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EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS

SIEGFRIED M. RUMP ∗

Abstract. We investigate the behavior of eigenvalues under structured perturbations. We show that for many common

structures such as (complex) symmetric, Toeplitz, symmetric Toeplitz, circulant and others the structured condition number

is equal to the unstructured condition number for normwise perturbations, and prove similar results for real perturbations.

An exception are complex skewsymmetric matrices. We also investigate componentwise complex and real perturbations. Here

Hermitian and skew-Hermitian matrices are exceptional for real perturbations. Furthermore we characterize the structured

(complex and real) pseudospectrum for a number of structures and show that often there is little or no significant difference to

the usual, unstructured pseudospectrum.

AMS subject classifications. 65F15, 15A18

1. Introduction. Let A be a complex n×n matrix. We will investigate the behavior of the eigenvalues
of A with respect to structured perturbations. We first look at the condition number, i.e. infinitely small
perturbations, and then at the pseudospectrum, i.e. finite perturbations. For the condition number, assume
λ to be a simple eigenvalue of A with (normalized) right and left eigenvectors x and y, respectively, i.e.

Ax = λx, yHA = λyH with ‖x‖ = ‖y‖ = 1.(1.1)

Throughout this paper ‖ · ‖ denotes the spectral norm ‖ · ‖2, for vectors and for matrices. For a perturbation
∆A of A with ‖∆A‖ ≤ ε and sufficiently small ε, the eigenvalue λ is uniquely perturbed into some λ + ∆λ.
Hence a commonly used definition [16] of the condition number of λ is

κ(A, λ) := lim
ε→0

sup
{ |∆λ|

ε
: ∆A ∈ Cn×n, ‖∆A‖ ≤ ε, λ + ∆λ ∈ Λ(A + ∆A)

}
,(1.2)

where Λ(A) denotes the spectrum of A. It is well known [11] that κ(A, λ) = 1/|yHx|. To underline that
perturbations are complex, we also use κC(A, λ). The condition number for perturbations restricted to real
ones is denoted by κR(A, λ) and can decrease κC(A, λ) by at most a factor 1/

√
2 [7]. Our definition of

the condition number reflects the absolute change of λ; for a relative condition number of λ 6= 0 divide by
|λ|. This is not important for this paper because we are interested in the difference between the condition
numbers for general and for structured perturbations.

It seems reasonable for a structured matrix, for example symmetric or Toeplitz or circulant, to ask for the
sensitivity of λ with respect to structure-preserving perturbations. This leads to the structured condition
number. For linear structures this has been investigated in [16, 13], for other structures see [19, 21]. In
the present paper we will treat several linear structures. Some of these structures but also others like
Hamiltonians have been investigated in [29, 22]. Let

struct ∈ {sym, Herm, skewsym, skewHerm, persym, Toep, symToep, Hankel, persymHankel, circ}(1.3)

denote structures such that A ∈ M struct
C implies A ∈ Cn×n to be symmetric, Hermitian, skewsymmetric,

skew-Hermitian, persymmetric, (general) Toeplitz, symmetric Toeplitz, Hankel, persymmetric Hankel or
circulant, respectively. Moreover, A ∈ M struct

R shall imply A to be structured and real. Then the structured
condition number of λ restricts perturbations ∆A in the definition (1.2) to (real or complex) structured ones
[16]:

κstruct
IK (A, λ) := lim

ε→0
sup

{ |∆λ|
ε

: ∆A ∈ M struct
IK , ‖∆A‖ ≤ ε, λ + ∆λ ∈ Λ(A + ∆A)

}
,(1.4)
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where IK ∈ {R,C}. A given matrix may belong to more than one structure. For example, for a real symmetric
Toeplitz matrix A ∈ M symToep

R also A ∈ M symToep
C , A ∈ M sym

C or A ∈ M sym
R , possibly resulting in different

condition numbers. As we will see, this is not the case.

Definitions (1.2) and (1.4) may also be applied to a matrix A not belonging to the same structure, or real
perturbations to a complex matrix. With few exceptions we will not treat these cases. Note that, provided A

belongs to the structure, for all structures in (1.3) the definition of the real or complex structured condition
number does not change when replacing ∆A ∈ M struct

IK by A + ∆A ∈ M struct
IK .

We furthermore investigate the condition number subject to (real or complex) componentwise perturbations,
i.e.

condE,IK(A, λ) := lim
ε→0

sup
{ |∆λ|

ε
: ∆A ∈ IKn×n, |∆A| ≤ ε|E|, λ + ∆λ ∈ Λ(A + ∆A)

}
(1.5)

where E denotes a weight matrix and comparison and absolute value for matrices are to be understood
componentwise. Similarly, the structured condition number restricts perturbations to structured ones, i.e.

condstruct
E,IK (A, λ) := lim

ε→0
sup

{ |∆λ|
ε

: ∆A ∈ M struct
IK , |∆A| ≤ ε|E|, λ + ∆λ ∈ Λ(A + ∆A)

}
.(1.6)

A common choice for the weight matrix is E = A, which implies componentwise relative perturbations of
each matrix entry.

The structured condition number for eigenvalues was defined and investigated in [16], see also [13]. In
this paper we will prove that for most structures listed in (1.3) the structured and unstructured condition
numbers are equal, for complex as well as for real perturbations. In other words, amongst the worst case
perturbations there is a structured one, and such a perturbation will be identified by our constructive proofs.

For normwise perturbations, there is one extreme exception to that statement, namely skewsymmetric ma-
trices. In this case the (complex) unstructured and structured condition number can differ by an arbitrarily
large factor. However, complex skewsymmetric matrices seem not very common.

For componentwise real perturbations there are two exceptions to the former statement for the structures
under investigation, namely Hermitian and skew-Hermitian matrices. For both the general condition number
may be equal to one, whereas the condition number for relative and real perturbations of each entry of the
matrix is zero. However, this is for real perturbations applied to a complex matrix.

The (structured) condition number investigates the sensitivity of an eigenvalue under infinitely small per-
turbations. The behavior of eigenvalues under finite perturbations of the matrix is characterized by the
pseudospectrum, investigated and popularized by Trefethen [31], [32], [10]. The pseudospectrum of a matrix
A is defined by

Λε(A) := {λ ∈ C : ∃E ∈ Cn×n, ‖E‖ ≤ ε, λ ∈ Λ(A + E)}(1.7)

with the well known characterization [31]

Λε(A) = {λ ∈ C : ‖(A− λI)−1‖ ≥ ε−1}.(1.8)

The latter is clear by interpreting E as a perturbation of A−λI into a singular matrix, and using the famous
result by Eckart and Young [17, Theorem 6.5] that the distance to singularity in the 2-norm equals the
reciprocal of the norm of the inverse, which is the reciprocal of the condition number for a matrix of norm 1.

In [28] we generalized this theorem to structured distances and structured condition numbers. For most
structures out of (1.3) the structured distance in the 2-norm of a matrix to the nearest singular one is
equal to the unstructured distance, and equal to the reciprocal of the structured (and the unstructured)
condition number for a matrix of norm 1. In other words, restricting perturbations to structured ones
changes nothing, amongst the worst case perturbations is a structured one. This implies for example that
the (complex) structured and unstructured pseudospectrum coincides for Toeplitz and circulant matrices
(see [12]).
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Note that the pseudospectrum generalizes the condition number in two ways: i) finite rather than infinitely
small perturbations are treated, and ii) there is no restriction to simple eigenvalues. The former complicates
the matter because terms of higher order cannot be neglected. A number of our results on the condition
number also follow by the corresponding ones on the pseudospectrum so that their independent proofs could
be omitted. However, we feel that the separate and constructive proofs have their own value and may provide
additional insight into the matter.

The (general) pseudospectrum has many interesting properties and reveals insights into certain properties
of the matrix [31], [32]. So for structured matrices it seems also reasonable to look at the structured
pseudospectrum by limiting finite perturbations E to some structure. This has been done in different ways
in the literature. In control theory perturbations of the form E = PMQ with fixed matrices P and Q are
studied, see [18] and [30]. Those ideas are closely related to the µ-number [9], [25]. Results on componentwise
distances can be found in [23]. In this paper we use

Λstruct
ε (A) := {λ ∈ C : ∃E ∈ M struct

C , ‖E‖ ≤ ε, λ ∈ Λ(A + E)}.(1.9)

This borrows from the corresponding definitions in sensitivity analysis and condition numbers for linear
systems [15], [28], and is similar to the definition (1.4) for eigenvalues. It is also used in [12] and [22]. A
similar definition is used by Böttcher et al. [4], [3], where perturbations are restricted to banded Toeplitz
structures, and it is shown that the banded Toeplitz-structured and unstructured pseudospectrum do, in
general, not coincide.

