
International workshop on verified computations
and related topics

University of Karlsruhe, Germany, 7-10 March, 2009

Error-Free Transformations and
ill-conditioned problems

Siegfried M. Rump

Hamburg University of Technology and Waseda University, Tokyo

(joint work with Takeshi Ogita, Tokyo Woman’s Christian University and Shin’ichi
Oishi, Waseda University, Tokyo)

The concept of error-free transformations is rather old, but gained much attention in
recent years. Quite a number of algorithms, most prominently algorithms to compute
the sum or dot product of vectors of floating-point numbers, were developed recently
using error-free transformations.

The appeal is that problems such as the sum of floating-point numbers can be
transformed into other, simpler problems without any error. Successive transformations
simplify the problem more and more until eventually it can be solved with maximum
accuracy.

Following we describe some of those algorithms, in particular for the sum of floating-
point numbers, one of the most basic and important problems in numerical compu-
tations. We mention that those algorithms can be used to compute the inverse of
an arbitrarily ill-conditioned matrix in pure double precision floating-point arithmetic
[8, 10].

One of the earliest error-free transformations [4] is the transformation of the sum
a+b of two floating-point numbers a, b into the sum x+y of two floating-point numbers.
Here x is the rounded-to-nearest floating-point sum fl(a+ b) and y = a+ b−fl(a+ b) is
the exact error. The following algorithm due to Knuth [4] performs this transformation.
Note that only ordinary floating-point addition and subtraction is used to compute the
exact error y.

Algorithm 1. Error-free transformation of the sum of two floating-point numbers.

function [x, y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

The following theorem holds.

Theorem 1. For all floating-point numbers a, b we have

x = fl(a + b) and x + y = a + b.

To prove this, two facts are important: First, the error y is always a floating-point
number, and second it is computed by Algorithm TwoSum under all circumstances
without error.

There are similar algorithms [1] for the dot product of two vectors which are based
on the error-free transformation of the product a · b into x = fl(a · b) and x + y = a · b.
They use the remarkable property due to Veltkamp [1] that a 53-bit double precision

floating-point number can be split error-free into the sum of two 26-bit numbers. The
trick is that in addition to the mantissa bits the sign-bit is used as well. Details can
be found in [7], [12] and [13].

For the moment it suffices to know that the dot product vT w of two vectors v, w ∈ Fn

can be transformed into the sum
∑

si of a vector s ∈ F2n of double length. Because
the transformation is error-free, it suffices to consider the summation problem.

The error-free transformation TwoSum can be propagated one-by-one. Given, for
example, p ∈ F4, we transform

q2 + π2 = p1 + p2

q3 + π3 = π2 + p3

q4 + π4 = π3 + p4

Obviously

4∑
i=1

pi = q2 + π2 + p3 + p4 = q2 + q3 + π3 + p4 = q2 + q3 + q4 + π4 =
∑

qi + πn .

More generally, given p ∈ Fn we define π1 := p1 and transform

qi + πi = πi−1 + pi.

Then

(1)
n∑

i=1

pi = πn +
n∑

i=2

qi.

The process becomes more clear in Figure 1. Here each box represents the error-free

TwoSum TwoSum TwoSum

p1

pnpn-1p2

qnqn-1q2

nnn

Figure 1. Cascade error-free Transformation TwoSum

transformation TwoSum as in Algorithm 1. Now the vector p1, ..., pn is transformed into
the vector q2, ..., qn, πn, where the last element πn is the ordinary floating-point summa-
tion fl(

∑
pi) and the value of the sum does not change as by (1): The transformation

is error-free. Another way to write this transformation is the following [7]:

Algorithm 2. Cascaded summation.

function p′ = VecSum(p)
p′1 = p1

for i = 2 : n
[p′i, p

′
i−1] = TwoSum(pi, p

′
i−1)

end for

Here the vector p ∈ Fn is transformed into the vector p′ ∈ Fn with
∑

pi =
∑

p′i.
But not only is the transformation error-free, but the condition number cond(

∑
pi)

decreases by almost a factor eps (the relative rounding error unit). More precisely [7],

cond(
∑

p′i) ≤ γn · eps · cond(
∑

pi),

where γn := neps/(1− neps) [3].
This transformation process can be cascaded, each time reducing the condition

number of the sum by almost a factor eps. In the last step the resulting vector is added
in floating-point, the only operation which is not error-free in the entire algorithm. This
algorithm SumK was presented in [7]:

Algorithm 3. Summation as in K-fold precision.

function res = SumK(p,K)
for k = 1 : K − 1

p = VecSum(p)
end for

res = fl

((
n−1∑
i=1

pi

)
+ pn

)

It can be shown [7] that the result res of algorithm SumK is essentially the same “as
if” the sum would have been calculated in K-fold precision. In other words, arbitrarily
ill-conditioned sums can be computed accurately to the last bit in ordinary double
precision floating-point.

