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Abstract

Methods are presented for performing a rigorous sensitivity analysis for general sys-
tems of linear and nonlinear equations w.r.t. weighted perturbations in the input data.
The weights offer the advantage that all or part of the input data may be perturbed
e.g. relatively or absolutely. System zeroes may, depending on the application, stay
zero or not.
The main purpose of the paper is to give methods for computing rigorous bounds on the
sensitivity of each individual component of the solution on the computer. The methods
presented are very effective with the additional property that, due to an automatic error
control mechanism, every computed result is guaranteed to be correct. Examples are
given for linear and nonlinear systems demonstrating that the computed bounds are
in general very sharp. Interesting comparisons to traditional condition numbers are
given.
For linear systems the solution set for finite perturbations in the coefficients is esti-
mated. Moreover, some theoretical results for eigenvectors/values and singular values
are given.
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1 Introduction

Let K denote one of the sets IR (real numbers) or C (complex numbers). Vectors v ∈ Kn

and matrices A ∈ Kn×n consist of n resp. n×n components. Let T denote one of the sets K,
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V K, or MK. The power set over those sets is denoted by IPT, IPVT, IPMT, respectively.

For a set of real or complex floating-point numbers IF ⊆ T let S denote one of the sets IF,

VIF, or MIF.

If not stated otherwise operations +,−, ·, / are throughout this paper power set operations,

defined in the usual way. Sets occuring several times in an expression are treated indepen-

dently, e.g.

Z ∈ IPT : Z ∗ Z := { z1 ∗ z2 | z1, z2 ∈ Z } { z ∗ z | z ∈ Z }
for all suitable operations ∗ ∈ {+,−, ·, /}.
Intervals over T resp. S are defined in the usual way by

[X] ∈ IIT : [X] = { x ∈ T | x ≤ x ≤ x } for x, x ∈ T and

[X] ∈ IIS : [X] = [x, x] = { x ∈ T | x ≤ x ≤ x } for x, x ∈ S

where in the case of interval vectors and matrices the induced componentwise ordering is

used. Interval operations

3∗ : IIT× IIT → IIT resp. 3∗ : IIS× IIS → IIS for ∗ ∈ {+,−, ·, /}
can be defined using the rounding 3 : IPT → IIT resp. 3 : IPT → IIS and

A 3∗ B := 3(A ∗B).

The definition holds similar for interval vectors and matrices. There are very effective im-

plementations for all those interval operations (cf. [3], [20], [11]).

Infimum inf(z) and supremum sup(z) of nonempty and bounded sets Z ∈ IPT resp. Z ∈ IPS

are defined in the usual way, in case of vectors and matrices componentwise (that means for

A ∈ IPMT is inf(A) ∈ MT ). The diameter d(Z) and the radius r(Z) of some nonempty,

bounded Z ∈ IPT resp. Z ∈ IPS are defined by

d(Z) := sup(Z)− inf(Z) and r(Z) := 0.5 · d(Z).

The diameter of A ∈ IPMT is the matrix of diameters. q denotes the n-dimensional version

of the Hausdorff metric over IPT (cf. [3]). The definitions extend immediately to IIT resp.

IIS using the canonical embedding.
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2 Sensitivity of the Solution of a System of Nonlinear

Equations

Let a parametrized nonlinear function f : Dp × Dn → IRn with suitable differentiability

properties be given where Dp ⊆ IRp, Dn ⊆ IRn. For the parametrized nonlinear equations

fc(x) = 0 where fc : Dn → IRn and fc(x) := f(c, x), we are seeking a componentwise

sensitivity of an individual zero x̂ of fĉ for fixed ĉ ∈ int(Dp) to perturbations in ĉ. The

perturbations in ĉ are allowed to be weighted by some c∗ ∈ IRp, c∗ ≥ 0 which means that we

are looking for zeros of fc̃ where |c̃− ĉ| ≤ ε · |c∗| for ε → 0.

Weighted perturbations bear the advantage that zero parameters may stay zero or not,

depending on the application. Our aim is to give rigorous lower and upper bounds for the

sensitivity which can be calculated on digital computers, including all rounding errors during

the evaluation.

More precisely our general assumptions for f are the following:

f : Dp ×Dn → IRn with Dp ⊆ IRp, Dn ⊆ IRn and f ∈ C2(Dp ×Dn). (1)

Slightly weaker assumptions are possible for the following; for simplicity we use (2.1). Assume

x̂ is a simple zero of fĉ, ĉ ∈ int(Dp), and let Cε := { c̃ | |c̃− ĉ| ≤ ε · |c∗| } , 0 < ε ∈ IR, 0 ≤
c∗ ∈ IRp. Because x̂ is simple for small enough ε and every c̃ ∈ Cε there is a uniquely

determined zero x̃ ∈ Uδ(x̂) of fc̃. Therefore, for small enough ε, the set

Σ(f, Cε, x̂) := { x̃ ∈ Uδ(x̂) | ∃ c̃ ∈ Cε : fc̃(x̃) = 0 } (2)

is well-defined and connected.

Definition 2.1. Let f with (2.1) be given. Then the (absolute) sensitivity of the kth

component, 1 ≤ k ≤ n, of the simple zero x̂ of fĉ, ĉ ∈ int(Dp), to perturbations in ĉ weighted

by c∗ is defined by

Sensk(x̂, f, c∗) := lim
ε→0+

rad
(
Σ(f, Cε, x̂)

)
k

ε

Obviously an equivalent definition of the sensitivity is

Sensk(x̂, f, c∗) = lim
ε→0+

max

{ |x̃k − x̂k|
ε

∣∣∣ fc̃(x̃) = 0 for c̃ ∈ Cε, x̃ is connected to x̂

}
.

The vector of sensitivities of x̂ is denoted by Sens(x̂, f, c∗). In contrast to traditional per-

turbation theory, where the distance between c̃ and ĉ is frequently bounded by some norm,

here we investigate the sensitivity to perturbations c̃ of ĉ having an absolute distance to
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ĉ bounded by the weights c∗. In our approach the weights may switch smoothly between

a relative and an absolute distance in the | · |-sense [taking c∗ := |ĉ| or c∗ := (1, . . . , 1)T ,

respectively] for each individual parameter ci, 1 ≤ i ≤ p. This offers a great flexibility for

practical applications.

For calculating an inclusion of a zero x̂ of fĉ, ĉ ∈ int(Dp) we use the following theorem (see

[26]).

Theorem 2.2. Let f with (2.1) be given, let x̃ ∈ Dn, R ∈ IRn×n, and ∅ 6= X ∈ IIIRn such

that x + (0∪X) ⊆ Dn. Define for c ∈ int(Dp), Y ∈ IPIRn with Y ⊆ Dn,

J(c, Y ) :=
⋂ {

M ∈ IIIRn×n
∣∣∣ ∂f

∂x
(c, y) ∈ M for all y ∈ Y

}
. (3)

If for some ĉ ∈ int(Dp)

−R · f(ĉ, x̃) +
{
I −R · J

(
ĉ, x + (0∪X)

)}
·X ⊆ int(X), (4)

then R and every matrix M ∈ J
(
ĉ, x + (0∪X)

)
are not singular, and there is a unique and

simple zero x̂ of fĉ in x + int(X).