We aim to characterize Λstruct
ε (A) for most structures in (1.3). In fact, for many of those structures we will

show Λε(A) = Λstruct
ε (A), especially for struct = Toep. As noted by Albrecht Böttcher, here is a beautiful

example for the fact that assertions being valid for all finite matrices need not extend to infinite operators
[2]: Definitions (1.7) and (1.9) make also sense for bounded linear operators. But [5, Theorem 8.2] implies
that for Toeplitz operators A, that is, for operators generated by infinite Toeplitz matrices on `2(N), the
equality Λε(A) = ΛToep

ε (A) is in general not true. This is in remarkable contrast to our Theorem 4.3, which,
among other things, says that this equality is always valid for finite Toeplitz matrices!

Note that perturbations in (1.9) are complex structured; we will also characterize the real structured pseu-
dospectrum

Λstruct
ε,R (A) := {λ ∈ C : ∃E ∈ M struct

R , ‖E‖ ≤ ε, λ ∈ Λ(A + E)}.(1.10)

for most structures in (1.3). In many cases the real structured pseudospectrum is the intersection of the
unstructured pseudospectrum with the real line. Although the (complex) structured and unstructured pseu-
dospectrum coincide for persymmetric matrices, substantial differences may occur when restricting pertur-
bations to real ones. This is nicely demonstrated in Figure 4.2. Again, if A ∈ M struct

IK , then E ∈ M struct
IK

may be replaced by A + E ∈ M struct
IK without changing definitions (1.9) or (1.10).

The paper is organized as follows. In the next section we collect some facts we need to prove our main results
for the complex and real, normwise and componentwise structured condition number of a simple eigenvalue
presented in Section 3, and for the complex and real structured pseudospectrum presented in Section 4. In
an appendix we outline a computer-assisted proof of some explicit example for Toeplitz structures.

Our results on structured condition numbers are proved by explicit construction of a structured perturbation.
Some of our results and also more have recently been shown by Francoise Tisseur [29] using Lie algebras,
see also [22]. This very elegant approach provides unified proofs for a number of our structures plus others
like Hamiltonians; however, it does not, for example, apply to Toeplitz-like structures.

Concerning notation we denote by In = I the n×n identity matrix, by Jn = J the n×n “flip-matrix” (with
ones on the anti-diagonal and zero everywhere else). The index is omitted when clear from the context.
Furthermore, x ∈ Cn denotes the conjugate of x ∈ Cn, and ei the ith column of I. The spectrum of A is
denoted by Λ(A), σmin(A) denotes the smallest singular value of A, and Uε(λ) := {z ∈ C : |z − λ| ≤ ε}.
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2. Auxiliary results. In this section we collect some facts we need to prove our main results in the
next two sections. Throughout this section we suppose (1.1) for a simple eigenvalue λ of A. Multiplying
(A + ∆A− (λ + ∆λ)I)(x + ∆x) = 0 from the left by yH yields

∆λ =
yH∆Ax

yHx
+O(ε2),(2.1)

so that the definition (1.4) implies for IK ∈ {R,C}

κstruct
IK (A, λ) =

max{|yH∆Ax| : ∆A ∈ M struct
IK , ‖∆A‖ ≤ 1}

|yHx| ≤ 1
|yHx| = κC(A, λ).(2.2)

Hence the analysis of κstruct
IK focusses on

ϕstruct
IK (x, y) := max{|yH∆Ax| : ∆A ∈ M struct

IK , ‖∆A‖ ≤ 1},(2.3)

where x, y satisfy (1.1). Then (2.2) implies

κstruct
IK (A, λ) = ϕstruct

IK (x, y) · κC(A, λ).(2.4)

Although not included in the definition, we mostly assume the matrix to be real when analyzing real per-
turbations, structured or unstructured.

The value ϕstruct
IK (x, y) does not change when scaling the eigenvectors x and y by a complex scalar of modulus

one. To prove ϕstruct
C (x, y) = 1 and therefore κstruct

C (A, λ) = κC(A, λ) (or its real counterpart) for a number
of structures, we use this freedom to choose appropriate left and right eigenvectors. The results of the
following Lemmata 2.1 and 2.2 are well known; the proofs, however, are so short that we choose to include
rather than to reference them.

Lemma 2.1. Let Ax = λx and ‖x‖ = 1 for A ∈ Cn×n. Then y ∈ Cn with yHA = λyH and ‖y‖ = 1 can be
chosen such that

a) y = x if A is normal (AHA = AAH),
b) y = x if A is symmetric (AT = A),
c) y = Jx if A is persymmetric (AT = JAJ).

Proof. Part a) follows by A = QΛQH , and b) follows from xT A = λxT . Concerning c), (Jx)HA = xT JA =
(AT Jx)T = (JAx)T = λ(Jx)T = λ(Jx)H . ¥

Lemma 2.2. For A ∈ M
sym
C ∩M

persym
C and λ ∈ Λ(A) there exists an eigenvector x to λ with x = αJx and

α ∈ {−1, +1}. If A is real, x can be chosen real.

Proof. Let v be an eigenvector of A to λ. Then A = AT = JAJ implies A(v + αJv) = λ(v + αJv) for
every scalar α. The vector x := v + αJv satisfies x = αJx for α ∈ {−1,+1}, and is nonzero for at least one
value of α. ¥

The following Lemma 2.3 is the key to certain Toeplitz and Hankel structures. It has been given in [28,
Lemma 10.1].

Lemma 2.3. Let x ∈ Cn be given. Then there exists H ∈ MHankel
C with Hx = x and ‖H‖ = 1. If x is real,

H can be chosen real so that Hx = x.

The following lemma extends this result to situations, where a symmetric Toeplitz (persymmetric Hankel)
matrix is looked for.

Lemma 2.4. Let x ∈ Cn with x = αJx, α ∈ {−1, 1} be given. Then there exists a symmetric Toeplitz matrix
T ∈ M symToep

C with Tx = x and ‖T‖ = 1. If x is real, T can be chosen real with Tx = x.

Proof. We extend the proof in [28, Lemma 10.1]. Define Ψx ∈ Cn×(2n−1) to be the Toeplitz matrix with
first column (x1, 0, . . . , 0)T and first row (x1, . . . , xn, 0, . . . , 0), where there are n− 1 zeros in each case. For
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n = 3 we have

Ψx =




x1 x2 x3

x1 x2 x3

x1 x2 x3


(2.5)

with omitted entries equal to zero. Every p ∈ C2n−1 uniquely defines a Hankel matrix H ∈ Cn×n with first
column (p1, . . . , pn)T and last row (pn, . . . , p2n−1). For n = 3 we have

H =




p1 p2 p3

p2 p3 p4

p3 p4 p5


 .(2.6)

Then a computation yields Hx = Ψxp. Following the ideas in [28] we embed Ψx into the (2n− 1)× (2n− 1)
circulant Cx with first row identical to that of Ψx. For n = 3 we have

Cx =




x1 x2 x3

x1 x2 x3

x1 x2 x3

x3 x1 x2

x2 x3 x1




.(2.7)

Define

p := C+
x CH

x e1,(2.8)

where C+
x denotes the Moore-Penrose inverse of Cx. For J̃ := Jn ⊕ Jn−1 ∈ C(2n−1)×(2n−1) and using

Jnx = αx we have by construction

J̃CxJ2n−1 = CJnx = αCx.(2.9)

Then J̃2 = J2
2n−1 = I2n−1, (2.9) and α2 = 1 imply C+

x = αJ2n−1C
+
x J̃ , and CH

x e1 =
(

x

0

)
in conjunction

with (2.8) and Jx = αx yields

J2n−1p = J2n−1 · C+
x · CH

x e1 = J2n−1 · αJ2n−1C
+
x J̃ ·

(
x

0

)

= αC+
x

(
αx

0

)
= C+

x CH
x e1 = p.

