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Abstract. Recently Brent et al. presented new estimates for the determinant of a real perturbation I + E of the identity

matrix. They give a lower and an upper bound depending on the maximum absolute value of the diagonal and the off-diagonal

elements of E, and show that either bound is sharp. Their bounds will always include 1, and the difference of the bounds is

at least tr(E). In this note we present a lower and an upper bound depending on the trace and Frobenius norm ε := ‖E‖F of

the (real or complex) perturbation E, where the difference of the bounds is not larger than ε2 + O(ε3) provided that ε < 1.

Moreover, we prove a bound on the relative error between det(I + E) and exp(tr(E)) of order ε2.
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1. Introduction and main results. Classical estimates for the determinant of a matrix include the

Hadamard bound [7] or Gershgorin circles [6]. Moreover, Ostrowski [11, 12, 13] gave a number of lower and

upper bounds. Other estimates include [4, 9, 1]. In particular, bounds for the determinant of a perturbed

identity matrix are given in Ostrowski’s papers, or in [15].

Recently, new sharp bounds for det(I + E) have been presented by Brent et al. in [2, 3]. Denote by δ the

maximum absolute value of the diagonal elements, and by ε the maximum absolute value of the off-diagonal

elements of a real n× n-matrix E. Then [2, 3] prove

(1− δ − (n− 1)ε)(1− δ + ε)n−1 ≤ det(I + E) ≤ ((1 + δ)2 + (n− 1)ε2)n/2, (1)

where δ+ (n−1)ε ≤ 1 is supposed for the left inequality. Both inequalities are sharp as by explicit examples

given in [2, 3]. For convergent E, Fredholm’s identity [5]

det(I + E) = exp

( ∞∑
k=1

(−1)k−1
tr(Ek)

k

)
(2)

yields det(I + E) = exp(tr(E)) + O(ε2) for ‖E‖ ≤ ε < 1 and some matrix norm ‖ · ‖. This is reflected in

(1). Although being individually sharp, the upper and lower bound in (1) always include the number 1 and

differ by at least tr(E). That is also true for most of the other bounds mentioned.

Notable exceptions are papers by Ostrowski [14] and Hans Schneider [16], proving bounds depending on the

trace and on the absolute row sums of E. If all elements of E are bounded by ε in absolute value, then either

difference between upper and lower bound is O(n3ε2).

For real or complex E, we prove two-sided bounds differing by O(ε2), where ε := ‖E‖F = [tr(EHE)]1/2

denotes the Frobenius (or Hilbert-Schmidt) norm. We prove absolute bounds on |det(I + E)|, and relative

bounds on det(I + E).
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Theorem 1.1. Let E be a real or complex n× n matrix. Then

|det(I + E)| ≤ exp

(
<(tr(E)) +

ε2

2

)
. (3)

Suppose the eigenvalues λk of E satisfy <(λk) > −1, and denote µk := min(0,<(λk)). Then

exp

<(tr(E))− ε2/2

1 + min
k
µk

 ≤ |det(I + E)|. (4)

Denote the spectral radius by ρ(·). If ρ(E) < 1, then

exp

(
<(tr(E))− ε2/2

1− ρ(E)

)
≤ |det(I + E)|. (5)

If ε < 1, then

exp

(
<(tr(E))− ε2

2(1− ε)

)
≤ |det(I + E)| ≤ exp

(
<(tr(E)) +

ε2

2

)
, (6)

The denominator in the lower bound of (6) cannot be replaced by 2.

Remark 1. Note that <(λk) > −1 implies det(I + E) = |det(I + E)| for real E.

Remark 2. Computationally, an upper bound on ρ(E) is easily obtained by Perron-Frobenius Theory and

ρ(E) ≤ ρ(|E|) ≤ maxi
(|E|x)i

xi
for any positive vector x, with the Perron vector of |E| being optimal.

Remark 3. The upper bound in (3) is given to show the symmetry to the following lower bounds; it is

never better than Hadamard’s bound:

|det(I + E)| ≤
n∏

k=1

‖(I + E)k∗‖2 ≤ exp

(
<(tr(E)) +

ε2

2

)
, (7)

where Mk∗ denotes the k-th row of a matrix M .

Theorem 1.2. Let E be a real or complex n× n matrix and suppose ρ(E) < 1− ε2/2. Then∣∣∣∣det(I + E)− exp(tr(E))

exp(tr(E))

∣∣∣∣ ≤ ε2

2(1− ρ(E)− ε2/2)
≤ ε2

2(1− ε− ε2/2)
. (8)

Except for E being the zero matrix, the implied upper bound on |det(I+E)| is always worse than Hadamard’s

bound:

n∏
k=1

‖(I + E)k∗‖2 ≤ | exp(tr(E))|
(

1 +
ε2

2(1− ε2/2)

)
. (9)

If ε ≤ 0.5173, then ∣∣∣∣det(I + E)− exp(tr(E))

exp(tr(E))

∣∣∣∣ ≤ ε2

2(1− ε)
. (10)

The denominator in the bound cannot be replaced by 2.
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2. Proofs. We need the following facts. Let E be a real or complex n× n matrix with eigenvalues λk.

Then

|det(I + E)| = exp

(
1

2

n∑
k=1

log(1 + 2<(λk) + |λk|2)

)
(11)

with the conventions log(0) := −∞ and exp(−∞) := 0. Furthermore,

α− α2/2

1 + min(0, α)
≤ log(1 + α) ≤ α for − 1 < α ∈ R (12)

with equalities if and only if α = 0.