A drawback of Algorithm SumK is that the number of transformations depends on
the condition number and this is not known a priori. The following algorithm AccSum

[12], [13] calculates the sum of a vector accurate to the last bit independent of the
condition number.

The idea is as follows. Figure 2 depicts the summands of a vector pi according to

M bits

53 bits

�
= 2

M

qi p'i

pi

Figure 2. Extraction of high- and low-order parts of pi

the bit representation of the individual elements. Denote by µ the smallest power of

2 such that |pi| ≤ µ for all i, and denote by 2M the smallest power of 2 such that
n < 2M . Furthermore assume that we can extract from each pi the bits starting with
the leading bit until the bit 2Mµ · eps as shown in Figure 1. Denote this leading part
by qi and the remaining part by p′i, so that pi = qi + p′i for all i. Note that the leading
part qi may vanish, in which case pi = p′i. This happens if pi is smaller than 2Mµ · eps.
It is mandatory that the transformation pi = qi + p′i is error-free.

The constants are chosen in such a way that the qi add in floating-point without
error. This is true because potential carries in the sum of the qi cannot exceed σ := 2Mµ
because |pi| ≤ µ and n < 2M . In other words,

τ := fl(
∑

qi) =
∑

qi,

the summation is error-free. Obviously this implies

(2)
∑

pi = τ +
∑

p′i.

We have to discuss how to extract the pi into qi and p′i. As we will see, this can be
done in only three ordinary floating-point operations.

The quantity τ can be used to decide whether the summation is well-conditioned
or ill-conditioned. If τ is large, then the sum must be well-conditioned because the
remaining part

∑
p′i has little influence as the correction of τ . It can be shown that

adding the p′i in pure floating-point suffices to produce an approximation of the true
sum being accurate to the last bit.

If, on the other hand, τ is small, then the correcting term, the sum of the p′i may
have a significant influence on τ . In fact, the final sum may even be zero. In this
case we continue the process by extracting the high-order parts of the p′i into q′i and
remaining parts p′′i . The extraction is performed in such a way that the q′i add again
in pure floating-point without error. Since p′i = q′i + p′′i for all i, we have

∑
pi = τ +

∑
p′i = τ +

∑
q′i +

∑
p′′i .

Now the extraction is performed in such way that even τ ′ := τ +
∑

q′i adds without
error, so that finally

(3)
∑

pi = τ ′ +
∑

p′′i .

Again we can decide on the size of τ ′ whether the sum of the p′i is well-conditioned
or ill-conditioned. In the first case we add τ ′ +

∑
p′′i in pure floating-point and it can

be shown that the result is accurate to the last bit. Otherwise we continue with the
extraction.

An appealing property of this approach is that the computing time is proportional
to the difficulty of the problem. A well-conditioned sum requires only one or few
extractions, an ill-conditioned sum requires more extractions. The degree of difficulty
of the problem is determined by the algorithm itself.

It remains the problem to extract the pi into the leading, high-order part qi and
the remaining, low-order part p′i. This extraction can be performed with the following,
surprisingly simple algorithm. Given σ ∈ F, consider

Algorithm 4. Vector extraction.

τ = 0
for i = 1 : n

qi = fl((σ + pi)− σ)
p′i = pi − qi

τ = τ + qi

end for

It can be shown that for every floating-point number σ satisfying σ ≥ |pi| we have

(4) pi = qi + p′i,

and qi and p′i satisfy inequalities so that qi is indeed the high-order part of pi and
p′i is the low-order part. Furthermore, the subtraction p′i = pi − qi and the addition
τ = τ + qi are exact, it can be shown that they do not cause a rounding error. Note
again that the leading bits of pi need not to coincide with the leading bits of qi; the
only important property is (4).

Quite some work is necessary to define σ and other constants so that the dichotomy
between well-conditioned or ill-conditioned as described above is really true and, most
important, that the error-free relations (2) and (3) and so forth are really satisfied. This
is shown in [12]. Moreover, it is shown in [12] that the chosen constants are optimal,
they cannot be improved without jeopardizing the properties of the algorithm.

In total we have a very efficient algorithm to compute the sum of floating-point
numbers accurately to the last bit. Counting the number of operations of the inner
loop (the vector extraction) we have 4n floating-point operations per loop. This is
algorithm AccSum as described in [12] and [13].