(2.10)

That means, the Hankel matrix defined by p is persymmetric. Denote by P ∈ Rn×(2n−1) the first n rows of
I2n−1. Then Ψx = PCx. Following the arguments in the proof of Lemma 10.1 in [28] we conclude

Hx = Ψxp = PCxC+
x CH

x e1 = P

(
x

0

)
= x,

so that T := αJH is symmetric Toeplitz with Tx = x. The proof of ‖T‖ = ‖H‖ ≤ 1 is identical to the one
in [28], and ‖x‖ = ‖Tx‖ ≤ ‖T‖ ‖x‖ implies ‖T‖ = 1. If x is real, so are by construction H and T . ¥

We will apply Lemma 2.4, for example, to x being an eigenvector of a symmetric Toeplitz matrix. Then
by Lemma 2.2 we can choose x = αJx. This assumption is mandatory for Lemma 2.4. To see this let
x = (p, q, r)T ∈ C3 and assume there is symmetric Toeplitz T with Tx = x. Denote the first row of T by
(a, b, c). Then




a b c

b a b

c b a







p

q

r


 =




p

q

r


 or




p q r

q p + r 0
r q p







a

b

c


 =




p

q

r


 .(2.11)

Choosing x = (p, q, r)T = (1, i,−1)T we can solve (2.11) uniquely for a, b, c and obtain

Tx = x for T =



−1 0 −2

0 −1 0
−2 0 −1


 , but ‖T‖ = 3.
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Note that x 6= αJx for α ∈ {−1, +1}.

Lemma 2.5. Let z ∈ Cn with ‖z‖ = 1 be given. Then there exists a real symmetric matrix C and α ∈ C
with ‖C‖ = 1, |α| = 1 and Cz = αz.

Proof. Let z = x+ iy for x, y ∈ Rn and denote the singular value decomposition of the matrix [x y] ∈ Rn×2

with columns x and y by [x y] = UΣV T . Then

C := U diag(1,−1, 0, . . . , 0)UT is real symmetric with ‖C‖ = 1.

Furthermore,

C · [x y] = U diag(1,−1, 0, . . . , 0)UT · UΣV T

= UΣV T · V
(

1
−1

)
V T = [x y]Q

with real orthogonal Q ∈ R2×2. By construction, Q is a reflection, so Q =

(
p q

q −p

)
. Hence, Cx = px+qy,

Cy = qx− py and

Cz = Cx + iCy = (p + iq)x− i(p + iq)y = (p + iq)z.

Choosing α := p + iq and observing ‖Q‖ = 1 = |α| finishes the proof. ¥

Lemma 2.6. Let A ∈ M
skewsym
R and Ax = λx for λ 6= 0 and 0 6= x ∈ Cn. Then there exists ∆A ∈ M

skewsym
R

with ∆Ax = ix and ‖∆A‖ = 1.
Let A ∈ M

skewsym
R and assume 0 ∈ Λ(A) is not simple. Then there is 0 6= x ∈ Cn and ∆A ∈ M

skewsym
R with

Ax = 0, ∆Ax = ix and ‖∆A‖ = 1.

Proof. Suppose λ 6= 0. The eigenvalues of the real skewsymmetric matrix A come in purely imaginary
conjugate pairs ±βi with β ∈ R. Since A is normal, we have A = QDQH with unitary Q and diagonal
D. Without loss of generality we may assume d11 = βi, d22 = −βi, and that x is a scalar multiple of Qe1.

Abbreviating qν = Qeν we see A[q1 q2] = [q1 q2]

(
βi

−βi

)
, so that [q1 q2]

(
βi

−βi

)
[q1 q2]H is real.

Define ∆A := [q1 q2]

(
i

−i

)
[q1 q2]H . Then ∆A is real and skewsymmetric with ‖∆A‖ = 1. Furthermore,

∆Aq1 = [q1 q2]

(
i

−i

)(
1
0

)
= iq1,

and the first part of the Lemma is proved.
For the second part assume λ = 0 is of multiplicity ≥ 2. Since A is normal, the kernel of A is of dimension
≥ 2 and we find u, v ∈ Rn with Au = Av = 0 and uT v = 0. We follow the proof of Lemma 5.1 in [28], which
in turn borrows ideas from a proof in [6]. Let Q ∈ Rn×n be orthogonal with Q[u|v] = [e1| − e2]. Define

∆A := QT DQ with D := diag

((
0 −1
1 0

)
, 0, . . . , 0

)
∈ Rn×n. Then ∆A = −∆AT , ‖∆A‖ = 1, De1 = e2,

De2 = −e1 and x := u + iv yields

∆Ax = QT D(e1 − ie2) = QT (e2 + ie1) = −v + iu = ix. ¥

For later use we collect some basic facts about circulants (see, for example, [8], [28]):

Every circulant C ∈ Mcirc
C is diagonalized by the Fourier matrix F = (ω(i−1)(j−1)/

√
n),(2.12)

ω denoting the n-th root of unity, i.e. C = FDFH for diagonal D.

The eigenvalues of a circulant C = FDFH with first row (c1, . . . , cn) and D = diag(d11, · · · , dnn)(2.13)

are dkk =
n∑

ν=1

cνω−(k−1)(ν−1) for k = 1, . . . , n.
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The circulant C = FDFH is real iff D = PDHP with P denoting the permutation matrix P(2.14)

mapping (1, . . . , n) into (1, n, . . . , 2).

The proofs follow by direct computation.

3. Structured condition numbers. Let A ∈ Cn×n be given. In a recent paper [7] Byers and Kress-
ner show that restricting (general) complex perturbations ∆A ∈ Cn×n to (general) real perturbations can
improve κC(A, λ) by at most a factor 1/

√
2. We show a similar result for certain structured perturbations.

Moreover we prove that there is no difference between the real and complex unstructured condition number
for any real matrix belonging to one of the structures in (1.3).

Lemma 3.1. Let A ∈ M struct
C be given and λ, x, y with (1.1), λ simple. Suppose struct is such that

B ∈ M struct
C implies that the real part and the complex part of B are in M struct

R . Then

1√
2

κstruct
C (A, λ) ≤ κstruct

R (A, λ) ≤ κstruct
C (A, λ).

If A ∈ M struct
R for any of the structures in (1.3), then

κR(A, λ) = κC(A, λ).(3.1)

Proof. Let Ã ∈ M struct
C be such that ‖Ã‖ ≤ 1 and |yHÃx| = max{|yH∆Ax| : ∆A ∈ M struct

C , ‖∆A‖ ≤ 1}.
Splitting Ã = ÃRe + iÃIm into real and imaginary part yields max{|yHÃRex|, |yHÃImx|} ≥ 1√

2
|yHÃx|,

and ÃRe, ÃIm ∈ M struct
R with max(‖ÃRe‖, ‖ÃIm‖) ≤ 1 proves the result.

Using (2.1) the second part is proved if there is a matrix ∆A ∈ Rn×n with |yH∆Ax| = 1. A real matrix
A ∈ M struct

R with struct being one of the structures in (1.3) is normal and/or persymmetric. Using Lemma
2.1 we can choose ∆A = I for normal A, and ∆A = JC with a matrix C as in Lemma 2.5 for persymmetric
A. ¥

The assumption in the first part of Lemma 3.1 is satisfied for all structures in (1.3) except Herm and
skewHerm. As we will see, for Hermitian matrices the unstructured and structured condition number, both
real and complex, are all equal. This is also true for (complex) persymmetric matrices and circulants. Next
we state and prove our main result for structured condition numbers of simple eigenvalues. Because of (3.1)
we can omit the subscript R or C for the unstructured condition number.