Remark. All operations in the above Theorem are power set operations.

It is a straightforward generalization of Theorem 2.2 to replace ĉ by some

Cε := { c̃ | |c̃− ĉ| ≤ ε · |c∗|}
for some c∗ ∈ IRp, c∗ ≥ 0. For small enough ε (2.4) remains valid and we conclude that every

fc, c ∈ Cε, has a unique and simple zero x̂c within x + int(X).
[
f(Cε, x̃) is defined as usual

by { f(c̃, x) | c̃ ∈ Cε}
]
.

Using Theorem 2.2 can already give upper bounds for the sensitivity (see Figure 1).

Fig. 1

To obtain lower bounds for this set we need to find a hyperrectangle Y with the property

that for every hyperplane bounding Y there are points in Σ(f, Cε, x̂) going beyond it. This
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is accomplished by the following theorem [28].

Theorem 2.3. Let f satisfying (2.1) be given; let x ∈ Dn, R ∈ IRn×n. For ε > 0 and some

ĉ ∈ int(Dp) let ∅ 6= Xε ∈ IIIRn such that x + (0∪X) ⊆ Dn, let

Cε :=
{

c̃ ∈ IRp
∣∣∣ |c̃− ĉ| ≤ ε · |c∗|

}
(5)

for some c∗ ∈ IRp, c∗ ≥ 0, and Cε ⊆ int(Dp), and define

Zε := 3
(
−R · f(Cε, x)

)
,

∆ε :=
{
I −R · J

(
Cε, x + (0∪Xε)

)}
·Xε.

(6)

If

Zε + ∆ε ⊆ int(Xε) (7)

then

x + Zε

∨
+ ∆ε ⊆ 3Σ(f, Cε, x̂) ⊆ x + Zε + ∆ε (8)

for Σ(f, Cε, x̂) as defined in (2.2).

The inward directed addition
∨
+ is defined by X +Y :=

[
inf(X)+ sup(Y ), sub(X)+ inf(Y )

]

for X, Y ∈ IIT (see [28]).

A heuristic interpretation of (2.8) is that Zε is an “approximation” to the smallest hyper-

rectangle enclosing Σ(f, Cε, x̂) wheras adding ∆ε to the vertices of Zε in the proper direction

yields an inner and an outer estimate for

Fig. 2.

3 Σ(f, Cε, x̂), see Figure 2. In practice ∆ε is small, which implies very sharp bounds.

For (2.8) in Theorem 2.3 it is crucial that Zε is the precise smallest rectangle enclosing

−R·f(Cε, x); the latter is defined by −R·f(Cε, x) := { x | X = −R·f(c, x) for some c ∈ Cε }.
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This set will not be computed exactly, except in special cases, but rather will be estimated

by some Z1, Z2 ∈ IIIRn with Z1 ⊆ 3
(
−R · f(Cε, x)

)
⊆ Z2, yielding

Z1

∨
+ ∆ε ⊆ 3 Σ(f, Cε, x̂) ⊆ Z2 + ∆ε

However, in the limit ε → 0 the size of ∆ε can be estimated, yielding lower and upper bounds

for the sensitivity of a zero x̂ of fĉ.

Theorem 2.4. Let f satisfying (2.1) be given such that each parameter cj occurs in at most

one component fi of f , let x ∈ Dn, R ∈ IRn×n, and ∅ 6= X ∈ IIIRn such that x+(0∪X) ⊆ Dn.

Define

J(c, Y ) :=
⋂ {

M ∈ IIIRn×n
∣∣∣ ∂f

∂x
(c, y) ∈ M for all y ∈ Y

}
(9)

for c ∈ int(Dp), Y ∈ IPIRn with Y ⊆ Dn, and let

−R · f(ĉ, x) +
{
I −R · J

(
ĉ, x + (0∪X)

)}
·X ⊆ int(X) (10)

for some ĉ ∈ int(Dp). Then there is a unique and simple zero x̂ of fĉ in x + int(X). Let

c∗ ∈ IRp, c∗ ≥ 0, and define

u := |R · | ∂f

∂c
(ĉ, x̂) | · |c∗|,

w := |I −R · J
(
ĉ, x + (0∪X)

)
| · d(X).

(11)

Then

φ := max
i

ui

(d(X)− w)i

(12)

is well defined, and the sensitivity of the zero x̂ of fĉ to perturbations weighted by c∗ satisfies

Sens(x̂, f, c∗) ∈ u± φ · w (13)

Remark. In practical applications an inclusion of u can be calculated by using x+X instead

of x̂.

Proof. According to assumption (2.1) f is differentiable w.r.t. c, so that for small enough

ε > 0 and c̃ ∈ Cε

f(c̃, x̂) = f(ĉ, x̂) +
∂f

∂c
(ĉ, x̂) · (c̃− ĉ) + 0(ε2). (14)
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By assumption, for 1 ≤ j ≤ q at most one function fi is depending on cj. This implies that

in every column of ∂f
∂c

(ĉ, x̂) there is at most one nonzero element. Using the c̃ and −c̃ with

sgn(c̃− ĉ)j = sgn
(

∂f
∂c

(ĉ, x̂)
)

ij
and observing f(ĉ, x̂) = 0 proves

f(Cε, x̂) = ±ε · |∂f

∂c
(ĉ, x̂)| · |c∗|+ 0(ε2).

In other words f(Cε, x̂) is a full rectangle symmetric to the origin up to terms of 0(ε2).

Therefore

3
(
−R · f(Cε, x̂)

)
= ±ε · |R| · |∂f

∂c
(ĉ, x̂)| · |c∗|+ ε2 · Pε

= ±ε · u + ε2 · Pε

(15)

for small enough ε > 0, where Pε ∈ IIIRn is bounded for ε → 0.

Using Z := −R · f(ĉ, x) ∈ IRn and

C :=
{
I −R · J

(
ĉ, x + (0∪X)

)}
∈ IPIRn×n,

(2.12) becomes Z + C ·X ⊆ int(X) implying (cf. [27], Lemma 2)

C · Y ⊆ int(Y ) for Y := X −X ∈ IIIRn (16)

where X−X =
{

x1−x2 | x1, x2 ∈ X
}
. Y is componentwise fully symmetric w.r.t. the origin,

i.e. Yi = −Yi for 1 ≤ i ≤ n. Let Yκ · Y and y := |Y | = max
{
|x1 − x2|

∣∣∣ x1, x2 ∈ X
}

= d(X).

For small enough κ > 0 we have x̂ + (0∪Yκ) = x̂ + Yκ ⊆ x + X ⊆ Dn, using x̂ ∈ x + int(X).

Therefore J
(
ĉ, x̂ + (0∪Yκ)

)
⊆ J

(
ĉ, x + (0∪X)

)
, and by using

∂f

∂x
(c̃, x̂ + x) =

∂f

∂x
(ĉ, x̂ + x) + 0(ε),

which holds for every c̃ ∈ Cε and every x ∈ 0∪Yκ we get

J
(
c̃, x̂ + (0∪Yκ)

)
⊆ J

(
ĉ, x + (0∪X)

)
+ ε ·Qε (17)

for every c̃ ∈ Cε where Qε ∈ IRn×n is bounded for ε → 0.

