
00

IEEE754 precision-k base-β arithmetic inherited
by precision-m base-β arithmetic for k < m

SIEGFRIED M. RUMP, Institute for Reliable Computing, Hamburg University of Technology,
and Visiting Professor at Waseda University, Faculty of Science and Engineering

Suppose an m-digit floating-point arithmetic in base β ≥ 2 following the IEEE754 arithmetic standard is
available. We show how a k-digit arithmetic with k < m can be inherited solely using m-digit operations.
This includes the rounding into k digits, the four basic operations and the square root, all for even or odd
base β. In particular, we characterize the relation between k and m so that no double rounding occurs when
computing in m digits and rounding the result into k digits. We discuss rounding to nearest as well as
directed rounding, and our approach covers exceptional values including signed zero. For binary arithmetic,
a Matlab toolbox based on binary64 including k-bit scalar, vector and matrix operations as well as k-bit
interval arithmetic is part of Version 8 of INTLAB, the Matlab toolbox for reliable computing.

Categories and Subject Descriptors: G.1 [Numerical Algorithms]: Numerical Algorithms

General Terms: Computer arithmetic, Interval arithmetic

Additional Key Words and Phrases: Floating-point arithmetic, base-β, unit in the first place (ufp), IEEE754,
double rounding, interval arithmetic, INTLAB

ACM Reference Format:
Siegfried M. Rump, 2013. IEEE754 precision-k base-β arithmetic inherited by precision-m base-β arithmetic
for k < m. ACM Trans. Math. Softw. 0, 0, Article 00 (2013), 15 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. PREVIOUS WORK
Suppose an arithmetic following the IEEE 754 standard in base β ≥ 2 with precision
m is available. Based on that, we describe in this note how to simulate an IEEE 754
precision-k arithmetic for 1 ≤ k < m. This covers in particular the rounding from
precision-m into precision-k, the four basic operations and the square root. Moreover,
the corresponding operations with directed rounding are covered.

Previous work includes Sipe [Lefèvre 2013], a set of C-subroutines for correctly
rounded binary operations in low precision, and FLAP [Stewart 2009], a Matlab tool-
box for correctly rounded decimal arithmetic. Neither library provides directed round-
ing. According to Pete Stewart [Stewart 2014] the latter is thoroughly tested, however,
without any claim of rigor. Indeed, at least for precision larger than 8 decimals, exam-
ples of incorrect rounding to nearest can be found.

The present note aims on computing rigorously rounded results in a base β ≥ 2
according to IEEE 754 including overflow, underflow and exceptional values such as∞
and NaN, or signed zero, where rounding covers to-nearest and directed rounding.

The note is organized as follows. After introducing some notation, we describe a sim-
ple method to round a base-β precision-m number into base-β precision-k for 1 ≤ k < m

Siegfried M. Rump, Institute for Reliable Computing, Hamburg University of Technology, Schwarzen-
bergstraße 95, Hamburg 21071, Germany, rump@tuhh.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0098-3500/2013/-ART00 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:2 S. M. Rump

using solely precision-m operations. Based on that we characterize in Section 4 the
maximum value of k relative to m so that double-rounding cannot occur. This means
that performing an operation with precision-k input in precision-m and round the re-
sult into precision-k produces the same result as if directly computed in precision-k.
This has been done for binary arithmetic in [Figueroa 1995; Figueroa Del Cid 2000]
barring overflow, underflow and exceptional values. We close the note with some re-
marks on implementation issues and directed rounding.

2. NOTATION
Let 1 ≤ k ∈ N and 1 ≤ E ∈ N∗ be given where N∗ := N ∪ {∞}. Denote by Fβ,k,E the set

±m1.m2m3 . . .mk · βe with − E + 1 ≤ e ≤ E (1)

of precision-k floating-point numbers in base β ≥ 2, and define

Fβ,k,E := Fβ,k,E ∪ {±∞} and F∗β,k,E := Fβ,k,E ∪ {NaN}. (2)

Throughout this note all floating-point quantities refer to the same base β, but the
precision and exponent range will vary. Thus we omit the index β for ease of notation.

The arithmetic operations shall follow the IEEE754 floating-point arithmetic stan-
dard [IEEE 2008]. The set of nonzero floating-point numbers with m1 = 0 and
e = −E + 1 represents the underflow range. Exceptional values like ±∞ and NaN are
defined and treated as in IEEE754. Note that always Fk,E = −Fk,E . A very thorough
and readable introduction to all aspects of floating-point is [Muller et al. 2009].

IEEE754 binary32 (single precision) and binary64 (double precision) with β = 2 are
characterized by k = 24, E = 127 and k = 53, E = 1023, respectively. Note that k refers
to the precision in bits, not the stored number of bits.1

For example, in the exceptional case k = 1 the set F1,E for β = 2 consists only of
powers of 2, namely F1,E = {±2e : −E + 1 ≤ e ≤ E} ∪ {±0,±∞}, and there is no
underflow range.

For base β and precision-k,

uk :=
1

2
β1−k denotes the relative rounding error unit.

Note that uk ∈ Fk,E if and only if β is even. ForE 6=∞, the largest normalized, smallest
normalized and smallest denormalized positive floating-point numbers in Fk,E are

realmaxk,E = βE+1(1− β−k), realmink,E = β−E+1, subrealmink,E = β−E+2−k, (3)

respectively. Hence

0 6= f ∈ Fk,E normalized ⇔ |f | ≥ realmink,E .

Moreover,

f ∈ Fk,E , β
e ≤ f ≤ βe+1, −E + 1 ≤ e ≤ E ⇒ f = βe(1 + nβ1−k) with n ∈ N. (4)

For the analysis of floating-point properties of algorithms, I introduced the concept
“unit in the first place” (ufp) defined by

0 6= x ∈ R : ufpβ(x) := βblogβ |x|c and ufpβ(0) := 0.