Proof of (11) and (12). Using det(I + E) =
n∏

k=1

(1 + λk) = exp

(
n∑

k=1

log(1 + λk)

)
we obtain

|det(I + E)| =
∣∣ exp

(
n∑

k=1

log(1 + λk)

)∣∣ = exp

(
n∑

k=1

<(log(1 + λk))

)
= exp

(
n∑

k=1

log(|1 + λk|)

)
,

and (11) follows. To prove (12) we use − log(1− β) = β +
∑∞

k=2

βk

k
≤ β +

β2/2

1− β
for β ∈ [0, 1) implying

α− α2/2

1 + α
≤ log(1 + α) for α ∈ (−1, 0].

The function f(x) := x− x2/2− log(1 + x) with f ′(x) = −x2/(1 + x) is strictly decreasing for positive real

x and satisfies f(0) = 0. That implies the lower bound in (12), and the upper bound is trivial. �

Proof of Theorem 1.1. The Schur triangular form [8, Theorem 2.3.1] E = UTUH with unitary U and

triangular T with λk on the diagonal implies
∑n

k=1 |λk|2 =
∑n

k=1 |Tkk|2 ≤ tr(THT ) = tr(EHE) = ε2, and

the upper bound (3) follows by (11), (12), and

log |det(I + E) | ≤ 1
2

n∑
k=1

2<(λk) + |λk|2

= <(tr(E)) + 1
2

n∑
k=1

|λk|2

≤ <(tr(E)) + 1
2ε

2.

For the lower bound, 1 + 2<(λk) + |λk|2 ≥ (1 + <(λk))2, (11) and (12) imply

log |det(I + E) | ≥
n∑

k=1

log(1 + <(λk))

≥ <(tr(E))−
n∑

k=1

(<(λk))2/2

1 + µk

≥ <(tr(E))− 1
2

(
1 + min

k
µk

)−1 n∑
k=1

(<(λk))2

≥ <(tr(E))− ε2/2

1 + min
k
µk
.

The lower bounds in (5) and (6) follow by mink µk ≥ −ρ(E) ≥ −ε. The denominator in the lower bound of

(6) cannot be replaced by 2 as shown by E :=

(
0 α
α 0

)
with |α| < 1/

√
2. �
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Proof of (7). By (12) Hadamard’s bound satisfies

log |det(I + E)| ≤ log (
∏n

k=1 ‖(I + E)k∗‖2) =
1

2

n∑
k=1

log

(
1 + 2<(Ekk) +

n∑
i=1

|Eki|2
)

≤
∑n

k=1

(
<(Ekk) +

1

2

n∑
i=1

|E2
ki|

)
= <(tr(E)) +

1

2
‖E‖2F

(13)

with the interpretation log(0) = −∞. It also follows that Hadamard’s bound and the upper bound in (7)

coincide if and only if <(Ekk) +
1

2

n∑
i=1

|E2
ki| = 0 for all k. An example is E =

(
−α

√
2α− α2√

2α− α2 −α

)
for

0 ≤ α ≤ 2. �

Proof of Theorem 1.2. Let λk denote the eigenvalues of E. Then |λk| ≤ ρ(E) < 1 implies

det(I + E) = exp

(
n∑

k=1

log(1 + λk)

)
= exp

tr(E) +

n∑
k=1

λ2k
2

 ∞∑
j=0

(−1)j+12λjk
j + 2

 =: exp(tr(E) + Φ).

Furthermore,

|Φ| ≤
n∑

k=1

|λk|2

2

 ∞∑
j=0

|λk|j
 ≤ ε2

2(1− ρ(E))
=: Ψ < 1

by ρ(E) < 1− ε2/2. Hence, [10, 4.5.16] |ez − 1| ≤ e|z| − 1 for z ∈ C and [10, 4.5.11] ex − 1 ≤ x
1−x for x < 1

give∣∣∣∣det(I + E)− exp(tr(E))

exp(tr(E))

∣∣∣∣ = | exp(Φ)− 1| ≤ exp(|Φ|)− 1 ≤ |Φ|
1− |Φ|

≤ |Ψ|
1− |Ψ|

=
ε2

2(1− ρ(E)− ε2/2)
.

This implies (8). To show (9) note that (13) implies

n∏
k=1

‖(I + E)k∗‖2 ≤ | exp(tr(E))| exp(ε2/2),

so that ex ≤ 1 + x
1−x for x := ε2/2 < 1 finishes that part. To see (10), we use |λk| ≤ ε < 1 and

|Φ| ≤
n∑

k=1

|λ2k|

 ∞∑
j=0

|λk|j

j + 2

 ≤ n∑
k=1

|λ2k|
(

1

2
+
|λk|

3
+

|λk|2

4(1− |λk|)

)
≤ ε2

(
1

2
+
ε

3
+

ε2

4(1− ε)

)
.

Surely |Φ| < 1 for ε < 0.7, so that
|Φ|

1− |Φ|
≤ ε2

2(1− ε)
is equivalent to (2− 2ε+ ε2)|Φ| ≤ ε2. Now

(2− 2ε+ ε2)|Φ| ≤ ε2

12(1− ε)
(12− 16ε+ 8ε2 − ε4) = ε2

(
1− (4− 8ε+ ε3)ε

12(1− ε)

)
is less than ε2 if ε3 − 8ε + 4 > 0, and (10) follows. The upper bound ε2/2 one might want is not true as

shown by any negative 1× 1-matrix E satisfying the assumptions. �
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