Therefore using (2.15) and (2.17),

−R · f(Cε, x̂ +
{
I −R · J

(
Cε, x̂ + (0∪Yκ)

)}
· Yκ ⊆

±εu + ε2 · Pε +
{
I −R · J

(
ĉ, x + (0∪X)

)}
· Yκ + ε ·R ·Qε · Yκ

(18)

for every small enough κ > 0. Using the abbreviation v := |R| · |Qε| · y, the right-hand side

of (2.18) is surely constained in int(Yκ) if

ε · u + ε2 · |Pε|+ κ · w + ε · κ · v < κ · y (19)
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because |Yκ = κ · |Y | = κ · d(X). v is bounded for ε → 0. By (2.16) and Yi = −Yi, 1 ≤ i ≤ n

we have C · Y = ±|C| · |Y | ⊆ int(Y ), i.e. |C| · y < y and therefore 0 ≤ w < y implying

y − w − εv > 0 for small enough ε. Define

κ = κ(ε) := ε ·max
i

{u + ε · |Pε|}i

{y − w − εv}i

· (1 + ε) + ε2. (20)

Then κ > 0 is well defined for small enough ε, and (2.19) is true. Hence the l.h.s. of (2.21) is

contained in int(Yκ), and therefore the assumptions of Theorem 2.4 are satisfied for x := x̂,

Xε := Yκ, and small enough ε > 0. In this case Zε and ∆ε from (2.8), on replacing Xε by

Yκ, compute to

Zε = ±ε · u + ε2 · Pε and ∆ε ⊆ ±(κ · w + εκv)

according to (2.15) and (2.18). The point is that Zε and ∆ε are symmetric w.r.t. the origin

up to terms of 0(ε2). The inclusion (2.8), together with the definition (2.2) of Σ(f, Cε, x̂),

gives for 1 ≤ i ≤ n

{
u− ε · |Pε| − κ

ε
· (w + ε · v)

}

i
≤ infΣ(f, Cε, x̂)

ε
≤ supΣ(f, Cε, x̂)

ε

≤
{
u + ε · |Pε|+ κ

ε
· (w + ε · v)

}

i

(21)

for all small enough ε > 0, with corresponding κ given by (2.20). Noting the definition of κ

and φ and taking the limit ε → 0 finishes the proof.

It should be stressed that if f is given in explicit form,

∂f

∂x
(c, x) and

∂f

∂c
(c, x)

can be calculated by so-called automatic differentiation. This method has been found and

forgotten several times dating back to the forties, and is slowly finding its place in numerical

analysis. For details and improvements the reader is referred to [9], [30], [8]. In particular,

J
(
ĉ, x + (0∪X)

)
can be calculated and rigorously estimated using interval arithmetic and

automatic differentiation. This is performed by replacing all operations with their corre-

sponding interval operations [24].

Operations allowed in the computation of f cover transcendental functions very well, be-

cause in [6], [15] algorithms have been described for computing very sharp bounds for

t(X), X ∈ IIC, where t is any trigonometric, inverse trigonometric, hyperbolic, inverse hy-

perbolic, exponential, or logarithmic function, and also for XY , X, Y ∈ IIC. Calculating

J
(
ĉ, x + (0∪X)

)
using this method normally introduces little overestimation. This is be-

cause X encloses the error of x and is usually very small.
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Theorem 2.4 gives an estimate of the sensitivity of x̂ which can be rigorously calculated

without knowing x̂ precisely. All potential errors made by replacing x̂ by x+X and by using

J
(
ĉ, x̃ + (0∪X)

)
are covered by (2.13).

The exact sensitivity of the zero x̂ of fĉ to perturbations weighted by c∗ is readily obtained

as

|∂f

∂x
(ĉ, x̂)−1| · |∂f

∂c
(ĉ, x̂)| · |c∗|. (22)

This confirms the results by Skeel [29] for systems of linear equations. Formula (2.22) can

be proved directly; using Theorem 2.5 it can be seen by setting

x := x̂, R :=
∂f

∂x
(ĉ, x̂)−1

and observing that I − R · ∂f
∂x

(ĉ, x) is convergent for every x sufficiently close to x̂, thus

allowing one to find a positive vector y with

|I −R · ∂f

∂x
(ĉ, x)| · y < y.

This is true provided x̂ is a simple zero of f

The quality of the estimate (2.13) is essentially determined by the minimum difference of the

components of d(X) − w [which, according to (2.16), is always positive]. This difference in

turn is small if the spectral radius of |I −R ·J
(
ĉ, x+(0∪X)

)
| is small. in practice the latter

value rarely exceeds 1/2 as long as (2.10) holds. Therefore, in view of (2.12), it is likely that

in practical applications (2.13) can be written as Sens(x̂, f, c∗) ∈ u · (1± δ), where δ ¿ 1/2.

For a sensitivity information this is a satisfactory result, because in practical applications

knowing the magnitude of the sensitivity is usually sufficient. This heuristic is verified by

the numerical results given in Section 5.

3 Sensitivity of polynomial zeroes

As an application of theorem 2.5 we mention the sensitivity of a simple real zero of a poly-

nomial P ∈ IR[x]. We write the problem as a parameterized nonlinear equation

f(c, x) : IRn+1x IR → IR with f(c, x) :=
∑

i=0

nci · xi. (23)

Let P ∗ be a polynomial with P ∗(x) =
∑
i=0

np∗i · xi. We do not assume P ∗
n 6= 0. Using the

canomical isomorphisen we identify P with its vector of coefficients and define

Pε :=
{

P̃
∣∣∣ |P̃ − P | ≤ ε · |P ∗|

}
.
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The sensitivity of x̂ w.r.t. perturbation in the coefficients of P weighted by P ∗ is then -

similar to the nonlinear case — defined by

Sens(x̂, P, P ∗) = lim
ε→0

max

{ |x̃− x̂|
ε

∣∣∣ x̃ is connected to Pε

}
.

Theorem 3.1. Let P ∈ IR[x] and x̃, r ∈ IR, ∅ 6= X ∈ IIIR, 0 ∈ X be given with

−r · P (x̃) +
{
1− r · P ′(x̃ + X)

}
·X ⊆ int(X). (24)

Then there is exactly one root x̂ of P within x̃ + X; x̂ is simple. Let P ∗ ∈ IR[x] be

some polynomial of at most the degree of P having non-negative coefficients and let w :=

|1− r ·P ′(x̃ + X)| · |X|. Then the sensitivity of x̂ w.r.t. ε-perturbations in the coefficients of

P weighted by P ∗ satisfies

Sens(x̂, P, P ∗) ∈ |r| · P ∗(|x̃|) ·
(

1± w

|X| − w

)
. (25)

Proof. Follows by straightforward application of theorem 2.5 to (3.1).