For nonzero x it is the weight of the leading digit in the base-β representation of x.
We use ufp(·) because the base β is always clear from the context. This concept proved

1For normalized binary numbers the “implicit-one” [or “implicit-integer”] bit m1 = 1 need not to be stored.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:3

useful in formalizing proofs of certain properties related to floating-point operations,
see [Rump 2009] and papers cited there. For base β it follows

0 6= x ∈ R ⇒ ufp(x) ≤ |x| < βufp(x) (5)
f ∈ Fk,E ⇒ ufp(f) ≤ |f | ≤ β(1− β−k)ufp(f) (6)
f ∈ Fk,E ⇒ f ∈ 2ukufp(f)Z = β1−kufp(f)Z (7)

and

x ∈ β`−kZ, realmink,E ≤ |x| ≤ β`, |x| < βE+1 ⇒ x ∈ Fk,E . (8)

These properties are easily verified. The successor and predecessor of finite x ∈ R with
|x| ≤ realmaxk,E are defined by

succk,E(x) := inf{f ∈ Fk,E : x < f} and predk,E(x) := sup{f ∈ Fk,E : f < x},

respectively. For example, succ(realmaxk,E) =∞ and

succ(βe) = (1 + 2uk)βe = (1 + β1−k)βe and pred(βe) = (1− β−k)βe (9)

for −E + 2 ≤ e ≤ E. The rounding to nearest flk,E : R→ Fk,E according to IEEE 754 is
characterized by

x ∈ R, |x| ≤ realmaxk,E : |flk,E(x)− x| = min{|f − x| : f ∈ Fk,E}
with rounding ties to even in case x is equal to a “switching point”, i.e. the midpoint of
two adjacent elements in Fk,E . For |x| > realmaxk,E , the switching point is given by

|flk,E(x)| =∞ ⇔ |x| ≥ βE+1(1− 1

2
β−k). (10)

For convenience we use Fk, flk, succk, etc. if E = ∞. In that case flk(x) = 0 ⇔ x = 0.
For infinite exponent range the set of switching points Sk for the rounding flk(·) is
characterized by

x ∈ Sk :⇔ |x| = f + ukufp(f) for some 0 < f ∈ Fk. (11)

It is Sk ⊆ Fk+1 for even β, and Sk ∩ Fm = ∅ for any m in case of odd β. For odd β, the
rounded-to-nearest result is unique.

For k = 1 and x ∈ Sk we have x = ±(m1 + 1
2)βe, and we interpret “rounding ties to

even” as flk(x) = ±m1β
e for even m1 and flk(x) = ±(m1 + 1)βe otherwise. In any case

0 ≤ x ∈ R, 1 ≤ k ∈ N ⇒ ufp(x) ≤ ufp(flk(x)). (12)

The best error estimate for rounding to nearest into normalized numbers in Fk,E is

x ∈ R, f = flk,E(x), realmink,E ≤ |f | <∞ ⇒ |f − x| ≤ ukufp(x) ≤ ukufp(f). (13)

In the literature, e.g. [Higham 2002], often |f − x| ≤ uk|x| is used2. However, this is
too weak for our purposes as the bound can be worse than (13) by almost a factor β
depending on whether the mantissa is close to 1 or close to β.

Moreover,

x ∈ R, f ∈ Fk and |f − x| < ukufp(x) ⇒ f = flk(x) (14)

for infinite exponent range. Note that ufp(x) cannot be replaced by ufp(f) in (14) when
f is a power of β.

2This can be improved into |f − x| ≤ uk
1+uk |x| as noted in [Knuth 1998], see also [Jeannerod and Rump

2014].

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:4 S. M. Rump

Directed rounding of a real number x ∈ R into Fk,E is depicted by fl∇k,E ,fl
∆
k,E ,fl

><
k,E and

fl<>k,E for rounding downwards, rounding upwards, rounding towards and away from
zero, respectively. Those are defined by

fl∇k,E(x) := max{f ∈ Fk,E : f ≤ x}, fl∆
k,E(x) := min{f ∈ Fk,E : x ≤ f} and

fl><k,E(x) :=

{
fl∇k,E(x) if x ≥ 0,

fl∆
k,E(x) otherwise ,

fl<>k,E(x) :=

{
fl∆
k,E(x) if x ≥ 0,

fl∇k,E(x) otherwise ,

respectively. It follows, for example, succk,E(f) = fl∆
k,E(f + subrealmink,E) for f ∈ Fk,E .

3. ROUNDING INTO K-BIT FORMAT
The rounded image flβ,k,E(x) of x ∈ R is clear if there is direct access to the β-adic rep-
resentation of x. For an m-digit working precision and a k-digit destination precision
with k < m we show how to compute flk(·) solely using operations in working precision.

The problem is that switching points are rounded downwards or upwards, depending
on how the tie is resolved. If the direction of rounding is always the same as for fl∇,fl∆

and fl><, then double rounding cannot occur, i.e. always flk(flm(x)) = flk(x).
In order to compute flk(x) using only operations in Fm we add a larger constant C

basically cutting off all but the leading k digits of x, and then subtract C again. We
present in Lemma 3.1 and Theorem 3.2 a general method for base β ≥ 2, which is
the basis for calculating flk(·) with Algorithm 3. A suitable constant C is computed by
Algorithms 1 and 2 for even and for odd base β, respectively. We first treat input with
image in the normalized range.

LEMMA 3.1. For base β ≥ 2, let k,m ∈ N and E,E′ ∈ N∗ be given with 1 ≤ k < m,
1 ≤ E and E′ ≥ E +m− k. For x ∈ Fm,E′ define

C := βm−ksign(x)ufp(x) and C := d · C for fixed d ∈ {1, 2, . . . , β − 1}. (15)

Then realmink,E ≤ |x| < βE+1(1− 1
2β
−k) implies

flk,E(x) = flm,E′(flm,E′(C + x)− C). (16)

PROOF. By the symmetry of Fk,E and Fm,E′ we may assume without loss of gener-
ality that x ≥ 0. Note that by (10) the assumption |x| < βE+1(1 − 1

2β
−k) is equivalent

to |flk,E(x)| <∞. Then ufp(x) ≤ βE gives

realminm,E′ ≤ realmink,E ≤ βm−k · ufp(x) = C ≤ βm−k+E ≤ βE
′

and realminm,E′ ≤ C ≤ C ≤ (β − 1)βE
′
. Since all quantities in the computation of C

and C except the factor d are powers of β, it follows C,C ∈ Fm,E′ . Then

C+x < βm−k+E
(
β−1+β1+k−m(1− 1

2
β−k)

)
≤ βE

′
(β−1+1− 1

2
β1−m) = βE

′+1(1− 1

2
β−m)

using E′ ≥ E +m− k. Hence (10) implies that flm,E′(C + x) does not cause overflow in
Fm,E′ , nor does F := flm,E′(flm,E′(C + x)− C). Moreover,