There seems not much room to improve this. However, it is possible. The vector
extraction above uses the same constant σ for all pi. This is not necessary; the only
necessary assumption for the mathematical properties to hold is σ ≥ |pi| for all i. The
idea in [11] is to start with some σ0 and continue as follows:

Algorithm 5. Improved vector extraction.

for i = 1 : n
σi = fl(σi−1 + pi)
qi = σi − σi−1

p′i = pi − qi

end for
τ = σn − σ0

The extraction in the for-loop is obviously the same as in the original vector ex-
traction except that σ changes in each iteration. For suitable σ0 one can show that
both the computation of qi and of p′i are error-free, so that again pi = qi + p′i for all i.
It follows ∑

pi =
∑

qi +
∑

p′i.

The improvement of the new algorithm FastAccSum [11] is on the computation of
∑

qi.
Using the fact that the computation of qi by qi = σi − σi−1 is error-free, we have a
telescope sum:

q1 + q2 + . . . + qn = σ1 − σ0 + σ2 − σ1 + . . . + σn − σn−1 = σn − σ0.

Summarizing we obtain ∑
pi = σn − σ0 +

∑
p′i.

Now the improved vector extraction requires only 3n floating-point operations, in con-
trast to the original vector extraction the computation of

∑
qi comes practically free.

Of course, a number of details must be worked out; in particular the constants
are chosen so that σn − σ0 does also not cause a rounding error. This transforms the
original sum of the pi into τ +

∑
p′i as in AccSum.

In total this creates a new algorithm FastAccSum as presented in [11], and it is up
to 25% faster than its origin AccSum (3n compared to 4n flops in the inner loop).

In conclusion we presented new algorithms to compute accurate approximations of
the sum of floating-point numbers. Details can be found in [7], [12], [13] and [11].
Over there also computing times for various compilers and architectures are presented
showing that the new algorithms are the fastest known algorithms in terms of floating-
point operations and in terms of executing time.

As has been explained, dot products can be transformed into sums of double length.
Hence each summation algorithm implies an efficient way to compute accurate approx-
imations of the dot product of two floating-point vectors.

The basic tool for all algorithms are error-free transformations. These well-known
tools represent an interesting way to transform problems into simpler problems, the
transformation performed without error.

Starting with [7] we see a renaissance of using error-free transformations (the term
was coined in [7]) in various areas [2, 6, 5, 9, 14, 15]. We expect to see more of such
applications in the near future.

References

[1] T. J. Dekker, A floating-point technique for extending the available precision, Numer. Math., 18
(1971), pp. 224–242.

[2] S. Graillat, P. Langlois, and N. Louvet, Compensated Horner Scheme, Tech. Report
RR2005-02, Laboratoire LP2A, University of Perpignan, 2005.

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, Philadel-
phia, 2002.

[4] D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison
Wesley, Reading, Massachusetts, 1969.

[5] P. Langlois, Accurate Algorithms in Floating Point Arithmetic, Invited talk at the 12th GAMM–
IMACS International Symposion on Scientific Computing, Computer Arithmetic and Validated
Numerics, Duisburg, 26–29 September, 2006.

[6] P. Langlois and N. Louvet, Solving Triangular Systems More Accurately and Efficiently, Tech.
Report RR2005-02, Laboratoire LP2A, University of Perpignan, 2005.

[7] T. Ogita, S.M. Rump, and S. Oishi. Accurate Sum and Dot Product. SIAM Journal on Scientific
Computing (SISC), 26(6):1955–1988, 2005.

[8] S. Oishi, K. Tanabe, T. Ogita and S.M. Rump. Convergence of Rump’s method for inverting
arbitrarily ill-conditioned matrices. J. Comput. Appl. Math., 205(1):533–544, 2007.

[9] K. Ozaki, T. Ogita, S. M. Rump, and S. Oishi, Fast and robust algorithm for geometric
predicates using floating-point arithmetic, Transactions of the Japan Society for Industrial and
Applied Mathematics, 16 (2006), pp. 553–562.

[10] S.M. Rump. Inversion of extremely ill-conditioned matrices in floating-point. accepted for publi-
cation in JJIAM, 2008.

[11] S.M. Rump. Ultimately Fast Accurate Summation. submitted for publication, 2008.
[12] S.M. Rump, T. Ogita, and S. Oishi. Accurate Floating-point Summation Part I: Faithful Round-

ing. SIAM Journal on Scientific Computing (SISC), 31(1):189–224, 2008.

[13] S.M. Rump, T. Ogita, and S. Oishi. Accurate Floating-point Summation Part II: Sign, K-fold
Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing (SISC), 31(2):1269–
1302, 2008.

[14] Y.-K. Zhu and W. Hayes, Fast, guaranteed-accurate sums of many floating-point numbers, in
Proceedings of the 7th Conference on Real Numbers and Computers, G. Hanrot and P. Zimmer-
mann, eds., 2006, pp. 11–22.

[15] Y.-K. Zhu, J.-H. Yong, and G.-Q. Zheng, A new distillation algorithm for floating-point
summation, SIAM J. Sci. Comput., 26 (2005), pp. 2066–2078.