In practice X will be obtained by means of an iteration process (see [26], [5]). Unless the

problem is extremely ill-conditioned the term w will be very small as compared to |X| due

to a small residue |1− r · P ′(x̃ + X)| where r ≈ P ′(x̃)−1.

The estimation (3.3) clearly shows how its quality depends on how small is w as compared

to X. An exact value for the sensitivity is obtained by setting x̃ := x̂, r := P ′(x̂)−1 and

X := κ · [−1, 1]. For small enough κ (3.2) is satisfied yielding

Sens(x̂, P, P ∗) = |P ′(x̂)−1| · |P ∗(|x̂|)
repeating a well-known result form perturbation theory [32].

In theorem 3.1 we used direct and independent perturbations of the coefficients pi of P

(weighted by P ∗). Without going into detail we mention that according to theorem 2.5

any continuously differentiable functional relation between the coefficients of P and those

of P ∗ can be handled, that means the sensitivity of x̂ weighted by P ∗ in this functional

relationship is estimated by (2.15). In practical applications this covers a large class of

dependencies between the coefficients of P .
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4 Sensitivity of linear problems for larger perturba-

tions

In this chapter we will derive bounds for the sensitivity of the solution of a system of

linear equations Ax = b subject to perturbations in the matrix A and the right hand side

b weighted by some nonnegative A∗, b∗. We are especially interested in the range of the

solution for finite perturbations rather than in the limit for ε → 0. For this purpose we give

the following definition.

Definition 4.1. Let A ∈ IRn×n, b ∈ IRn, A being nonsingular and x̂ := A−1b. For nonnega-

tive A∗ ∈ IRn×n, b∗ ∈ IRn and 0 ≤ ε ∈ IR we define

Aε := { Ã | |Ã− A| ≤ ε · |A∗| } and

bε := { b̃ | |b̃− b| ≤ ε · |b+| }. (26)

Then the ε-elongation of the kth component of x̂, 1 ≤ k ≤ n w.r.t. perturbations in A and b

weighted by A∗ and b∗ is defined by

Elonε
k(A

−1b, A∗, b∗) := max

{ |x̃k − x̂k|
ε

∣∣∣ Ãx̃ = b̃ with Ã ∈ Aε, b̃ ∈ bε

}
. (27)

The vector of ε-elongations of A−1b is denoted by Elonε(A−1b, A∗, b∗).

The ε-elongation is the true range of the solution Ã−1 · b̃ where Ã, b̃ are within the range of

ε-perturbations of A and b weighted by A∗, b∗. In the limit ε → 0 the ε-elongation coincides

with the traditional sensitivity of x̂ w.r.t. perturbations in A, b weighted by A∗, b∗.

The ε-elongation is estimated by the following theorem.

Theorem 4.2. Let A ∈ IRn×n, b ∈ IRn and x̃ ∈ IRn, R ∈ IRn×n, ∅ 6= X ∈ IIIRn with

R · (b− Ax̃ + {I −R · A} ·X ⊆ int(X). (28)

Then A and R are not singular and the unique solution x̂ := A−1b of Ax = b satisfies

x̂ ∈ x̃ + int(X).

For nonnegative A∗ ∈ IRn×n, b∗ ∈ Rn not both being identical zero define

u := |R| · (|b∗|+ |A∗| · |x̂|),
v := |R| · |A∗| · |X| and

w := |I −RA| · |X|.
(29)
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Then both

ε∗ := min
i

{
(|X| − w)i

(u + v)i

∣∣∣ ui + vi 6= 0

}
(30)

and for 0 ≤ ε < ε∗

φε := max
i

{
ui

(|X| − εv − w)i

∣∣∣ ui + vi 6= 0

}
(31)

are well-defined and it is

Elonε(A−1b, A∗, b∗) ∈ u± φε(εv + w). (32)

Note. in practical applications u can be computed by using x̃ ∈ x̃ + X.

Proof. The first part of the theorem is an immediate consequence of theorem 2.1 for

f : IRn → IRn, f(x) := Ax− b (see also [26]).

Consider f : (IRn2 × IRn)× IRn → IRn with n2 + n parameters A, b and f(A, b, x) := Ax− b.

Following the lines of the proof of theorem 2.5 for every ε ≥ 0

bε−Aε ·x̂ =
{

b̃−Ãx̂
∣∣∣ b̃ ∈ bε, Ã ∈ Aε

}
= b−Ax̂±ε·(|b∗|+|A∗|·|x̂|) = ±ε·(|b∗|+|A∗|·|x̂|)

implying

Zε := 3f(Aε, bε, x̂) = 3R · (bε − Aε · x̂)

= ±ε · |R| · (|b∗|+ |A∗| · |x̂|) = ±εu.
(33)

Therefore Pε = 0 using the notation of the proof of theorem 2.5.

The jacobian of f is identical to A implying Qε = |A∗|. If A∗ and b∗ are not both identical

zero then the non-singularity of R implies u + v 6≡ 0. Hence by (4.5) ε∗ is well-defined. For

0 ≤ ε < ε∗ follows

y − wy − εvy ≥ σ · (|X| − w − ε(u + v) + εv) > σεv ≥ 0

for the components k with uk + vk 6= 0 using (4.5) and using y > wy for the others. Then

for every δ1, δ2 > 0

κ := ε ·max
i

{
ui

{y − wy − εvy}i

∣∣∣ ui + vi 6= 0

}
· (1 + δ1) + δ2 (34)

is well-defined and κ > 0. Then again using wy < y for the components k with uk + vk = 0

εu + κwy + εκvy < κ(y − wy − εvy) + κwy + εκvy = κy

12



which is the equivlaent to (2.22). Thus (2.24) proves

Elonε(A−1b, A∗, b∗) ∈ u± κ

ε
· (εvy + wy)

for every 0 ≤ ε < ε∗ and corresponding κ with (4.9) for any δ1, δ2 > o. Taking the limit

δ1, δ2 → 0 and regarding σ · κ
ε
→ φε finishes the proof.

In a practical application we set x̃ ≈ A−1b, R ≈ A−1. X is obtained by means of an iteration

[26]. It can be shown that a properly defined iteration using interval operations finishes with

some X satisfying (4.3) if an only if ρ(|I − RA|) < 1 (cf. [27] and the following theorem

4.2.1).

Theorem 4.2 serves theoretical purposes to be discussed in the following. In practical appli-

cations ε∗ from (4.5) is small due to the fact that the exact solution of the linear system is,

in general, not exactly representable an approximated by some x̃.

For a practical applications the ε-elongation of the solution of the linear system Ax =

b; A ∈ [A], b ∈ [b] w.r.t. perturbations weighted by A∗ ∈ IRn×n, A∗ ≥ 0 can be estimated by

directly computing estimations for Σ(Aε, bε) where Aε :=
{

Ã
∣∣∣ |tildeA− A| ≤ ε · A∗

}
, bε :={

b̃
∣∣∣ |b̃− b| ≤ ε · b∗

}
. This approach has been described in [28]. It is

Zε

∨
+ ∆ε ⊆ 3Σ(Aε, bε)− x̃ ⊆ Zε + ∆ε (35)

for Zε := R · (bε − Aεx̃), ∆ε := {I − R · Aε} ·X where R ∈ IRn×n, x̃ ∈ IRn, X ∈ IIIRn and

Zε + ∆ε ⊆ int(X). Using this approach the problem is to find an appropriate X satisfying

Zε + ∆ε ⊆ int(X). Such an X can be determinded by means of an iteration where in each

step it is indispensable to apply a so-called ε-inflation introduced in [25]. We define

X ∈ IIIRn : x ◦ δ = x± δ for some 0 < δ ∈ IRn. (36)

Here we use δ to avoid a conflict with the ε used in (4.10).