C + x ≥ C + ufp(x) = (βm−k + 1)ufp(x) ∈ Fm,E′ ⇒ flm,E′(C + x) ≥ C + ufp(x)

by the monotonicity of the rounding, so that F ≥ ufp(x) ≥ realmink,E . Thus E′ ≥ E
and x ≥ realmink,E imply that neither the operations in (15) nor the rounding flk,E(x)
can cause underflow or overflow. Thus the roundings flk,E and flm,E′ in (16) can safely
be replaced by flk and flm, respectively, corresponding to an infinite exponent range.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:5

Denote by x = x+ e the unique splitting of x into x ∈ 2umCZ and 0 ≤ e < 2umC, and
set x := succk(x). We first show

x, x ∈ Fk ⊆ Fm and C + x,C + x ∈ Fm. (17)

We have ufp(x) = ufp(x), x = x + 2ukufp(x) = x + 2umC, and also x, x ∈ 2ukufp(x)Z
and 0 ≤ e < 2ukufp(x). Thus x ≤ x ≤ βufp(x) ∈ Fm,E′ and (8) imply the first statement
in (17). Furthermore, C + x,C + x ∈ 2umCZ and

C + x ≤ C + x ≤ (β − 1)C + βufp(x) = (β − 1 + βk−m+1)C ≤ βC,
and using again (8) implies the second statement in (17).

We distinguish three cases. First, assume 0 ≤ e < umC. For g := C + x ∈ Fm and
using C = ufp(C) it follows

C + x− g = x− x = e < umC = ukufp(x) ≤ umufp(g),

and (14) gives flm(C + x) = g = C + x as well as flk(x) = x = flm(g − C) = F .
Second, assume umC < e < 2umC. Then for g := C + x ∈ Fm we have

|C + x− g| = x− x = 2umC − e < umC = ukufp(x) ≤ umufp(g),

and again (14) gives flm(C + x) = g = C + x and flk(x) = x = flm(g − C) = F .
Third and finally, assume e = umC. The definition of x implies that the m-th digit of

C+x ∈ Fm and the k-th digit of x ∈ Fk are the same, so that in particular they are either
both odd or both even. The same arguments as before show that flm(C+x) = C+ x̃ and
flk(x) = x̃ for either x̃ = x or x̃ = x. In any case F = x̃ = flk(x), finishing the proof.

THEOREM 3.2. For base β ≥ 2, let k,m ∈ N and E,E′ ∈ N∗ be given such that
1 ≤ k < m, 1 ≤ E and E′ ≥ E +m− 1. For x ∈ Fm,E′ define

C := float
[
βm−ksign(x) ·max

(
ufp(x), realmink,E

)]
(18)

and

C := float
[
d · C

]
for fixed d ∈ {1, 2, . . . , β − 1}, (19)

where float[·] is computed with all operations being floating-point operations in F∗m,E′ .
Then |x| < βE+1(1− 1

2β
−k) implies

flk,E(x) = flm,E′(flm,E′(C + x)− C). (20)

REMARK. Note that 1 − 1
2β
−k /∈ Fm for odd β and any m ∈ N; using x ∈ Fm,E′ the

assumption |x| < βE+1(1− 1
2β
−k) is equivalent to |x| ≤ βE+1(1− β−1

2 β−1−k) ∈ Fm,E′ .
PROOF. In Lemma 3.1 the result is proved if realmink,E ≤ |x|, so we may assume

without loss of generality that 0 ≤ x < realmink,E .
We distinguish three cases. First, suppose β−E+2−k ≤ x < β−E+1 such that x has a

base-β representation

x = 0.0 . . . 0m1m2 . . .mk−j . . . · β−E+1 = m1.m2 . . .mk−j . . . · β−E+1−j

with 0 < j < k. Then flk,E(x) = flk−j,E+j(x). Setting k̃ := k − j and Ẽ := E + j yields
1 ≤ k̃ < m, Ẽ +m− k ≤ E +m− 1 ≤ E′ and x ≥ β−E+1−j = realmink̃,Ẽ . Hence Lemma
3.1 is applicable and

f = flk,E(x) = flk̃,Ẽ(x) = flm,E′(flm,E′(C̃ + x)− C̃),

where

C̃ = d · βm−k̃ufp(x) = d · βm−k+j · β−E+1−j = d · βm−krealmink,E = C.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:6 S. M. Rump

Second, suppose 1
2β
−E+2−k < x < β−E+2−k. In that case flk,E(x) = subrealmink,E =

β−E+2−k = 2umC for the corresponding C in (18). Defining g := succm,E′(C) and using
m ≥ 2 yields ufp(C) = ufp(C) = ufp(g), and therefore g = C + 2umC by (9). Then
|g − (C + x)| = 2umC − x < umC = umufp(g), such that (14) implies flm,E′(C + x) = g
and F = flm,E′(g − C) = 2umC = flk,E(x).

In the remaining third case 0 ≤ x ≤ 1
2β
−E+2−k = umC for C as in (18). Then |C −

(C + x)| = x ≤ umC = umufp(C), such that m ≥ 2 and rounding tie to even implies
flm,E′(C + x) = C and F = flm,E′(C − C) = 0 = flk,E(x). This finishes the proof.

To apply Theorem 3.2 we calculate a valid offset-constant C according to (18) and
(19) in base-β precision-m arithmetic. For even base β this is done by3 Algorithm 1,
and for odd base Algorithm 2. Based on that, Algorithm 3 computes the rounding into
precision-k.

ALGORITHM 1: Constant C for precision m and even base beta

function C = constC(p)
f = 1 - 0.5*beta^(1-m)
C = beta^(m-1)*(p/f - p)

LEMMA 3.3. For even base β ≥ 2, let p ∈ Fβ,m,E′ with 1 ≤ E ≤ E′−m+ 1 and m ≥ 2
be given, and suppose realminm,E ≤ |p| < βE+1.

Then Algorithm 1, executed in F∗β,m,E′ produces C ∈ Fm,E with C = d · sign(p) ·ufp(p)

and d ∈ {1, 2, . . . , β/2}.
Moreover, C ≤ realminm,E when |p| < realminm,E .

REMARK. Note that C = sign(p) · ufp(p) for β = 2.

PROOF. To prove the first assertion, note that E′ ≥ 2 and even β yield 0.5 · β1−m =
β
2β
−m ≥ β

2 · subrealminm,E′ , and thus f = 1− um = 1− β
2β
−m ∈ Fm,E′ . We define

q := p/f, q̃ := fl(q), s := q̃ − p and s̃ := fl(s).