Theorem 3.2. Let A be a matrix with simple eigenvalue λ and corresponding normalized right and left
eigenvector x and y, respectively. Then Table 3.3 shows our results on the (normwise) structured condition
number:
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structure condition number
symmetric A ∈ M sym

R ⇒ κ(A, λ) = κsym
R (A, λ) = 1

A ∈ M sym
C ⇒ κ(A, λ) = κsym

C (A, λ) = 1/|xT x| [complex symmetric]

Hermitian A ∈ MHerm
C ⇒ κ(A, λ) = κHerm

C (A, λ) = κsym
R (A, λ) = 1

persymmetric A ∈ Mpersym
C ⇒ κ(A, λ) = κpersym

C (A, λ) = κpersym
R (A, λ) = 1/|xT Jx|

skewsymmetric A ∈ M skewsym
R ⇒ κ(A, λ) = κ

skewsym
R (A, λ) = 1 for λ 6= 0

κ(A, λ) = 1 also for λ = 0 but κskewsym
R (A, 0) = 0

skew-Hermitian A ∈ M skewHerm
C ⇒ κ(A, λ) = κskewHerm

C (A, λ) = 1

Toeplitz A ∈ MToep
R ⇒ κ(A, λ) = κToep

R (A, λ) = 1/|xT Jx| for λ ∈ R
1√
2

κ(A, λ) ≤ κToep
R (A, λ) ≤ κ(A, λ) = 1/|xT Jx| for λ /∈ R

A ∈ M
Toep
C ⇒ κ(A, λ) = κ

Toep
C (A, λ) = 1/|xT Jx|

symmetric A ∈ M
symToep
R ⇒ κ(A, λ) = κ

symToep
R (A, λ) = 1

Toeplitz
A ∈ M

symToep
C ⇒ κ(A, λ) = κ

symToep
C (A, λ) = 1/|xT x|

Hankel A ∈ MHankel
R ⇒ κ(A, λ) = κHankel

R (A, λ) = 1

A ∈ MHankel
C ⇒ κ(A, λ) = κHankel

C (A, λ) = 1/|xT x|

persymmetric A ∈ M
persymHankel
R ⇒ κ(A, λ) = κ

persymHankel
R (A, λ) = 1

Hankel
A ∈ MpersymHankel

C ⇒ κ(A, λ) = κpersymHankel
C (A, λ) = 1/|xT x|

circulant A ∈ Mcirc
C ⇒ κ(A, λ) = κcirc

C (A, λ) = κcirc
R (A, λ) = 1

Table 3.3. The (normwise) structured condition number of an eigenvalue

The ratio κC(A, λ)/κ
skewsym
C (A, λ) can be arbitrarily large, also for λ 6= 0. There exist matrices A ∈ M

Toep
R

with κ
Toep
R (A, λ) < 0.95 · κ(A, λ).

Remark. For the last statement κ
Toep
R (A, λ) < 0.95 · κ(A, λ) we will sketch a so-called computer-assisted

proof in the appendix. The proof uses our Matlab interval toolbox INTLAB [27].

Proof. Following (2.3) and (2.4) we construct ∆A ∈ M struct
IK with ‖∆A‖ = 1 and |yH∆Ax| = 1. Since λ is

simple, x and y with ‖x‖ = ‖y‖ = 1 are unique up to scalar multiples of modulus 1.

For A ∈ M sym
R , MHerm

C , M symToep
R , Mcirc

R and Mcirc
C , the matrix A is normal, so we may choose y = x.

Furthermore, ∆A := I belongs to all those structures. Hence ‖∆A‖ = 1, yH∆Ax = xHx = 1 and (2.4)
proves that structured and unstructured condition numbers are equal to 1/|yHx| = 1.

Real or complex Hankel matrices are symmetric, so according to Lemma 2.1b we may assume y = x,
and especially y = x ∈ Rn for A ∈ MHankel

R . According to Lemma 2.3 there exists (real or complex)
∆A ∈ MHankel with ‖∆A‖ = 1 and ∆Ax = x, so that yH∆Ax = xT x = 1. Furthermore, κ(A, λ) =
1/|yHx| = 1/|xT x|, which is equal to 1 for real A. Since ∆A can be chosen real for A ∈ MHankel

R , these
cases are finished. For y = x we used only the symmetry of A, so MHankel

C ∈ M sym
C finishes also the complex

symmetric case.

For real or complex persymmetric A we may choose y = Jx by Lemma 2.1c. Let ∆A := JC with C ∈ M sym
R ,
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‖C‖ = 1 and Cx = αx, |α| = 1 according to Lemma 2.5. Then ∆A ∈ Mpersym
R , ‖∆A‖ = 1 and |yH∆Ax| =

|xT J · Jαx| = 1.

Complex skew-Hermitian matrices are normal, so choosing y = x and ∆A :=
√−1 · I ∈ M skewHerm

C implies
|yH∆Ax| = 1.

Next we treat M symToep
C , MpersymHankel

R and MpersymHankel
C . In those cases A is symmetric and persym-

metric, and by Lemma 2.2 we may choose x with Ax = λx, ‖x‖ = 1, x = αJx and α ∈ {−1, +1}. Then by
Lemma 2.4 there is symmetric Toeplitz T ∈ M symToep

C with Tx = x and ‖T‖ = 1, where T can be chosen
real if x is real.

For A ∈ M symToep
C we may choose y = x according to Lemma 2.1b, and ∆A := T ∈ M symToep

C implies
yH∆Ax = xT x = 1 and κsymToep

C (A, λ) = κ(A, λ) = 1/|yHx| = 1/|xT x|.

For a real or complex persymmetric Hankel matrix we choose y = Jx according to Lemma 2.1c and ∆A :=
JT ∈ MpersymHankel

C . Then yH∆Ax = xT J · Jx = 1 and κpersymHankel
C (A, λ) = κ(A, λ) = 1/|xT Jx| =

1/|xT x|. For real persymmetric Hankel, x can be chosen real since A is symmetric, and Lemma 2.4 closes
this case as well.

For complex Toeplitz A we may choose y = Jx according to Lemma 2.1c. Furthermore, Lemma 2.3 implies
the existence of H ∈ MHankel

C with Hx = x and ‖H‖ = 1. Then ∆A := JH ∈ MToep
C , ‖∆A‖ = ‖H‖ = 1

and yH∆Ax = xT J · Jx = 1, so that κ
Toep
C (A, λ) = κ(A, λ) = 1/|xT Jx|.

For A ∈ M
skewsym
R assume λ 6= 0. Then Lemma 2.6 implies the existence of ∆A ∈ M

skewsym
R with ∆Ax = ix

and ‖∆A‖ = 1. Since A is normal, y = x and |yH∆Ax| = |ixHx| = 1 prove κ
skewsym
R (A, λ) = κ(A, λ) = 1.

A simple eigenvalue λ = 0 is only possible for odd dimension; but every real skewsymmetric matrix of odd
dimension has an eigenvalue 0, so κ

skewsym
R (A, 0) = 0. Indeed, for λ = 0 the eigenvector x can be chosen

real, so that for all ∆A ∈ M
skewsym
R

yH∆Ax = xT ∆Ax = (xT ∆Ax)T = −xT ∆Ax = 0.

For general perturbations we choose ∆A = I /∈ M
skewsym
R to see κ(A, λ) = 1.

Let A ∈ MToep
R . If λ ∈ R then x can be chosen real and y = Jx by Lemma 2.1c. By Lemma 2.3 there is

H ∈ MHankel
R with Hx = x and ‖H‖ = 1. For ∆A := JH ∈ M

Toep
R we have yH∆Ax = xT J · Jx = 1 and

κToep
R (A, λ) = κ(A, λ) = 1/|yHx| = 1/|xT Jx| for λ ∈ R.

The part A ∈ MToep
R and λ /∈ R follows by Lemma 3.1. An explicit example with κToep

R (A, λ) < 0.95κ(A, λ)
is given in the appendix.

Finally, consider A ∈ M skewsym
C with

A = Aϕ =




0 1− ϕ 0
−1 + ϕ 0 i

0 −i 0


 for ϕ ∈ R, 0 < ϕ < 1,(3.2)

with λ =
√

2ϕ− ϕ2 ∈ R and x =
1√
2




i(1− ϕ)
iλ

1


.

A computation yields Ax = λx and ‖x‖ = 1. Furthermore,

y =



−i(1− ϕ)

iλ

1


 /

√
2 satisfies yHA = λyH and ‖y‖ = 1.
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A general (complex) skewsymmetric perturbation has the form

∆A =




0 a b

−a 0 c

−b −c 0


 .