For given X0 ∈ IIIRn and Cε := I −R · Aε we define the iteration

Y k := Xk ◦ δ; Xk+1 := Zε + Cε · Y k for 0 ≤ k ∈ IN. (37)

If for some k ∈ IN Xk+1 ⊆ int(Y k) then ∆ε := Cε ·Y k satisfies (4.10). Using iteration (4.12)

explicit conditions can be stated under which some k ∈ IN exists with Xk+1 ⊆ int(Y k).

Theorem 4.2.1. Let Zε ∈ IIIRn, Cε ∈ IIIRn×n and 0 < δ ∈ IRn be given. Then the following

is equivalent:

a) For every X0 ∈ IIIRn there exist a k ∈ IN such that

13



Xk+1 ⊆ int(Y k)

using iteration (4.12) for Xk, Y k

b) ρ(|I −R · Aε|) < 1.

Note. For B ∈ IIIRn×n is (|B|)ij := max{ |bij|
∣∣∣ bij ∈ Bij }.

Proof. Xk+1 ⊆ int(Y k) implies ρ(|Cε|) < 1 as has been shown in [27]. Defining E := ±δ we

have

Xk+1 → Xε

implying

Zε + E + Cε ·Xε and Zε + Cε ·Xε + ρ · E ⊆ int(Xε)

for every 0 ≤ ρ < 1. We have q(Xk+1, Xε) → 0 and therefore

q(Zε + Cε ·Xk, Z + Cε ·Xε) = q(Cε ·Xk, Cε ·Xε) ≤ |Cε| · q(Xk, Xε).

Hence there exist a k ∈ N with q(Zε + Cε · Xk, Z + Cε · Xε) < δ/2 and q(Xk, Xε) < δ/2

implying Zε + Cε ·Xk ⊆ int(Xk).

Theorem 4.2.1 also holds in the complex case where the absolute value for a complex interval

matrix B ∈ IICn is defined by |B| = |Re(B)|+ |im(B)| (see [3]).

Setting x̃ := A−1b, R := A−1 and X := ±(1, . . . , 1)T satisfies the assumptions of theorem

4.2 yielding the exact sensitivity of x̂ w.r.t. perturbations in A, b weighted by A∗, B∗ to be

Sens(x̂, A, b, A∗, b∗) = |A−1| · (|b+|+ |A∗| · |x̂|), (38)

a result which can be found in the literature for A∗ = |A|, b∗ = |b| ([4], [23], [29]). For some

x̃, R,X satisfying (4.3) lower and upper bounds for this value are obtained by

Sens(x̂, A, b, A∗, b∗) ∈ |R| · (|b∗|+ |A∗| · |x̂|)± φ · w (39)

where

φ := max
i

{
ui

{|X| − w}i

∣∣∣ ui + vi 6= 0

}
and w := |I −RA| · |X|.

In our approach we use a componentwise absolute value combined with weights as a measure

for the maximum elongation resp. the sensitivity of a solution. In many practical applica-

tions this is what a user is really interested in. The componentwise absolute value avoids

equilibration effects due to norm estimates. This effect may be significant when components

in the solution and/or in A,B show large differences in size.
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Consider the example

A =




3 2 1

2 2ε 2ε

1 2ε −ε


 , b =




3 + 3ε

6ε

2ε


 (40)

given by Hamming [10] and discussed e.g. in Deif [7]. The sensitivity of the three components

of the solution x̂ = (ε, 1, 1)T w.r.t. relative changes in all components of A and b (with weights

A∗ = |A|, b∗ = |b|) compute approximately to

9.6, 4.6 and 6.0.

Using (4.13) the solution is very stable w.r.t. perturbations whereas ‖A‖ · ‖A−1‖ ≈ 0.8/ε.

For other right hand sides the problem is very sensitive such as for b = (6, 2, 1)T where we

have sensitivities of approximately

2, 0.67/ε and 2.67/ε.

The condition number, more explicitely the smallest singular value σ3 = 2ε of A indicates

that a singular matrix is near by A. Indeed

B =




3 2 1

2 2.4ε 1.2ε

1 1.2ε 0.6ε


 (41)

is the nearest singular matrix in the ‖ · ‖2 norm with a distance equal to σ3 = 2ε. However,

the relative distance from B to A is very large namely

min{ δ
∣∣∣ |B − A| ≤ δ · |A| } = 1.6. (42)

In the ‖ · ‖2-sense we have, roughly spoken, a distance relative to the largest element in

absolute value of A whereas (4.17) is the relative distance to A taken for every individual

component of A.

The value of this observation for practical applications depends very much on the application

itself. If the data of A are afflicted with an error being absolutely not greater than some

value ε∗ then B of (4.16) may very well lie in or near the domain of possible data; in case of

a given relative precision for every component of A, B is with 160 % relative distance to far

away.

This leads to the questian of the distance of a matrix A to the next singular matrix weighted

by some nonnegative matrix A∗:

SingRad(A,A∗) := min
{

ε
∣∣∣ ∃ singular Ã with |Ã− A| ≤ ε · |A∗|

}
, (43)
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which has strong connections to the term strongly regular for interval matrices (cf. [23]).

Lemma 4.3. Let A ∈ IRn×n be a nonsingular matrix, A∗ ∈ IRn×n be nonnegative. Then

{ρ(|A−1| · |A∗|)}−1 ≤ SingRad(A,A∗) (44)

and

{ρ(|A−1| · |A|)}−1 ≤ SingRad(A, |A|) ≤ 1. (45)

For lower or upper diagonal A holds

{ρ(|A−1| · |A|)}−1 = SingRad(A, |A|) = 1. (46)

Proof. Let Ã := A + δA be given with |Ã−A| ≤ ε · |A∗| and ε < {ρ(|A−1| · |A∗|)}−1. Then

ρ(I − A−1Ã) = ρ(A−1 · δA) ≤ ρ(|A−1| · |δA|) ≤ ε · ρ(|A−1| · |A∗|) < 1

implying the nonsingularity of Ã and (4.2=). To prove (4.21) we use the fact that with A

also A−1 is lower resp. upper diagonal implying that |A−1| · |A| has this property with all

diagonal elements equal to 1.

The quality of the estimations in lemma 4.3 has been tested in several experiments. The

true value of the radius of singularity was calculated through approaching it by checking

the determinant for all 2k possibilities (k the number of nonzero components in A∗). In our

experiments 1/ρ(|A−1||A∗|) was a reasonable estimation delivering roughly the magnitude of

the true value.