Because p is in the normalized range, (9) implies
succ(p) = p+ 2umufp(p) and ufp(p) ≤ p ≤ β(1− β−m)ufp(p).

Then
(p+ umufp(p))f = p+ umufp(p)− um(p+ umufp(p)) < p

gives p+ umufp(p) < p/f = q and therefore succ(p) ≤ q̃. Moreover, m ≥ 2 shows

β(1 + um)f = β(1− 1

4
β2−2m) > β(1− β−m) ≥ p

ufp(p)
,

so that q = p/f < β(1 + um)ufp(p). Since βufp(p) ≤ βE+1 ∈ Fm,E′ by p < βE+1 we
obtain succ(p) ≤ q̃ ≤ βufp(p), and (4) yields q̃ = p + αβ1−mufp(p) for some 1 ≤ α ∈ N.
Now (6) implies

p ≤ p(1 + 1
2β
−m − 1

2β
2−2m) < p(1− 1

4β
2−2m + 1

2β
−m − 1

4β
1−2m)

= p(1− 1
2β

1−m)(1 + 1
2β

1−m + 1
2β
−m) < (1− um)p

(
1 + β+1

2
β1−m

β(1−β−m)

)
≤ f

(
p+ β+1

2 β1−mufp(p)
)
,

3Originally I used q=p/f and C=beta^(m-1)*(q-f*q); this simpler version was suggested by Marko Lange.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:7

so that β even yields

q = p/f < p+
β + 1

2
β1−mufp(p) and q̃ = fl(p/f) ≤ p+

β

2
β1−mufp(p).

Hence q̃ = p + dβ1−mufp(p) for an integer d with 1 ≤ d ≤ β/2, and s = dβ1−mufp(p) ∈
Fm,E implies s̃ = s. Finally E′ ≥ m− 1 yields βm−1 ∈ Fm,E′ , and the result follows.

To prove the final assertion, we may assume without loss of generality that 0 < p <
realminm,E . Then (3) and (9) give

p ≤ q = p/f <
1− β−m

1− 1
2β

1−m β−E+1 ≤ β−E+1 = realminm,E ,

so that p ≤ q̃ ≤ realminm,E and also q̃ − p ≤ realminm,E . This finishes the proof.

ALGORITHM 2: Constant C for precision m and odd base beta

function C = constC(p)
f = (beta+1)/2*beta^(-m)
C = beta^(m-1) * ((p + f*p) - p)

LEMMA 3.4. For odd base β ≥ 3, let p ∈ Fβ,m,E′ with 1 ≤ E ≤ E′ −m+ 1 and m ≥ 2
be given, and suppose realminm,E ≤ |p| < βE+1.

Then Algorithm 2, executed in F∗β,m,E′ produces C ∈ Fm,E with C = d · sign(p) ·ufp(p)

and d ∈ {1, 2, . . . , (β + 1)/2}.
Moreover, C ≤ realminm,E when |p| < realminm,E .

PROOF. To prove the first assertion we have f = β+1
2 β−m ∈ Fm,E′ by E′ ≥ 2. Note

that 1/2 /∈ Fm for any m ≥ 1. We define

q := f · p, q̃ := fl(q), r := p+ q̃, r̃ := fl(r), s := r̃ − p and s̃ := fl(s).

Because p is in the normalized range, (9) implies

succ(p) = p+ 2umufp(p) and ufp(p) ≤ p ≤ β(1− β−m)ufp(p).

Then

umufp(p) < B1 :=
β + 1

2
β−mufp(p) ≤ f · p = q <

β + 1

2
β1−mufp(p) =: B2

and B1, B2 ∈ Fm imply B1 ≤ q̃ ≤ B2, so that

umufp(p) < q̃ ≤ β + 1

2
β1−mufp(p). (21)

Furthermore,
p+succm(p)

2 = p+ umufp(p) <

p+ q̃ ≤
(
β(1− β−m) + β+1

2 β1−m)ufp(p) =
(
β + β−1

2 β1−m)ufp(p)

< β(1 + um)ufp(p) = β+succ(β)
2 ufp(p)

and therefore

succm(p) ≤ flm(p+ q̃) = r̃ ≤ βufp(p) ≤ βE+1 ∈ Fm,E′ .

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:8 S. M. Rump

Similar to the proof of Lemma 3.3 we use (4) to conclude r̃ = p+ dβ1−mufp(p) for some
1 ≤ d ∈ N, and (21) yields 1 ≤ d ≤ (β + 1)/2. Therefore s = dβ1−mufp(p) = s̃ ∈ Fm,E′ ,
and using βm−1 ∈ Fm,E′ by E′ ≥ m− 1 finishes this part of the proof.

To prove the final assertion, we may assume without loss of generality that 0 < p <
realminm,E . Then ufp(p) ≤ β−E and

q = f · p < β + 1

2
β1−mufp(p) < β2−m−E = subrealminm,E =: σ ∈ Fm,E′ ,

so that q̃ ≤ σ. It follows r̃ ≤ succm,E′(p) ≤ p + σ and s̃ ≤ σ, so that βm−1s̃ ≤ β1−E =
realminm,E finishes the proof.

ALGORITHM 3: Rounding of d ∈ F∗β,m,E′ into F∗β,k,E for 1 ≤ k < m, 1 ≤ E ≤ E′ −m + 1 and
β ∈ N; all operations in Fβ,m,E′ . Here Sovfl = βE+1(1 − αβ−1−k) ∈ Fm,E′ with α := β

2
if β is

even, and α := β+1
2

if β is odd.
function f = flround(d,k,E)

if abs(d) >= Sovfl
d = sign(d)*inf;

else
C = sign(d) * max(constC(d),realmin(k,E)) * beta^(m-k);
f = (C + d) - C;

end
if f == 0

f = 0 * d; % preserve signed zero
end

THEOREM 3.5. For even base β ≥ 2, let k,m ∈ N and E,E′ ∈ N be given with
1 ≤ k < m, 1 ≤ E ≤ E′−m+ 1. Then for d ∈ F∗β,m,E′ the result f of Algorithm 3 satisfies
f = flβ,k,E(d). This includes overflow and underflow, NaN, infinity and signed zero.

REMARK 1. Note that constC(d) refers to Algorithm 1 for even, and to Algorithm 2
for odd base β.