A computation yields

yH∆Ax = −λ(a(1− ϕ) + ic)

and |yH∆Ax| ≤ |λ|(|a|+ |c|) ≤ √
2|λ| ‖∆A‖. This implies

κskewsym
C (A, λ) ≤ sup{|yH∆Ax| : ∆A ∈ M skewsym

C , ‖∆A‖ ≤ 1}
|yHx| ≤

√
2|λ|

|yHx| < 2
√

ϕ · κ(A, λ),

so that the structured condition number can be better than the unstructured condition number by an
arbitrarily large factor. We mention that A+∆A is singular for A as in (3.2) and all (complex) skewsymmetric
∆A. So κskewsym

C (A, 0) = 0, but κ(A, 0) is nonzero. ¥

In the remark following (1.4) we mentioned that, for example, a matrix A ∈ M symToep
R is also in M symToep

C ,
M sym
C and M sym

R , and restricting perturbations to those structures may influence the sensitivity of λ. We
now conclude that this is not the case since the corresponding eigenvector x is real, xT x = 1 and the real
and complex, unstructured and structured condition number is equal to 1 for all mentioned structures.

The exceptional behavior of complex skewsymmetric matrices needs more investigation; we think it is only
possible for eigenvalues near 0.

So far we treated normwise perturbations. Next, we consider condition numbers for componentwise pertur-
bations. Componentwise perturbations impose an additional structure on a perturbation ∆A. For example,
zero weights can be used to retain bandedness of a matrix. Note that (1.5) and (2.1) imply

condstruct
E,IK (A, λ) =

max{|yH∆Ax| : ∆A ∈ M struct
IK , |∆A| ≤ |E|}

|yHx| ≤ |yH | |E| |x|
|yHx|(3.3)

including condE,IK by setting M struct
IK := IKn×n. So again we have to maximize |yH∆Ax|, but this time over

|∆A| ≤ |E|. For no structure and Hermitian structure this is included in [16].

Theorem 3.4. Let A be a matrix with simple eigenvalue λ and corresponding normalized right and left
eigenvector x and y, respectively. Then

condE,C(A, λ) =
|yH | |E| |x|
|yHx|(3.4)

and

1√
2
condE,C(A, λ) ≤ condE,R(A, λ) ≤ condE,C(A, λ) .(3.5)

Let struct be a structure such that B ∈ M struct
C implies that the real part and the complex part of B are in

M struct
R . Then E ∈ M struct

C implies

1√
2
condstruct

E,C (A, λ) ≤ condstruct
E,R (A, λ) ≤ condstruct

E,C (A, λ) .(3.6)

Let A,E ∈ M sym
C be given. Then

condsym
E,R (A, λ) = condsym

E,C (A, λ) = condE,C(A, λ) =
|xT | |E| |x|
|xT x| .(3.7)

Let struct ∈ {Herm, skewHerm} and A,E ∈ M struct
C be given. Then

condstruct
E,C (A, λ) = condE,C(A, λ) = |xH | |E| |x| .(3.8)
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For A,E ∈ Mcirc
C holds

condcirc
E,C(A, λ) = condE,C(A, λ) =

n−1∑
ν=0

|εν |(3.9)

for (ε1, . . . , εn) denoting the first row of E.

Remark. Note that for (3.6) the matrix A need not be structured.

Proof. Let S1, S2 ∈ Cn×n be signature matrices, i.e. diagonal with diagonal entries of modulus 1, such
that S1x = |x| and S2y = |y|. Choosing ∆A := SH

2 |E|S1 satisfies |∆A| = |E|, so that the inequality in (3.3)
is an equality and proves (3.4).

To show (3.5) and (3.6) we proceed exactly as in the first part of the proof of Lemma 3.1.

For struct = sym we may choose y = x by Lemma 2.1b, such that ∆A := ST
1 |E|S1 ∈ M sym

R ⊆ M sym
C and

(3.3) prove (3.7).

A matrix A ∈ M struct
C for struct ∈ {Herm, skewHerm} is normal, so we can choose y = x. Then ∆A :=

SH
1 |E|S1 ∈ MHerm

C and ∆A := iSH
1 |E|S1 ∈ M skewHerm

C , respectively, and in either case |yH∆Ax| =
|xH | |E| |x|. This proves (3.8).

Finally let struct = circ. By (2.12) and (2.13) we know A = FDFH , λ = dkk =
n∑

ν=1
aνω−(k−1)(ν−1) and

x = Fek for some k ∈ {1, . . . , n}, where (a1, . . . , an) denotes the first row of A. Define ∆A to be the circulant
with first row (δa1, . . . , δan) and δaν := |εν |ω(k−1)(ν−1) for 1 ≤ ν ≤ n. Obviously |∆A| = |E|. By (2.13),

the kth eigenvalue of ∆A is µ :=
n∑

ν=1
|εν | with eigenvector Fek = x. Therefore ∆Ax = µx and, using y = x

since A is normal,

yH∆Ax = xH · µx = µ.

But |x| = |Fek| = n−1/2e, where e ∈ Rn denotes the vector of 1’s, hence

|yH | |E| |x| = 1
n

eT |E|e = µ

because E is a circulant. So |yHx| = |xHx| = 1 closes this case and finishes the proof. ¥

Hermitian and skew-Hermitian matrices are the only exceptions in the structures listed in (1.3) for which
B ∈ M struct

C does not imply that the real part and the complex part of B are in M struct
R , so (3.6) need not

be valid. Indeed, if we restrict perturbations to real ones for a (complex) Hermitian matrix, the condition
number may drop from a finite value to zero. Consider

A =

(
0 i

−i 0

)
.

A general real Hermitian matrix ∆A with |∆A| ≤ |A| is symmetric and has the form ∆A =

(
0 α

α 0

)
. The

eigenvalues of A are ±α with eigenvectors x = y = 1√
2

(
1
∓i

)
, so that yH∆Ax = 0 for all ∆A ∈ MHerm

R

with |∆A| ≤ |A|. But for ∆̃A :=

(
0 −1
1 0

)
/∈ MHerm it holds |∆A| ≤ |A| and |yH∆̃Ax| = 1, hence

condA,C(A, λ) = condA,R(A, λ) = 1 but condHerm
A,R (A, λ) = 0 .(3.10)

The latter can also be seen from the eigenvalues ±√1 + α2 = ±(1 + α2/2) + O(α4) of A + ∆A. For

skew-Hermitian structure the condition numbers of the matrix A =

(
1 i

i 1

)
show the same infinite

ratio cond/condstruct as in (3.10). Note that E = A reflects the common case of componentwise relative
perturbations.
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4. The structured pseudospectrum. To characterize the structured pseudospectrum (1.9) of a ma-
trix we first observe Λstruct

ε (A) ⊆ Λε(A). That means we have to identify those λ ∈ Λε(A) for which a
structured perturbation A + E of A exists with λ ∈ Λ(A + E). Moreover, we will investigate the real
structured pseudospectrum. We will mainly use the following lemma.

Lemma 4.1. Let struct be some structure with the property that M ∈ M struct
C implies αM ∈ M struct

C for all
α ∈ R. Let A ∈ Cn×n be given. Suppose for λ ∈ Λε(A) and s := σmin(A − λI) there exists ∆A ∈ M struct

C
and 0 6= x ∈ Cn with

‖∆A‖ ≤ 1 and (A− λI)x = s∆Ax,(4.1)

Then λ ∈ Λstruct
ε (A). Moreover, if ∆A is real, then λ ∈ Λstruct

ε,R (A).

Proof. Let λ ∈ Λε(A) and define B := A − λI. If λ ∈ Λ(A), then the zero matrix, which is in M struct
C ,

does the job. Otherwise B is nonsingular and (1.8) implies s = ‖B−1‖−1 ≤ ε. Define E := −s∆A. Then
E ∈ M struct

C , ‖E‖ = s ≤ ε and

(A− λI + E)x = Bx− s∆Ax = 0.

By definition (1.9) it follows λ ∈ Λstruct
ε (A). ¥

Note that (4.1) requires the vectors Bx and s∆Ax to coincide, not only the absolute value of a number
yH∆Ax to be 1 as for condition numbers. All structures in (1.3) satisfy αA ∈ M struct

C whenever A ∈ M struct
C

and α ∈ R, and of course αA ∈ M struct
R if A ∈ M struct

R . For the construction of suitable ∆A and x we use
the following lemma.

