E‖p

with the aid of (8). But ω(A,E) is invariant under left and right diagonal scaling, so

∀D1, D2 ∈ Dn :
[‖D−1

2 A−1D−1
1 ‖p‖D1ED2‖p

]−1 ≤ ω(A,E).

The infimum of the left hand side can be bounded by means of Theorem 2.1) and we obtain the following.

Theorem 4.1. Let nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) be given. Define for 1 ≤ p ≤ ∞

νp := inf
D1,D2∈Dn

‖D−1
2 A−1D−1

1 ‖p‖D1ED2‖p.(16)

Then

ν−1
p ≤ ω(A,E) for all 1 ≤ p ≤ ∞.(17)

Moreover, for all 1 ≤ p ≤ ∞,

νp ≤ %(|A−1|E) ≤ αpνp, where αp := nmin(1/p,1−1/p).

That means the new lower bound (17) is the same as (14) for p ∈ {1,∞}, and better than (14) for all
other values of p. Moreover, for p = 2 the bound (17) may be better up to a factor

√
n. This factor

is achieved, for example, for all Hadamard matrices H by setting A = n−1/2H, E = |A|. In this case
%(|A−1| |A|) = n ≤ √

n · ν2 ≤
√

n · ‖A−1‖2‖ |A| ‖2 = n implies ν2 =
√

n = n−1/2 · %(|A−1| |A|). Is ν2 always
a global minimum of the νp?

Finally, the computation of ν2 also yields a method to calculate an upper bound of ω(A,E). This is done
by calculating some Ẽ with det(A + Ẽ) = 0. Then |Ẽ| ≤ βE implies ω(A,E) ≤ β.

By (10) and (11) we have

ν
1/2
2 = inf

D∈D2n

‖D−1

(
0 E

A−1 0

)
D‖2.(18)

Equality is seen as in the remark after the proof of Theorem 2.1: For ‖A−1‖ 6= ‖E‖ choose suitable D1 :=

αI, D2 := I, block diagonal D := diag(D1, D2) and observe ‖D−1

(
0 E

A−1 0

)
D‖ = max(α‖A−1‖,

α−1‖E‖). This proves ‖A−1‖ = ‖E‖ in optimality. For the moment assume the infimum is a minimum and

A and E are scaled such that ν
1/2
2 = ‖

(
0 E

A−1 0

)
‖2. By (10) and the infimum process in the original

definition (16) this implies ‖A−1‖2 = ‖E‖2 = ν
1/2
2 =: r. Denote singular vectors of A−1 and E to r by

‖u‖2 = ‖v‖2 = ‖x‖2 = ‖y‖2 = 1 and Ev = ru, A−1y = rx. Then
(

0 E

A−1 0

)(
y 0
0 v

)
= r

(
0 u

x 0

)
,

such that

(
y 0
0 v

)
and

(
0 u

x 0

)
span a 2-dimensional right and left singular vector space of

(
0 E

A−1 0

)

to r. Suppose the multiplicity of the largest singular value r of

(
0 E

A−1 0

)
is equal to 2. Then by [10]
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the minimization property of ν2 implies that for 1 ≤ i ≤ n the i-th rows of

(
y 0
0 v

)
and

(
0 u

x 0

)
do

have the same 2-norm. This means |y| = |u| and |v| = |x| or, for some signature matrices |S1| = |S2| = I,
we have y = S1u and v = S2x. Then

A−1S1ES2x = A−1S1Ev = rA−1S1u = rA−1y = r2x,

and therefore

det(r2I −A−1S1ES2) = 0 = det(A− r−2S1ES2).

For Ẽ := −r−2S1ES2 this means

det(A + Ẽ) = 0 and |Ẽ| ≤ r−2 · E = ν−1
2 E.

In turn, if the multiplicity of the largest singular value of the minimizing matrix in (18) is two, then that of
A−1 and E is one and the infimum in (18) is a minimum.

The minimization in (18) may be performed following [10] by minimizing the convex function

‖e−D

(
0 E

A−1 0

)
eD‖2. Suppose α = ‖

(
0 Ê

Â−1 0

)
‖2 = ν

1/2
2 for Ê and Â−1 being diagonally scaled E

and A−1, respectively. Then (18) and (17) imply

α−2 ≤ ω(A,E).(19)

Now take singular vectors u, v, x, y of E and A−1 as above and set S1 := diag(u ◦ y), S2 := diag(v ◦ x) with
◦ denoting the entrywise (Hadamard) product. If entries in u, v, x, y are zero, some heuristic may be applied
to choose the corresponding diagonal elements of S1, S2 in {−1, 1}. For such S1, S2 define

β := max{|λ| : λ real eigenvalue of A−1S1ES2},

with β := 0 if A−1S1ES2 does not have a real eigenvalue. If β 6= 0, then

det(sβI −A−1S1ES2) = 0 = det(A− β−1sS1ES2)

for s ∈ {−1,+1} with |β−1sS1ES2| = β−1E. By the definition (13) and (19) it follows

α−2 ≤ ω(A,E) ≤ β−1.(20)

This process might be repeated for other signature matrices S1, S2, each pair producing a valid upper bound
for ω(A,E).

In a practical application computation of ν2 to high accuracy is costly, although it can be solved by a convex
minimization problem. Therefore it may be advisable to perform only a few minimization steps.

5. Numerical results. For different dimensions n we defined 100 random matrices A ∈ Mn(IR) with
entries chosen randomly and uniformly distributed within [−1, 1]. For each matrix we computed bounds
[r, r] for ω(A, |A|) as in (20), that is with respect to relative perturbations of A. The following table displays
the median and maximum relative error (r − r)/(r + r).

relative error
n median maximum
10 3.0 · 10−3 4.4 · 10−2

20 6.4 · 10−3 8.0 · 10−2

50 1.9 · 10−6 2.7 · 10−2
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In a number of cases the exact value of ω(A, |A|) was enclosed fairly accurately within the bounds [r, r].
This seems remarkable for this NP -hard problem and the dimensions in use. The surprisingly good median
value for n = 50 seems to have occurred accidentally.

Acknowledgement. The author wishes to thank two anonymous referees and Nick Higham for various
helpful and constructive comments.
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