REMARK 2. With a little effort, the restriction E′ ≥ E + m − 1 can be relaxed into
E′ ≥ E +m− k. For that in particular the multiplication by βm−1 in Algorithms 1 and
2 is replaced by a division by β1−m to ensure the constant is in Fm,E′ . In any case even
the same exponent range E′ = E can be covered, at some cost, by a suitable scaling.

PROOF. The assertion is true for the special cases d ∈ {±∞,NaN}, and by (10) also
for |d| ≥ βE+1(1 − αβ−k) = Sovfl ∈ Fm,E′ and for d = 0. The latter includes a signed
zero.

As before, we may assume without loss of generality that d ≥ 0. Denote by C̃ ∈ Fm,E′
the computed value of constC(d). If 0 < d < realmink,E , then Lemma 3.3 and Lemma
3.4 imply that C̃ ≤ realmink,E . Hence for 0 < d < realmink,E and for realmink,E ≤ d <
realmaxk,E the computed C satisfies the assumptions of Theorem 3.2. This implies (20)
and proves the theorem.

4. OPERATIONS IN K-BIT FORMAT
For a given base β, we will show in the following that flk(a op b) = flk(flm(a op b)) for
all a, b ∈ Fk and large enough m. The only exception to that statement is division in
case of odd base β. In particular, we will characterize the minimal values of m. It will

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:9

turn out that m = 2k+ 1 is sufficient for the four basic arithmetic operations and, with
one tiny exception if β = 2, also for the square root.

For the IEEE 754 binary64 format it follows that for k up to 26 and suitable restric-
tion of the exponent range floating-point operations can be executed in double precision
and then rounded to k bits by Algorithm 3 to obtain the correctly rounded IEEE754
k-bit result. Most of those results can be found for binary in [Figueroa 1995; Figueroa
Del Cid 2000] barring overflow, underflow and exceptional values. Here, however, we
treat a general base β ≥ 2.

We formulate the results first for infinite exponent range. Later we identify the ex-
ponent range to ensure

flk(flm(a op b)) = flk(a op b). (22)

For better readability we write Fk,flk rather than Fβ,k,flβ,k etc. omitting the index β.

LEMMA 4.1. Let fixed but arbitrary k,m ∈ N with 1 ≤ k < m and x ∈ R be given.
If flm(x) /∈ Sk for even base β, then flk(flm(x)) = flk(x).
If x /∈ Sk for odd base β, then flk(flm(x)) = flk(x). If x := 1

2 (t+succk(t)) when β = 4p+1

and x := 1
2 (1 + t) when β = 4p+ 3 for t := succk(1) and p ∈ N, then flk(flm(x)) 6= flk(x).

PROOF. By the symmetry of the rounding we may assume without loss of generality
that x > 0. The set of switching points Sk is characterized by (11).

For even base β define g := flm(x). If g = flk(g), then g ∈ Fk ⊂ Fm and rounding to
nearest imply g = flk(x). Suppose flk(g) < g. Then there is a unique switching point
s ∈ Sk with flk(g) < g ≤ s minimizing |flk(g)− s|. Since g = flm(x) /∈ Sk it follows g 6= s,
so that flk(g) < g < s ∈ Sk ⊂ Fk+1 ⊆ Fm and flk(g), g, s ∈ Fm. Hence flk(g) = flk(x); the
case flk(g) > g is handled similarly.

For odd base β if follows Sk ⊂ Sm and Fp ∩ Sq = ∅ for any p, q ∈ N. If x /∈ Sk, then
there is a unique switching point s ∈ Sk minimizing |flk(x) − s|. If flk(x) < s, then
flk(x) ≤ x < s. Thus s ∈ Sm and Fk ⊂ Fm imply flk(x) ≤ flm(x) < s, and therefore
flk(x) = flk(flm(x)). The case flk(x) > s is treated similarly.

Finally, for β := 2b+ 1 and odd b, we have t = 1 + β1−k and 1
2 = (0.bbb)β , so that

x =
1

2
(1 + t) = 1 + b

∞∑
i=k

β−i and y := 1 + b

m−1∑
i=k

β−i = 1 +
1

2

(
β1−k − β1−m) ∈ Fm

yield x = 1
2 (y + succm(y)). Since b is odd, rounding tie-to-even implies flm(x) =

succm(y) > x, so that flk(flm(x)) = succk(1) 6= 1 = flk(x). The case β = 2b + 1 for
even b follows similarly, and this completes the proof.

This suffices to completely characterize the situation concerning (22) for odd base β;
for even base it will be more involved.

LEMMA 4.2. For odd base β ≥ 3 let fixed but arbitrary k,m ∈ N with 1 ≤ k < m and
a, b ∈ Fk be given. Then

flk(flm(x)) = flk(x) for x ∈ {a+ b, a− b, a · b,
√
|a|}, (23)

and, abbreviating t := succk(1),

flk(flm(a/b)) 6= flk(a/b) for

{
β = 4p+ 1, a := t+ succk(t), b := 2

β = 4p+ 3, a := 1 + t, b := 2.
(24)

PROOF. Concerning the first statement we have to show x /∈ Sk. Without loss of
generality assume that a, b > 0. Then a, b ∈ Fk implies x ∈ Fn for x ∈ {a+ b, a− b, a · b}

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:10 S. M. Rump

and suitably large n ∈ N. But Sp ∩ Fq = ∅ for all p, q ∈ N in case of odd β, so that x /∈ Sk
and Lemma 4.1 imply flk(flm(x)) = flk(x).

For the square root we note

0 6= a ∈ Fk ⇔ a = Aβe with A, e ∈ Z, βk−1 ≤ |A| ≤ βk − 1.

Hence (11) implies that s ∈ Sk is equivalent to s = (S + 1
2)βe with S ∈ N and βk−1 ≤

S ≤ βk − 1. Thus s2 = (S2 + S + 1
4)β2e cannot be in any Fn, n ∈ N because 4 does not

divide any power of β for odd β. This concludes the proof of (23).
For division a, b ∈ Fk as defined in (24) and Lemma 4.1 finishes the proof.

For odd base β we proved that, on the one hand, for addition, subtraction, multipli-
cation and square root double rounding never occurs for any m ≥ k ≥ 1. On the other
hand, cases were identified where for division double rounding is unavoidable for any
m > k.

The problem with division a/b can be resolved by computing, in precision-m, another
quantity q such that flk(q) = flk(a/b). This method was suggested by Marko Lange.