Lemma 4.2. Let B ∈ Cn×n and denote s := σmin(B). Then

a) B ∈ MHerm
C ⇒ ∃ 0 6= x ∈ Rn : Bx = sαx and α ∈ {−1,+1}.

b) B ∈ M sym
C ⇒ ∃ 0 6= x ∈ Cn : Bx = sx.

c) B ∈ M
persym
C ⇒ ∃ 0 6= x ∈ Cn : Bx = sJx.

d) B ∈ M sym
C ∩Mpersym

C ⇒ ∃ 0 6= x ∈ Cn : Bx = sx, x = αJx and α ∈ {−1, +1}.
Proof. Part a) is obvious.

Part b) follows by Takagi’s factorization [20, Corollary 4.4.4] B = QΣQT with unitary Q and diagonal Σ
containing the singular values of B.

Part c) follows by B ∈ M
persym
C ⇒ JB ∈ M

sym
C .

Concerning part d) there is 0 6= x ∈ Cn with Bx = sx by b), and B = BT = JBJ shows B ·Jx = JBx = sJx,
so By = sy for y = x + αJx and every α ∈ R. At least one of the vectors x + Jx and x− Jx is nonzero, and
the lemma is proved. ¥

With these preliminaries we can prove the following theorem.

Theorem 4.3. Let 0 ≤ ε ∈ R be fixed but arbitrary. If A ∈ MHerm
C , then

ΛHerm
ε (A) = Λε(A) ∩ R.(4.2)

If A ∈ M skewHerm
C , then

ΛskewHerm
ε (A) = Λε(A) ∩ iR.(4.3)

If struct ∈ {sym,persym,Toep, symToep, Hankel,persymHankel, circ} and A ∈ M struct
C , then

Λstruct
ε (A) = Λε(A).(4.4)

Proof of Theorem 4.3. Throughout the proof we assume λ ∈ Λε(A) and abbreviate B := A − λI and
s := σmin(A− λI). Since Λstruct

ε (A) ⊆ Λε(A) we have to prove that λ ∈ Λε(A), possibly restricted to real or
purely imaginary λ, implies λ ∈ Λstruct

ε (A).
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For A, E ∈ MHerm
C , also A + E ∈ MHerm

C , so λ ∈ ΛHerm
ε (A) implies λ ∈ R. Therefore (4.2) is proved if for

every real λ ∈ Λε(A) we can find ∆A ∈ MHerm
C and 0 6= x ∈ Cn with (4.1). For real λ, B := A − λI is

Hermitian, so Lemma 4.2a and ∆A := αI ∈ MHerm
C imply Bx = sαx = s∆Ax.

For A,E ∈ M skewHerm
C it follows A + E ∈ M skewHerm

C , so that λ ∈ ΛskewHerm
ε (A) implies λ ∈ iR. Let

λ ∈ Λε(A) ∩ iR be given. Then B = A − λI ∈ M skewHerm
C is normal, there is αis ∈ Λ(B) = Λ(A) − λ

with α ∈ {−1, +1} and s = |αis| = σmin(B). So there exists 0 6= x ∈ Cn with Bx = αisx. Then
∆A := αiI ∈ M skewHerm, ‖∆A‖ = 1, Bx = αisx = s∆Ax and (4.1) prove (4.3).

Let A ∈ M
sym
C . Then B = A − λI ∈ M

sym
C , and by Lemma 4.2b there exists a nontrivial vector x with

Bx = sx. By Lemma 2.3 there is ∆A ∈ MHankel
C ⊆ M sym

C with ∆Ax = x and ‖∆A‖ = 1. Hence
Bx = sx = s∆Ax, and Lemma 4.1 proves (4.4) for M sym

C . Now MHankel
C ⊆ M sym

C , and ∆A ∈ MHankel
C

proves (4.4) for struct = Hankel.

For A ∈ M
persym
C it follows B ∈ M

persym
C , and by Lemma 4.2c there is 0 6= x ∈ Cn with Bx = sJx. By

Lemma 2.3 there is H ∈ MHankel
C with Hx = x and ‖H‖ = 1. Then ∆A := JH ∈ MToep

C ⊆ Mpersym
C ,

‖∆A‖ = 1 and Bx = sJx = sJHx = s∆Ax finish this case. Furthermore, MToep
C ⊆ Mpersym

C , so ∆A ∈
MToep
C proves (4.4) for struct = Toep.

For A ∈ M symToep
C it follows B = A − λI ∈ M symToep

C ⊆ M sym
C ∩Mpersym

C , so that by Lemma 4.2d there
is 0 6= x ∈ Cn with Bx = sx and x = αJx, α2 = 1. Now Lemma 2.4 implies existence of ∆A ∈ M

symToep
C

with ∆Ax = x and ‖∆A‖ = 1. Therefore, Bx = sx = s∆Ax, and Lemma 4.1 finishes this part.

For A ∈ M
persymHankel
C ⊆ M

sym
C ∩M

persym
C we can proceed similarly and obtain 0 6= x ∈ Cn with Bx = sx,

x = αJx, α2 = 1 and H ∈ M
symToep
C with Hx = x and ‖H‖ = 1. Then ∆A := αHJ ∈ M

persymHankel
C

implies ‖∆A‖ = 1 and Bx = sx = sHαJx = s∆Ax, and Lemma 4.1 closes also this part.

Finally, A ∈ Mcirc
C implies that B = A − λI ∈ Mcirc

C is normal. So there is 0 6= x ∈ Cn with Bx = sβx,
|β| = 1. Then ∆A := βI ∈ Mcirc

C , ‖∆A‖ = 1 and Bx = sβx = s∆Ax finish this part and the proof. ¥

Theorem 4.3 characterizes the structured pseudospectrum for all structures in (1.3) except skewsymmetry.
In this case the (complex) structured pseudospectrum may be significantly smaller than the unstructured
one. Consider the matrix given in (3.2) for ϕ = 10−4. Then Figure 4.1 displays the unstructured and the
skewsymmetric pseudospectrum Λε(A) for ε = 5 ·10−7. Pseudoeigenvalues are plotted by circles for 106 ran-
dom perturbations. The pseudoeigenvalue zero remains a single point zero under structured perturbations,
and for the other two the radius of the connected component of the structured pseudospectrum is less than
5.01 · 10−5 ! For large ε it is not difficult to see that both Λε(A) and Λskewsym

ε (A) approach Uε(0).

Fig. 4.1. Complex unstructured and skewsymmetric pseudospectrum of the matrix (3.2) for ϕ = 10−4 and ε = 5 · 10−7
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As for the condition number we may restrict perturbations to real perturbations. This defines the real
structured pseudospectrum as in (1.10). Obviously

Λstruct
ε,R (A) ⊆ Λstruct

ε (A) ⊆ Λε(A).

In the next theorems we characterize the real structured pseudospectrum for a number of structures out of
(1.3).

Theorem 4.4. If struct ∈ {sym, symToep, Hankel,persymHankel} and A ∈ M struct
R , then

Λstruct
ε,R (A) = Λstruct

ε (A) ∩ R = Λε(A) ∩ R.(4.5)

Proof. First we observe that A, E ∈ M struct
R for struct ∈ {sym, symToep,Hankel, persymHankel} implies

that A + E is symmetric, so Λstruct
ε,R ⊆ R and it remains to show Λε(A) ∩ R ⊆ Λstruct

ε,R (A). For given
λ ∈ Λε(A) ∩ R we abbreviate B := A − λI and s := σmin(B). Following Lemma 4.1 we aim to identify
∆A ∈ M struct

R and 0 6= x ∈ Cn with ‖∆A‖ ≤ 1 and Bx = s∆Ax for each individual structure. Then λ

belongs to Λstruct
ε,R and proves (4.5). For all structures B ∈ M sym

R , so there exists 0 6= x ∈ Rn with Bx = sαx

and α ∈ {−1,+1}.
Let A ∈ M sym

R . Then ∆A := αI ∈ M sym
R gives ‖∆A‖ = 1 and Bx = s∆Ax, and (4.5) follows. The same

arguments apply to A ∈ M symToep
R , and ∆A = αI ∈ M symToep finishes this part.

Let A ∈ MHankel
R . By Lemma 2.3 there exists H ∈ MHankel

R with Hx = x and ‖H‖ = 1, so ∆A = αH ∈
MHankel
R implies Bx = s∆Ax and (4.5).