In our example (4.15) the matrix

Ã with Ãij = Aij · (1 + δBij), B =




1 −1 1

−1 1 −1

1 −1 −1


 (47)

and δ = SingRad(A, |A|) ≈ 0.37778

was found to be the nearest singular matrix to A w.r.t. perturbations relative to |A| itself.

Lemma 4.3 gives an estimation of approximately 0.302 for δ.

Theorem 4.2 gave an estimation on Elonε(x̂, A, b, A∗, b∗) for finite values of ε based on an

inclusion x̃ + X for x̂ = A−1b. This estimation (4.7) can be calculated on digital computers.
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Following we will give a theoretical bound for the Elonε(x̂, A, b.A∗, b∗) being applicable for

all ε < ρ(|A−1||A∗|)−1.

Corollary 4.4. Let A ∈ IRn×n being nonsingular and b ∈ IRn with x̂ := A−1b be given.

For nonnegative A∗ ∈ IRn×n, b∗ ∈ IRn, A∗ and b∗ not both being identically zero and

ε < ε∗ := {ρ(|A−1| · |A∗|)}−1 let

u := |A−1| · (|b∗|+ |A∗| · |x̂|) and C := |A−1| · |A∗|.
Then

Elonε(A−1b, A∗, b∗) ∈ u± ε · C · (I − εC)−1 · u (48)

Proof. By assumption ε is small enough to make I − εC nonsingular. Perron-Frobenius-

Theory shows that εC ≥ 0, and ρ(εC) < 1 implies (I − εC)−1 > 0 (see [31], Theorem 3.8)

and therefore

Y := (I − εC)−1 · u > 0. (49)

Let Aε :=
{

Ã
∣∣∣ |Ã− A| ≤ ε|A∗|

}
, bε :=

{
b̃

∣∣∣ |b̃− b| ≤ ε · |b∗|
}

and Aκ := [−κy, +κy]. Then

A−1 · (bε − Aε · x̂) = ±ε · |A−1| · (|b∗|+ |A∗| · |x̂|) (50)

and

(I − A−1 · Aε) · Yκ =
{

(I − A−1Ã) · yκ

∣∣∣ Ã ∈ Aε yκ ∈ Yκ

}

=
{
−A−1 · δA · yκ

∣∣∣ |δA| ≤ ε · |A∗|, yκ ∈ Yκ

}

= ±ε · κ · |A−1| · |A∗| · y = ±εκCy.

(51)

For κ > ε is κy − εκCy − εu = κ(I − εC)y − εu = κu− εu > 0. Therefore, defining x̃ := x̂,

R := A−1 and X := ±κy (4.3) is satisfied for every κ > ε.

Applying theorem 4.2 gives

Elonε(x̂, A, b, A∗, b∗) ∈ u± φε · ε · v
because w = 0 where v = κC · y and using y − εCy = u

φε = max
i

{
ui

{κ(y − εCY )}i

∣∣∣ ui + vi 6= 0

}
= 1/κ.

Taking the limit κ → ε+ finishes the proof.

Using Corollary 4.4 usually gives reasonable bounds for the sensitivity of a linear system

the coefficients of which perturbing within wider ranges. Consider for instance (4.15) with
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ε = 107. Let A∗ := |A| and b∗ := |b|, i.e. we are looking for the set of solutions of Ãx = b̃

for Ã, b̃ within relative distance ≤ δ to A, b. As we saw before values of δ up to 0.302,

i.e. ±30.2% change in every component of A and b, are suitable. The following table displays

Elonδ(A−1b, |A|, |b|) for the three components of the linear system (4.15) computed after

(4.23) for different values of δ.

δ[%]
lower bound

upper bound
for Elonδ(A−1b, |A|, |b|)

0.1
9.59

9.61

4.79

4.81

5.99

6.01

1
9.50

9.70

4.74

4.85

5.93

6.07

10
8.5

10.7

4.2

5.4

5.2

6.8

20
7.2

12.0

3.6

6.0

4.3

7.7

30
5.6

13.6

2.8

6.8

3.2

8.8

Table 4.1. Analysis of the linear system (4.15)

Even for a value of 30 % the bounds clearly give the magnitude of the total sensitivity. The

same example with b = (6, 2, 1)T give the following results:

δ[%]
lower bound

upper bound
for Elonδ(A−1b, |A|, |b|)

1
1.98

2.02

6.58

6.75
·106 2.64

2.69
·107

10
1.78

2.22

5.7

7.6
·106 2.41

2.92
·107

20
1.5

2.5

4.6

8.7
·106 2.1

3.3
·107

30
1.1

2.9

3.2

10.2
·106 1.7

3.7
·107

Table 4.2. Analysis of the linear system (4.15) with b = (6, 2, 1)T

The figures show that even for larger perturbartions the magnitude of the sensitivity is rea-

sonably estimated. For practical purposes the knowledge of the magnitude of the sensitivity
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is usually sufficient.

Theorem 4.2 applies immediately to matrix inversion by treating the linear systems Ax = I.

The ε-elongation of A−1 is weighted by some nonnegative A∗ ∈ IRn×n defined similarly to

definition 4.1 by

Elonε
kl(A

−1, A∗) := max

{ |Ã−1
kl − A−1

kl |
ε

∣∣∣ |Ã− A| ≤ ε|A∗|
}

.

The matrix of ε-elongations is denoted by Elonε(A−1, A∗). Then for b := I and x̃ := IR ≈ A−1

we obtain the following result.

Corollary 4.5. Let A ∈ IRn×n and R ∈ IRn×n, ∅ 6= X ∈ IIIRn×n with

R · (I − A ·R) + {I −R · A} ·X ⊆ int(X). (52)

Then A and R are not singular and A−1 ∈ R + int(X). For nonnegative A∗ ∈ IRn×n not

being identical zero define

u := |R| · |A∗| · |A−1|, v := |R| · |A∗| · |X| and w := |I −RA| · |X|.
Then both

ε∗ := min
i,j

{
(|X| − w)ij

(u + v)ij

∣∣∣ uij + vij 6= 0

}

and

φε := max
i,j

{
uij

(|X| − εv − w)ij

∣∣∣ uij + vij 6= 0

}

are well-defined and

Elonε(A−1, A∗) ∈ u± φε · (ε · v + w). (53)

u can be estimated by using A−1 ∈ R + X. (4.28) yields rigorous estimations on the ε-

elongation of the inverse of A weighted by A∗ which can be calculated on digital computers.

Similar to corollary 4.4 bounds hardly being exactly computable but of theoretical interest

are

Elonε(A−1, A∗) ∈ |A−1| · |A∗| · |A−1|±ε · |A−1||A∗| · (I−ε|A−1||A∗|)−1 · |A−1| · |A∗| · |A−1|
which is true for all ε < ε∗ :=

{
ρ(|A−1| · |A∗|)

}−1
.
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5 Sensitivity of eigenvectors/eigenvalues and singular

values/vectors

Let A ∈ IRn×n be a matrix with simple eigenvalue λ̂ ∈ IR.We restrict our attention in this

chapter to real eigenvalues/eigenvectors. However, all of the following results immediately

extend to the complex case.