LEMMA 4.3. For even or odd base β ≥ 2 let 1 ≤ k,m ∈ N and a, b ∈ Fk be given,
a, b 6= 0. Denote a = saA ·ufp(a) and b = sbB ·ufp(b) with sa, sb ∈ {−1, 1} and A,B ∈ Fk,
1 ≤ A,B < β. Define

C := βeB +A with e :=

{
m− k if A ≥ B
m− k − 1 otherwise .

If m ≥ 2k, then (
flm(C/B)− βe

)saufp(a)

sbufp(b)
= flk(a/b).

REMARK. It will be clear from the proof that with some case distinctions the weaker
assumption m ≥ k+ 1 suffices to derive a similar method using a different exponent e.
Moreover, the cases a = 0 and/or b = 0 are trivial.

PROOF. The assumptions imply 1 ≤ A,B ≤ β(1−β−k) and 1 ≤ βm−2k. Furthermore,
C = βeB +A ∈ β1−kZ because 0 ≤ m− k − 1 ≤ e, so that

C ≤ (βe + 1)β(1− β−k) ≤ βm−k(1 + β−k)β(1− β−k) < βm+1−k

together with (8) yields C ∈ Fm and ufp(C) ≤ βm−k.
First, assume A ≥ B, so that 1 ≤ A/B < β and ufp(A/B) = 1. Then C/B = βm−k +

A/B and ufp(A/B) = 1 imply that the last k digits of Q := flm(C/B) are equal to the
mantissa digits of flk(A/B). Hence flm(Q − βm−k) causes no rounding error and the
result follows.

Second, assume A < B so that β−1 ≤ A/B < 1. Then C/B = βm−k−1 + A/B and
ufp(A/B) = β−1 imply that again the last k digits of Q := flm(C/B) are equal to the
mantissa digits of flk(A/B). This finishes the proof.

To treat an even base β we will, besides (5). . .(8), frequently use

p, q ∈ Z : p ≥ q ⇒ βpZ ⊆ βqZ. (25)

LEMMA 4.4. For even base β ≥ 2 let 1 ≤ k,m ∈ N and a, b ∈ Fk be given. Ifm ≥ 2k+1
for β = 2 and m ≥ 2k for β ≥ 4, then

flk(flm(a+ b)) = flk(a+ b).

Both lower bounds on m cannot be improved.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:11

PROOF. Without loss of generality assume that a ≥ |b|. Suppose |b| ≥ βeufp(a) for
e ∈ Z, then ufp(b) ≥ βeufp(a) and

a, b, a+ b ∈ β1−kufp(b)Z ⊆ β1−k+eufp(a)Z

by (7) and (25), and therefore

|b| ≥ βeufp(a) ⇒ a, b, a+ b ∈

{
β2+k−m+eufp(a)Z if m ≥ 2k + 1

β1+k−m+eufp(a)Z if m ≥ 2k.
(26)

We distinguish several cases, where the first two cases are treated together for β = 2
and for β ≥ 4 by assuming only m ≥ 2k and β ≥ 2.

First, suppose |b| ≥ β−k+1ufp(a), then a, b, a+b ∈ β2−mufp(a)Z by (25). Hence |a+b| ≤
2|a| < 2βufp(a) ≤ β2ufp(a) and (8) prove a+ b ∈ Fm and therefore flm(a+ b) = a+ b.

Second, suppose β−kufp(a) ≤ |b| < β−k+1ufp(a) so that a, b, a+ b ∈ β1−mufp(a)Z and

|b| < β−k+1ufp(a) ⇒ |a+ b| <
(
β(1− β−k) + β−k+1

)
ufp(a) = βufp(a) (27)

by (6), so that again (8) proves flm(a+ b) = a+ b.
Now we need a case distinction on β. First, assume β ≥ 4 and the remaining case
|b| < β−kufp(a). Then |b| < ukufp(a), and (14) yields flk(a + b) = a. By (27) we get
ufp(a+ b) ≤ ufp(a), and (13), β ≥ 4, m ≥ 2k and k ≥ 1 give

|flm(a+ b)− a| < umufp(a+ b) + β−kufp(a) < (β1−m + β−k)ufp(a)

≤ (β−k + β−1)β1−kufp(a) ≤ ukufp(a).

Hence (14) proves flm(a+ b) = a = flk(a+ b).
It remains the case β = 2 and |b| < β−kufp(a). For that we need a final case distinc-

tion. First, assume β−k−1ufp(a) ≤ |b| < β−kufp(a), then a, b, a + b ∈ β1−mufp(a)Z by
(26). Then (6) gives

|a+ b| < [β(1− β−k) + β−k]ufp(a) < βufp(a),

and again flm(a+b) = a+b by (8). It remains the final case β = 2 and |b| < β−k−1ufp(a).
In that case |b| < ukufp(a) and (14) give flk(a+b) = a. Now (13), (9), ufp(a) ≤ βufp(a+b)
and (12) yield

|flm(a+ b)− a| ≤ |flm(a+ b)− (a+ b)|+ |b| ≤ umufp(a+ b) + predk(β−k−1ufp(a))

≤ 1
2β
−2kufp(a+ b) + (1− β−k)β−k−1ufp(a)

≤
(

1
2β
−2k + (1− β−k)β−k

)
ufp(a+ b)

< β−kufp(a+ b) ≤ ukufp(flm(a+ b)).

Thus a ∈ Fk and (14) imply flk(flm(a+ b)) = a = flk(a+ b).
For β = 2, k = 2, m = 2k, a = 24 = (11000)2 and b = 3 = (11)2 it is flk(a + b) = a, but

flk(flm(a+ b)) = fl2((11100)2) = (100000)2 = 32.
For β = 2ξ ≥ 4, k = 2, m = 2k − 1, a = β3 = (1000)β and b = ξβ + 1 = (ξ1)β it is

flk(a + b) = (1100)β , but flk(flm(a + b)) = flk((10ξ0)β) = (1000)β . Examples for other
values of β and k are easily constructed.