For A ∈ MpersymHankel
R ⊆ M sym

R ∩ Mpersym
R we choose x = βJx, β ∈ {−1,+1} by Lemma 2.2. Then by

Lemma 2.4 there is T ∈ M
symToep
R with Tx = x and ‖T‖ = 1. Hence ∆A = αβJT ∈ M

persymHankel
R implies

‖∆A‖ = 1 and Bx = sαx = s∆Ax, and (4.5) follows. ¥

For general Toeplitz and for persymmetric matrices we can at least identify the real part of the real pseu-
dospectrum.

Theorem 4.5. If struct ∈ {Toep,persym} and A ∈ M struct
R , then

Λstruct
ε,R (A) ∩ R = Λε(A) ∩ R.(4.6)

Proof. Let A ∈ M
Toep
R and λ ∈ Λε(A) ∩ R. Define B := A − λI ∈ M

Toep
R and s := σmin(B). Since

JB ∈ M sym
R , there is 0 6= x ∈ Rn with Bx = αsJx, α ∈ {−1, +1}. By Lemma 2.3 there is H ∈ MHankel

R
with ‖H‖ = 1 and Hx = x. So ∆A := αJH ∈ M

Toep
R satisfies Bx = αsJx = s∆Ax, and Lemma 4.1 finishes

this part.

For A ∈ Mpersym
R we proceed similarly, where in this case we may simply choose ∆A := αJ ∈ Mpersym

R . ¥

If for A ∈ MToep
R perturbations are restricted to real Toeplitz perturbations, then complex λ ∈ Λε,R(A) may

be missed by structured real perturbations, so that in general

ΛToep
ε,R (A) & Λε,R(A).

This follows by the example (5.1) given in the appendix and sufficiently small ε. The same is true for real
persymmetric matrices. Consider

A =




1 1 −2
0 0 1

−2 0 1


 ∈ Mpersym

R and E =




0 −1 0
1 0 0
0 −1 0


 /∈ Mpersym

R .(4.7)

Then − 1
2 +

√
3

2 i ∈ Λ(A + E) and ‖E‖ =
√

2. But for every real persymmetric Ẽ even with ‖Ẽ‖ ≤ 1.5 the
perturbed persymmetric matrix A + Ẽ has only real eigenvalues in the left half plane.

The “visual proof” in Figure 4.2 can be enforced by a computer-assisted proof. Therefore, in general,

Λpersym
ε,R (A) $ Λε,R(A).
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Fig. 4.2. Real unstructured and persymmetric pseudospectrum of A as defined in (4.7) for ε = 1.5

Note that the real parts of Λpersym
ε,R and Λε coincide. For real skewsymmetric matrices of odd dimension,

zero is always an eigenvalue, and this must be reflected in the structured pseudospectrum. The following
theorem characterizes the real structured pseudospectrum for this structure.

Theorem 4.6. Let A ∈ M skewsym
R be of even dimension. Then

Λskewsym
ε,R (A) = Λε(A) ∩ iR.(4.8)

The same is true if A has odd dimension and the eigenvalue zero is not simple. If A is of odd dimension
with simple eigenvalue zero, then

Λskewsym
ε,R (A) =

(
{0} ∪ {Uε(λ) : 0 6= λ ∈ Λ(A)}

)
∩ iR.(4.9)

So outside Uε(0) the structured pseudospectrum is always the intersection of the unstructured pseudospectrum
with the imaginary axis.

Proof. With A and E also A + E is real skewsymmetric, so Λskewsym
ε,R ⊆ iR. Since A is normal, Λε(A) is

the union of all Uε(λ), λ ∈ Λ(A).

We first prove that λ̃ ∈ Λε(A) ∩ iR with λ̃ ∈ Uε(λ) for 0 6= λ ∈ Λ(A) implies λ̃ ∈ Λskewsym
ε,R (A). This proves

partly (4.8) and (4.9). For an eigenvector x of A to λ, Lemma 2.6 implies existence of ∆A ∈ M
skewsym
R with

∆Ax = ix and ‖∆A‖ = 1. But λ, λ̃ ∈ iR, so λ̃− λ = iβ for some β ∈ R. Therefore E := β∆A ∈ M
skewsym
R

gives ‖E‖ = |β| ≤ ε and

(A− λ̃I + E)x = (A− λI + E − (λ̃− λ)I)x = 0,

proving λ̃ ∈ Λskewsym
ε,R (A).

In case λ = 0 ∈ Λ(A) is a multiple eigenvalue and λ̃ ∈ Λε(A) ∩ iR, |λ̃| ≤ ε, we can apply Lemma 2.6 the
same way as before. This completes the proof of (4.8) because for even dimension a zero eigenvalue is at
least double.

Finally, suppose n is odd and zero is a simple eigenvalue. For all 0 6= λ ∈ Λ(A) we have to show that
µ ∈ Λskewsym

ε,R (A)∩Uε(0) and µ /∈ Uε(λ) imply µ = 0. This proves (4.9) and the theorem. Let µ ∈ Λ(A + E)

for E ∈ M skewsym
R with ||E|| ≤ ε, and |µ| ≤ ε. Both iA and i(A + E) are Hermitian, so we can order

the eigenvalues λν and λ̃ν of A and A + E from −i∞ to i∞, respectively. Applying Weyl’s Theorem [20,
Theorem 4.3.1] to iA and i(A + E) implies

λ̃k ∈ Uε(λk) for k = 1, · · · , n .

Zero is an eigenvalue of A + E, so µ = λ̃p ∈ Uε(λp) and 0 = λ̃q ∈ Uε(λq) for some p, q. By assumption,
µ ∈ Uε(λp) implies λp = 0 ∈ Λ(A). Since A is real skewsymmetric, with λq also −λq is an eigenvalue, and
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|µ| ≤ ε and |λq| ≤ ε yield |µ + λq| ≤ ε or |µ − λq| ≤ ε. But µ ∈ Uε(±λq) implies λq = 0. Since zero is a
simple eigenvalue of A, the indices p and q must be equal and therefore µ = λ̃p = λ̃q = 0. ¥

For real or complex circulants Λcirc
ε,R is a little more involved. However, we can completely characterize the

real structured pseudospectrum of real or complex circulants.

Theorem 4.7. Let A ∈ Rn×n be a circulant matrix with eigenvalues λν ∈ C, so that A = F diag(λν)FH .
Then the following is true.

i) For odd n, the eigenvalue λ1 is real with eigenvector (1, . . . , 1)T and
Λcirc

ε,R (A) = {λ1 + [−ε, ε]} ∪ {Uε(λν) : ν 6= 1}.
That means the real structured pseudospectrum of A is identical to the unstructured pseudospectrum
outside Uε(λ1), and the disc Uε(λ1) collapses to its projection on the real axis.

ii) For even n and m :=
n

2
+ 1, the eigenvalues λ1 and λm are real with eigenvectors (1, . . . , 1)T and

(1,−1, 1,−1, . . .)T , respectively, and
Λcirc

ε,R (A) = {λ1 + [−ε, ε]} ∪ {λm + [−ε, ε]} ∪ {Uε(λν) : ν 6= 1,m}.
Therefore, outside Uε(λ1) and Uε(λm) the real structured and unstructured pseudospectra are iden-
tical, and the discs Uε(λ1) and Uε(λm) collapse to their projection on the real axis.

Proof. Since A is normal, Λε(A) =
⋃{Uε(λν) : λν ∈ Λ(A)}. Define the index set I by

I :=

{
{1} for odd n

{1,m} for even n.

Since A is a real circulant, (2.14) implies

λk ∈ Λ(A) real and simple ⇔ k ∈ I.(4.10)

Furthermore, x := Fek implies Ax = λkx. We prove Theorem 4.7 in three steps:

a) k /∈ I and λ ∈ Uε(λk) ⇒ λ ∈ Λcirc
ε,R (A).

b) k ∈ I and λ ∈ λk + [−ε, +ε] ⇒ λ ∈ Λcirc
ε,R (A).

c) λ ∈ Λcirc
ε,R (A), k ∈ I, λ ∈ Uε(λk) and λ /∈ Uε(λν) for ν /∈ I ⇒ λ real.