In the following we consider two formulations of the eigenproblem as a nonlinear system

f i : IRn2 × (IRn × IR) → IRn × IR, namely

f 1(A, x, λ) :=


 Ax − λx

xT x − 1


 and f 2(A, x, λ) :=


 Ax − λx

eT
l x − 1


 (54)

for some 1 ≤ 1 ≤ n. Both are equivalent for an eigenvector-/eigenvalue pair (x̂, λ̂) provided

x̂1 6= 0. They reflect a different normalization of x̂ and lead to different sensitivities of the

eigenvector x̂.

Definition 5.1. Let A ∈ IRn×n be a matrix with simple eigenvalue λ̂ ∈ IR and let A∗ ∈ IRn×n

be a nonnegative matrix. Let ε > 0 be small enough such that all eigenvalues λ̂ being

connected to λ̂ within Aε :=
{

Ã
∣∣∣ |Ã− A| ≤ ε · |A∗|

}
are simple. Then the sensitivity of λ̂

w.r.t. perturbations in A weighted by A∗ is defined by

Sens(λ̂, A, A∗) := lim
ε→0+

max

{ |λ̃− λ̂|
ε

∣∣∣ λ̃ connected to λ̂ within Aε

}
.

The sensitivity of the kth component of an eigenvector x̂ of A with Ax̃ = λ̂x̂ is defined by

Sensk(x̂, ‖ · ‖2, A, A∗) :=

:= lim
ε→0∗

max

{ |x̃k − x̂k|
ε

∣∣∣ x̃ connected to x̂ within Aε w.r.t.f 1

}
(55)

resp.

Sensk(x̂, eT
l , A, A∗) :=

:= lim
ε→0+

max

{ |xk − x̂k|
ε

∣∣∣ connected to x̂ within Aε w.r.t.f 2

}
.

(56)

where 1 ≤ l ≤ n with eT
l x̂ 6= 0.

In the second case of course Sensl(x̂, eT
l , A, A∗) = 0. Applying theorem 2.5 to f 1 resp. f 2

yields estimations for the sensitivities of the eigenvalue λ̂ resp. the eigenvalue x̂ of A for both

20



kinds of normalizations.

Theorem 5.2. Let A ∈ IRn×n and x̃ ∈ IRn, λ̃ ∈ IR, R ∈ IR(n+1)×(n+1), ∅ 6= X ∈ IIIRn,

∅ 6= Λ ∈ IIIRn with 0 ∈ X, 0 ∈ Λ. Define

M1 :=


 A− (λ̃ + Λ)I −(x̃ + X)

2x̃T 0


 and M2 :=


 A− (λ̃ + Λ)I −(x̃ + X)

eT
l 0


,

Mα ∈ IIIR(n+1)×(n+1) for α = 1, 2 and let

−R ·

 Ax̃− λ̃x̃

x̃T x̃− 1


 + {I −R ·M1} ·


 X

Λ


 ⊆ int


 X

Λ


 (57)

resp.

−R ·

 Ax̃− λ̃x̃

eT
l · x− 1


 + {I −R ·M2} ·


 X

Λ


 ⊆ int


 X

Λ


 (58)

be satisfied. Then R and every matrix M ∈ Mα, α = 1 resp. α = 2 are nonsingular and there

exist an eigenvector/eigenvector pair (x̂, λ̂) of A with x̂ ∈ x̃ + int(X) and λ̂ ∈ λ̃ + int(X). It

is x̂T x̂ = 1 resp. eT
l x̂ = 1; λ̂ is simple.

For nonnegative A∗ ∈ IRn×n define

u := |S| · |A∗| · |x̂| and wα := |I −R ·Mα| · |(X, Λ)T | (59)

where S ∈ IR(n+1)×n is the matrix of first n columns of R and α = 1 resp. α = 2 depending

on whether (5.4) or (5.5) holds. Then

φ := max
1≤i≤n+1





U − i(
(|X|, |Λ|)T − w

)
i



 (60)

is well-defined and for the sensitivity of the eigenvector x̂ w.r.t. perturbations in A weighted

by A∗ holds for 1 ≤ k ≤ n

Sensk(x̂, ‖ · ‖2, A, A∗) ∈ {u± φ · w1}k resp.

Sensk(x̂, eT
l , A,A∗) ∈ {u± φ · w2}k.

The sensitivity of the eigenvalue λ̂ satisfies

Sens(λ̂, A, A∗) ∈ |r| · |A∗| · |x̂± φ · wα (61)
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where r is the row vector of the first n components of the last row of R, α = 1 resp. α = 2.

Proof. Follows immediately by applying theorem 2.5 to f 1 resp. f 2 defined by (5.1) and

regarding (in the notation of the proof of theorem 2.5

Zε = 3−R ·

 Aεx̂− λ̂x̂

N


 = ±|R| ·


 |A∗||x̂|

0


 = ±|S| · |A∗| · |x̂|

where N = x̂T x̂−1 = 0 resp. N = eT
l x̂−1 = 0 for α = 1 resp. α = 2 and Aε := { Ã

∣∣∣ |Ã−A| ≤
ε · |A∗| }.

Estimation (5.8) can be calculated on digital computers. For the computation of u from (5.6)

note that x̂ ∈ x̃ + X. By examination of the inverse of the Jacobian of f 1 for f 1(x, λ) = 0

we get

{
∂f 1

∂(x, λ)
(x, λ)

}−1

=


 A− λI −x

2xT 0



−1

=


 B h

gT ζ


 , B ∈ IRn×n, g, h ∈ IRn and ζ ∈ IR.

(62)

Then ζ = 0 because det(A − λI) = 0, (A − λI)h = 0 and 2xT h = 1 implying h = 0.5xT .

By gT (A− λI) = 0 together with −gT · x = 1 it follows that g is the left eigenvector y to λ

subject to normalization yT · x = −1. Hence by applying theorem 5.2 together with (2.25)

we get

Sens(λ,A, A∗) = |yT | · |A| · |x|/|ytx| (63)

which can also be obtained by classical perturbation theory [32]. For a symmetric matrix A

this means

Sens(λ,A, A∗) = |xT | · |A| · |x|/|xT x| (64)

for unsymmetric perturbations of A weighted by A∗. Allowing only for symmetric perturba-

tions weighted by A∗ we only have to examine the last component of Zε again. Let A = AT

and

As
ε :=

{
Ã symmetric

∣∣∣ |Ã− A| ≤ ε · |A∗|
}

. (65)

Then using f 1 from (5.1)

Zε = 3−R ·

 As

εx̂ − λ̂x̂

x̂T x̂ − 1


 = 3 R ·


 ∆A · x̂

0


 (66)
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where ∆A ∈ IRn×n, |∆A| ≤ ε · |A∗| and ∆A symmetric. If R is the exact inverse of the

Jacobian of f 1 at (x̂, λ̂) then gT in (5.9) equals yT which is −x̂T /x̂T x̂ because of the symmetry

of A and the normalization gT · x̂ = 1. The sensitivity w.r.t. symmetric perturbations is

max
Z∈Z

|Zε|/ε in the limit ε → 0. We have

x̂T ·∆A · x̂ =
∑

i,j

x̂i ·∆Aij · x̂j = diag(∆A) · x̂ + 2 ·∑
i>j

x̂i ·∆Aij · x̂j. (67)

In the sum (5.14) all dependencies are eliminated yielding max |x̂T ·∆A · x̂| = ε|x̂T | · |A∗| · |x̂|.