LEMMA 4.5. For even base β ≥ 2 let 1 ≤ k ∈ N and a, b ∈ Fk be given. If 2k ≤ m ∈ N,
then

flk(flm(a · b)) = flk(a · b).
The statement is not true for m = 2k − 1.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:12 S. M. Rump

PROOF. Obviously, flm(ab) = ab for m ≥ 2k, so there is nothing to prove. For k =
4, m = 2k − 1 and a = b = 13 = (1101)2 it is ab = 169 = (10101001)2, fl4(ab) =
176, but fl4(fl7(ab)) = fl4(168) = 160. For base β = 2 this is, up to scaling, the only
counterexample for k = 4; there is no counterexample for k ≤ 3. For base β = 10 and
k = 2 define a = 14 and b = 82. Then ab = 1148 and fl2(ab) = 1100, whereas fl2(fl3(ab)) =
fl2(1150) = 1200. Examples for other values of β and k are easily constructed.

LEMMA 4.6. For even base β ≥ 2 let 1 ≤ k ∈ N and a, b ∈ Fk be given. If 2k ≤ m ∈ N,
then

flk(flm(a/b)) = flk(a/b).

This statement is not true for m = 2k − 1.

PROOF. After suitable scaling with a power of β we may assume without loss of
generality that 1 ≤ a, b < β. Abbreviating g := flm(a/b) assume flk(g) 6= flk(a/b), so that
Lemma 4.1 and (11) imply g = f + ukufp(f) for some f ∈ Fk. In particular (7) implies
f ∈ β1−kufp(f)Z, and therefore g ∈ ukufp(f)Z.

We distinguish two cases. First, assume 1 ≤ a < b < β. Then

a

b
≤ b− β1−k

b
< 1− β1−k ∈ Fk ⊂ Fm

by (9). Hence g ≤ 1−β1−k and β−1 ≤ f < 1, so that ufp(f) = ufp(a/b) = β−1. Moreover,
g = a/b+ ε with |ε| ≤ umufp(a/b) = β−1um. Furthermore, g ∈ 1

2β
−kZ and a, b ∈ β1−kZ

yield εb = gb− a ∈ 1
2β
−k · β1−kZ ⊆ umZ, so that |εb| < um implies ε = 0 and g = a/b.

Second, assume 1 ≤ b < a < β. Similarly 1 ≤ f < β and |ε| ≤ um, but gb − a ∈
uk · β1−kZ ⊆ βumZ. Again it follows ε = 0 and the assertion.

For base β = 2 and k = 4, m = 2k − 1, a = 16 and b = 15 it follows a/b = (1.0001)2,
so that fl4(a/b) = (1.001)2 but fl4(fl7(a/b)) = fl4((1.0001)2) = 1. For base β = 10, k = 2
and a = 10, b = 22 it follows a/b = 0.4545, so that fl2(a/b) = 0.45 but fl2(fl3(a/b)) =
fl2(0.455) = 0.46. Examples for other values of β and k are easily constructed.

LEMMA 4.7. For even base β ≥ 2 let 1 ≤ k ∈ N and 0 ≤ a ∈ Fk be given. If m ≥ 2k+2
for β = 2 and m ≥ 2k + 1 for β ≥ 4, then

flk(flm(
√
a)) = flk(

√
a). (28)

For β = 2, k ≥ 1 and m = 2k+ 1, the unique exception, up to scaling by even powers of 2,
that (28) is not true is a = predk(4) = 4(1−uk). Moreover, (28) is also not true for β ≥ 4
and m = 2k.

REMARK. For β ≥ 4 and m = 2k the example needs not to be unique. For example,
for β = 10 and k = 2 we have

fl2(fl4(
√

99)) = fl2(fl4(9.9498 . . .)) = fl2(9.950) = 10 6= 9.9 = fl2(
√

99)

and
fl2(fl4(

√
57)) = fl2(fl4(7.5498 . . .)) = fl2(7.550) = 7.6 6= 7.5 = fl2(

√
57).

PROOF. Set g := flm(
√
a) and assume without loss of generality that 1 ≤ a < β2, so

that 1 ≤ a ≤ β2(1− β−k) by (6). If g /∈ Sk the result follows by Lemma 4.1. Henceforth
suppose g ∈ Sk, so that (11) implies g = f + uk for some f ∈ Fk, 1 ≤ f < 2, and
f + uk =

√
a+ ε with |ε| ≤ umufp(

√
a) = um.

Then f ∈ β1−kZ implies 2ε
√
a+ ε2 = (f + uk)2−a ∈ u2

kZ. Furthermore, |2ε
√
a+ ε2| <

2um ·β(1− 1
2β
−k)+u2

m < 2βum. A short computation verifies 2βum ≤ u2
k both for β = 2

with m ≥ 2k+2 and for β ≥ 4 with m ≥ 2k+1. It follows that ε(2
√
a+ε) = 0 = ε. Hence

f + uk = g =
√
a ∈ Fm proves the first assertion (28).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:13

To prove the second assertion suppose flk(g) 6= flk(
√
a) for β = 2 and m = 2k + 1.

Then as before ∆ := 2ε
√
a+ ε2 ∈ u2

kZ and |∆| < 4um = 2u2
k implies ∆ ∈ {−1, 0, 1} · u2

k.
If ∆ = 0, then ε = 0 and g =

√
a, contradicting flk(g) 6= flk(

√
a). If ∆ = −u2

k, then
−2u2

k = f2 + 2ukf − a ∈ 4u2
kZ, a contradiction.

It remains the case ∆ = u2
k, so that f2 + 2ukf = a. Then, f ∈ 2ukZ implies 2k(f +

uk) = 2k
√
a+ u2

k ∈ N, or

22k · a+ 1 = p2 for p ∈ N. (29)

Furthermore, a ∈ 2ukZ so that 22ka = 2k+1q for some q ∈ N. Hence

2k+1q + 1 = p2 for p, q ∈ N. (30)

Moreover, (29) yields 22k + 1 ≤ p2 ≤ 22k · 4(1− uk) + 1 = 22k+2 − 2k+2 + 1 and

2k + 1 ≤ p ≤ 2k+1 − 1.

Now (30) gives

2k−1 + 1 = 2−k−1((2k + 1)2 − 1) ≤ q =
p2 − 1

2k+1
≤ 2k+1 − 2.

Set e := p− 2k, so that 1 ≤ e ≤ 2k − 1. Then p2 = 22k + 2k+1e+ e2 = 2k+1q + 1 implies

2k+1|(e2 − 1). (31)

If e = 1, then p = 2k + 1, a = 2−2k(22k + 2k+1) = 1 + 2−k+1 = succk(1), (1 + 2−k)2 > 1 +
2−k+1 = a and therefore flk(

√
a) = 1. But flm(

√
a) = g = 1 + uk implies flk(g) = flk(

√
a),

a contradiction.
Finally we show that m = 2k + 1 for β = 2 and m = 2k for β ≥ 4 is not sufficient.