This will prove both parts of Theorem 4.7.

ad a) Define a diagonal matrix D with only nonzero diagonal elements dkk := λ − λk and dpp := λ− λk,
where p := n + 2− k. The index k is mapped into p by the permutation P as in (2.14). Hence D = PDHP ,
E := FDFH ∈ Mcirc

R and ‖E‖ = ‖D‖ = |λ − λk| ≤ ε. Furthermore, Ex = FDFH · Fek = (λ − λk)x.
Therefore

(A− λI + E)x = (λk − λ)x + (λ− λk)x = 0(4.11)

implies λ ∈ Λcirc
ε,R (A).

ad b) Define diagonal D with only nonzero diagonal element dkk := λ − λk. The permutation P in (2.14)
maps k into itself, so λ − λk ∈ R implies D = PDHP and E := FDFH ∈ Mcirc

R with ‖E‖ = |λ − λk| ≤ ε.
Furthermore Ex = (λ− λk)x and (4.11) proves this part.

ad c) Since λ ∈ Λcirc
ε,R (A), there is E ∈ Mcirc

R with ‖E‖ ≤ ε and λ ∈ Λ(A + E). The Bauer-Fike Theorem [11,
Theorem 7.2.2] implies λ ∈ Uε(λν) for some eigenvalue λν of A, so that by assumption ν ∈ I. Now (4.10)
finishes this part and the theorem is proved. ¥

Note that Theorem 4.7 contains an apparent contradiction. Let, for example, a real circulant A ∈ Mcirc
R of

odd order be given, and let λ be a real eigenvalue not equal to λ1 =
∑

a1i. Then part i) of Theorem 4.7 tells
that the real structured pseudospectrum Λcirc

ε,R (A) contains the complex disc Uε(λ). But if λ is simple, then
a small enough real perturbation of the real matrix A produces only real eigenvalues near λ, even for general
perturbations: an apparent contradiction. However, (4.10) implies that real λ 6= λ1 must be multiple! A
similar argument applies to even order, and this explains the special role of λ1 (and λm) in Theorem 4.7.
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5. Appendix. Recently, computer-assisted proofs have been used successfully in different areas. A
convenient way of programming is our Matlab interval toolbox INTLAB [27]. It has been used, for example,
to solve five of ten problems of the SIAM 100-digit challenge [1]. We sketch a computer-assisted proof of

κToep
R (A, λ) < 0.95 · κ(A, λ)(5.1)

for some A, λ (cf. Theorem 3.2). After sufficient numerical (Matlab) evidence, we choose

A =




399 −817 −297
131 399 −817

1 131 399


 with λ ≈ 409.3 + 463.3i and x ≈




0.8634
0.0387− 0.4839i

−0.1365− 0.0158i


 .(5.2)

In order to prove (5.1), we use Lemma 2.1c and (2.4) and have to check that

|xT J∆Ax| < 0.95 for all ∆A ∈ MToep
R with ‖∆A‖ ≤ 1,(5.3)

where x denotes the (true) normalized eigenvector of A (approximately given in (5.2)). Note that this also
implies that for this specific x there is no ∆A ∈ MToep

R with ‖∆A‖ ≤ 1 and ∆Ax = Jx.

We use a branch and bound method. To be rigorous, all computations are executed in interval arithmetic
(with rounding control) in INTLAB [27], the Matlab interval toolbox; for a nice introduction see [14]. We
display the complete and executable INTLAB code (Algorithm 1) to verify (5.3) and therefore (5.1).

Algorithm 1. Verification of (5.1).

format long, intvalinit(’displaymidrad’,0)

A = toeplitz([399 131 1],[399 -817 -297])

[V,D] = eig(A); % approximate eigendecomposition of A

[L,X] = verifyeig(A,D(1,1),V(:,1)); % inclusion of eigenpair of A

L % inclusion of eigenvalue of A

X = X/sqrt(sum(X’*X)) % inclusion of normalized eigenvector of A

phi = [ X(1)^2 2*X(1)*X(2) 2*X(1)*X(3)+X(2)^2 2*X(2)*X(3) X(3)^2 ];

Y = infsup(-1,1);

List = { [Y Y infsup(0,1) Y Y] }; % initial box

while ~isempty(List)

dA = List{end};

% interval Toeplitz matrix T corresponding to dA, JT:=J*T

JT = [ dA(1) dA(2) dA(3) ; dA(2) dA(3) dA(4) ; dA(3) dA(4) dA(5) ];

[V D] = eig(mid(JT)); % approximate eigendecomposition of mid(JT)

[N,k] = max(abs(diag(D))); % N approximates norm(mid(JT),2)

v = intval(V(:,k)); % approximate eigenvector to N

psi = [ v(1)^2 2*v(1)*v(2) 2*v(1)*v(3)+v(2)^2 2*v(2)*v(3) v(3)^2 ];

if ( 100*abs(sum(phi.*dA)) < 95 ) | ( abs(sum(psi.*dA))>sum(v.*v) )

List = List(1:end-1); % discard

else % bisect

[m,i] = max(rad(dA)); % dA(i) of maximum radius

dA2 = dA;

M = mid(dA(i)); % split i-th component

dA2(i) = infsup(dA(i).inf,M);

List{end} = dA2; % append first half to List

dA2(i) = infsup(M,dA(i).sup);

List{end+1} = dA2; % append second half to List

end

end
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First we use a self-validating method [26, Chapter 5] to calculate rigorous error bounds for the normalized
eigenvector x of A based on the Matlab approximations for λ and x, see rows 3 and 4 in Algorithm 1. The
computed inclusion for the eigenvalue and normalized eigenvector is displayed by rows 5 and 6 as

intval L =

1.0e+002 *

< 4.09311491182585 + 4.63324918983671i, 0.00000000000001>

intval X =

< 0.86341362769075 + 0.00000000000000i, 0.00000000000001>

< 0.03870965007446 - 0.48388618626465i, 0.00000000000001>

< -0.13646082868583 - 0.01584523542423i, 0.00000000000001>

which is the INTLAB midpoint-radius notation. The maximization over the set of structured matrices
is a little delicate. According to (5.3) and assuming ∆A to be the Toeplitz matrix with first column
(δa3, δa2, δa1)T and first row (δa3, δa4, δa5)T , we have to maximize

|xT J∆Ax| = |x2
1δa1 + 2x1x2δa2 + (2x1x3 + x2

2)δa3 + 2x2x3δa4 + x2
3δa5| subject to ‖∆A‖ ≤ 1.(5.4)

We start with an interval matrix

∆A :=




dA3 dA4 dA5

dA2 dA3 dA4

dA1 dA2 dA3


 with dA3 := [0, 1] and dAi := [−1, 1] for i 6= 3.

Obviously every ∆A ∈ M
Toep
R with δa3 ≥ 0 and ‖∆A‖ ≤ 1 satisfies ∆A ∈ ∆A, so (5.1) is true if (5.3)

is satisfied for all ∆A ∈ ∆A. The dAi are bisected, each interval vector dA corresponding to a set T (dA)
of Toeplitz matrices. Note that phi and psi are calculated such that xT J∆Ax ∈ sum(phi.*dA) and
vT J∆Av ∈ sum(psi.*dA) for all ∆A ∈ T (dA), respectively. This notation has the advantage that the
intervals dAi occur only once, so there is no overestimation with respect to them (cf. [24]).

A box dA can be discarded if either (5.3) is satisfied for all ∆A ∈ T (dA), or if ||∆A||2 > 1 for all ∆A ∈ T (dA)
(the if-statement in Algorithm 1). The first condition is verified by straightforward interval evaluation
(avoiding the conversion error for 0.95). The second condition is satisfied if |vT J∆Av| > ||v||2 for some
(real) vector v and for all ∆A ∈ T (dA). A good choice for v is an approximate eigenvector of J times the
midpoint matrix of T (dA) to its norm (note this matrix is Hankel and therefore symmetric).

INTLAB uses interval code if at least one operand of a function, an operator (+, *, · · ·) or a comparison is
an interval. For example X>Y is true for intervals X,Y iff x > y for all x ∈ X and all y ∈ Y. Note that
abs(X) := {|x| : x ∈ X} for an interval X. Otherwise we hope the code is self-explaining.

Note that provided the tools, i.e. the software and the hardware in use, are working properly, this is a
rigorous mathematical proof and is not based on statistical grounds.

If Algorithm 1 stops, (5.3) and hence (5.1) are proved. This straightforward, not optimized algorithm needs
some 105 bisections, the maximum depth of List is 19, and on a 1.6 GHz Pentium M Laptop the proof takes
less than half an hour.
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