First, suppose 2 ≤ e ≤ 2k − 1. Let j be the largest power of 2 dividing e + 1 or e − 1,
then 2j+2 - (e2 − 1). Now (31) gives j ≥ k, and combining 2k|(e + 1) or 2k|(e − 1) with
2 ≤ e ≤ 2k − 1 implies k ≥ 2 and e = 2k − 1. This corresponds to p = 2k+1 − 1 and

a = 2−2k(22k+2 − 2k+2) = 4(1− uk).

Now [2(1 − 1
2uk)]2 > a gives flk(

√
a) = 2(1 − uk). Furthermore, 2(1 − 1

2uk) ∈ Fm and
predm(2(1− 1

2uk)) = 2(1− 1
2uk − um), so that um = 1

2u2
k yields

[2(1− 1

2
uk −

um
2

)]2 < a = 4(1− uk).

Therefore, g = flm(
√
a) = 2(1− 1

2uk), and this implies flk(g) = 2 6= flk(
√
a), the predicted

unique exception for m = 2k + 1.
For β ≥ 4 and m = 2k define a = 1− β−k = predk(1). Then

a = predk(1) <
√
a < 1− 1

2
β−k =

1

2

(
predk(1) + 1

)
=: s ⇒ flk(

√
a) = a,

but
1

2

(
predm(s) + s

)
= 1− 1

2
β−k − 1

2
β−2k <

√
1− β−k =

√
a < s

and rounding tie to even yields flk(flm(
√
a)) = flk(s) = 1. This completes the proof.

For a computer implementation, a simple way is to restrict the exponent range for
the anticipated arithmetic in Fβ,k,E so that f := flm(a op b) is always a finite normal-
ized double precision floating-point number inFβ,m,E′ for all a, b ∈ Fβ,k,E .

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

00:14 S. M. Rump

5. DIRECTED ROUNDING
The difficulty in the proof of correctness of Algorithm 1 (flround) was the behavior near
switching points. In case of directed rounding, the floating-point numbers themselves
are the switching points. Hence for directed rounding downwards, upwards or towards
zero there is no double rounding, and computing fl∇k,E ,fl

∆
k,E or fl><k,E reduces to compute

the correct rounding from working into target precision by Algorithm 3.
Moreover, in that case there cannot be double rounding when first computing the

floating-point result in double precision with directed rounding, and then use a sec-
ond directed rounding into k-bit format. This is even true for just m ≥ k because the
switching points are the floating-point numbers themselves and Fk ⊆ Fm. This allows
a simple implementation of k-bit interval arithmetic, also for vectors and matrices.

6. SUMMARY
Suppose an m-digit working precision in base β ≥ 2 following the IEEE 754 standard
is given, and a k-digit target precision with respect to the same base β, and 1 ≤ k < m.

For given x in working precision we presented algorithms using solely operations in
working precision to compute the correctly rounded image of x into the target precision
including exceptional values and signed zero.

Moreover, sharp estimates on m relative to k were presented such that computing
addition, subtraction, multiplication, division and/or square root in working precision
and rounding the result into the target precision produces the same result as if com-
puting the result directly in target precision. The only exception to that statement is
division for odd base β, in which case for every k ≥ 1 examples a, b ∈ Fk exist such that
flk(flm(a/b)) 6= flk(a/b) for any m > k. We handle division for odd β by computing an
auxiliary quantity q in working precision such that flk(q) = flk(a/b).

A toolbox for k-bit binary arithmetic for k ≤ 26 including directed rounding and
intervals of scalars, vectors and matrices is part Version 8 of INTLAB [Rump 1999],
the Matlab toolbox for reliable computing. The unique exception for the square root for
k = 26 is explicitly checked for.

ACKNOWLEDGMENTS

I want to thank the anonymous referees for their thorough reading and most constructive and very valuable
comments. The first version of the paper covered only binary arithmetic and one referee asked about decimal
arithmetic; this lead to the treatment of general bases β ≥ 2 in this note.

Moreover many thanks to Marko Lange for many fruitful discussions and in particular for pointing to the
simpler version of Algorithm 1 and suggesting the method in Lemma 4.3.

REFERENCES
Samuel A. Figueroa. 1995. When is Double Rounding Innocuous? SIGNUM Newsl. 30, 3 (1995), 21–26.
Samuel Arturo Figueroa Del Cid. 2000. A Rigorous Framework for Fully Supporting the Ieee Standard for

Floating-point Arithmetic in High-level Programming Languages. Ph.D. Dissertation. New York Uni-
versity, New York, NY, USA. Advisor(s) Dewar, Robert B.

N. J. Higham. 2002. Accuracy and stability of numerical algorithms (2nd ed.). SIAM Publications, Philadel-
phia.

IEEE 2008. ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. IEEE, New York.
C.-P. Jeannerod and S.M. Rump. 2014. On relative errors of floating-point operations: optimal bounds and

applications. Preprint. (2014).
D.E. Knuth. 1998. The Art of Computer Programming: Seminumerical Algorithms (third ed.). Vol. 2. Addison

Wesley, Reading, Massachusetts.
Vincent Lefèvre. 2013. Sipe: a Mini-Library for Very Low Precision Computations with Correct Rounding.

(2013). http://hal.inria.fr/hal-00864580 submitted.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

IEEE754 k-digit arithmetic inherited by m-digit arithmetic 00:15

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, R. Revol, D. Stehlé,
and S. Torres. 2009. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston.

S.M. Rump. 1999. INTLAB - INTerval LABoratory. In Developments in Reliable Computing, Tibor
Csendes (Ed.). Kluwer Academic Publishers, Dordrecht, 77–104. http://www.ti3.tu-harburg.de/rump/
intlab/index.html

S.M. Rump. 2009. Ultimately Fast Accurate Summation. SIAM Journal on Scientific Computing (SISC) 31,
5 (2009), 3466–3502.

G.W. Stewart. 2009. Flap: A Matlab Package for Adjustable Precision Floating-Point Arithmetic.
http://www.cs.umd.edu/ stewart/flap/flap.html. (2009).

G.W. Stewart. 2014. private communication. (2014).

Received February 0000; revised March 0000; accepted June 0000

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 00, Publication date: 2013.