Corollary 5.3. The sensitivity of a simple eigenvalue λ with corresponding eigenvector x

of a symmetric matrix w.r.t. unsymmetric perturbations weighted by A∗ ∈ IRn×n, A∗ ≥ 0 is

the same as the sensitivity w.r.t. symmetric perturbations weighted by A∗, namely

|xT | · |A∗| · |x|/xT x.

For a simple singular value σ of some matrix Aσ2 is an eigenvalue of AT A. Let u and v be

the left and right singular vector of A with ‖u‖2 = ‖v‖2 = 1. Then AT Av = σAT u = σ2v

and the sensitivity of the eigenvalue σ2 of AT A is, similar to (5.14), is equal to

lim
ε→0

max vT ·∆(AT A) · v/ε

where ∆(AT A) := { ÃT Ã − AT A
∣∣∣ |Ã − A| ≤ ε · |A∗| }. Neglecting 0(ε3) terms we have to

examine vT (AT ·∆A)T A)v for |∆A| ≤ ε · |A∗|. By using Av = σu and AT u = σv

vT · (AT ·∆A + (∆A)T A)v = σuT ∆Av + σvT (∆A)T u = 2σ · uT ·∆A · v.

Here all dependencies are eliminated and the sensitivity of the eigenvalue σ2 of AT A turns out

to be 2σ|uT | · |A∗| · |v| yielding the sensitivity of the singular value σ of A to be |uT | · |A∗| · |v|.

Corollary 5.4. The sensitivity of a simple singular value σ with left and right singular

vector u and v w.r.t. perturbations in A weighted by some nonnegative A∗ ∈ IRn×n is

|uT | · |A∗| · |v|.

6 Numerical example

In this section we will give some numerical examples for systems of linear and nonlinear

equations. Throughout this section we will use a short notation for intervals by giving

coinciding digits of the left and right bounds only once. E.g. an interval [2.718281, 2.718282]

will be noted by

2.718282
1.
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The notation bears the advantage that the sharpness of an interval is realized immediately.

In many examples we display only 3 figures of the result. In this case for the example above

2.718

would be displayed. The notation indicates that all displayed figures are correct. Using the

interpretation that an interval is an inclusion for a correct result we can define a relative

error δ([A]) of an interval [A] = [a, a] by

δ([A]) =
|a− a|

min(|a|, |a|) =
diam([A])

q(0, [A])

provided that 0 /∈ [A]. Indead the relative error for any x ∈ [A] w.r.t. any y ∈ [A] is bounded

by δ([A]). To be perfectly clear it should be stated that all given results are correct in the

sense that the true result is between the diplayed left and right bounds.

In order to implement the estimations derived in the previous chapters on digital comput-

ers an appropriate floating-point arithmetic is necessary. That means an arithmetic with

directed roundings to preserve the central property of interval arithmetic, the isotonicity:

a, b ∈ IF : a ∗ b ∈ [a, a] ∗ [b, b] and

[A], [B] ∈ IIIF : ∀ a, b ∈ IR : a ∈ [A], b ∈ [B] ⇒ a ∗ b ∈ [A] ∗ [B].

Here IF ⊆ IR denotes some set of floating-point numbers,

[A] = [a, a] := { x ∈ IR
∣∣∣ a ≤ x ≤ a } for a, a ∈ IF

are floating-point intervals ([A] ∈ IIIF) and ∗ ∈ {+,−, ·, /}. Operations over floating-point

intervals as well as for floating-point interval vectors and matrices are well-defined and fastly

executable on digital computers (cf. [3], [5], [20], [23]).

In the following we use an implementation on a Personal Computer with Coprocessor taking

advantage of the IEEE 754 arithmetic. All results are produced using double precision, i.e. 54

bit in the mantissa equivalent to approximately 18 decimal figures. The programming lan-

guage in use is TPX (cf. [11]), an extension of TURBO-PASCAL developed at the technical

university of Hamburg allowing a general operator-concept, function- and procedure-name

overloading, general result types for functions as well as dynamic array handling. TPX is

transpiled into TURBO-PASCAL by means of a precompiler. The code for the examples

presented below as well as the precompiler itself are freely available.

We start with an application of theorem 2.5 using an example given by Abbot and Brent [1],

a discretization of

3y′′y + y′2 = 0, y(0) = 0, y(1) = 20. (68)
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The exact solution is y(t) = 20 ·t3/4, our initial approximation is very poor namely x̃i ≡ 10.0,

1 ≤ i ≤ n. We solve the discretized system f : IRn × IRp with

f1 = p1 · x1(x2 − 2x1) + x2
2/4

fi = p1 · xi(xi+1 − 2xi + xi−1) + p2(xi+1 − xi−1)
2/4 2 ≤ i ≤ n− 1

fn = p1 · xn(20− 2xn + xn−1) + p2(20− xn−1)
2/4

(69)

with parameters p1 and p2. The necessary derivatives are calculated using automatic dif-

ferentiation (cf. [24]). For different values of n the following table displays the computed

inclusion [xn] for xn and its relative error δ[xn]. We are interested in the sensitivity of the

solution w.r.t. perturbations in the coefficients 3.0 and 1.0 of the first and second term in

(6.1), that means in the notation (2.15) c∗ = (3.0, 1.0)T . We display the sensitivities σ1 and

σn of the first and nth component of the solution x̂ of the discretized system (6.2) and the

maximum sensitivity σmax of all components xi, 1 ≤ i ≤ n.

Finally the maximum relative error [σ]max of the inclusions of the sensitivities of the compo-

nents x̂i, 1 ≤ i ≤ n is displayed.

n = 20 n = 50 n = 100

[xn] 19.277385480681197
3 19.704480486786839

5 19.85565911919249
6

δ[xn] 1.2E − 16 1.6E − 16 1.9E − 16

σ1 2.035289918696
4 1.364512098136

3 0.9793399597278
2

σn 0.349629110276
4 0.145809614139

7 0.0653581464884
1

σmax 3.57 3.63 3.79

δ[σ]max 3.3E − 13 1.8E − 12 3.4E − 12

Table 6.1. Discretization of (6.2)

Obviously the discretized nonlinear system is very stable under perturbations of the coef-

ficients 3.0 and 1.0. To estimate the sensitivity of a problem usually 1 or 2 figures suffice;

with our achieved accuracy of 12 figures and more for the sensitivity practical needs are more

than satisfied.

We mention that perturbing the boundary conditions yields results of similar quality. The

maximum sensitivity for n = 100 increases to 19.85.

Next we investigate some ill-conditioned linear systems Ax = b. Until noted otherwise we

set A∗ := |A| and b∗ := |b|, i.e. regard relative perturbations w.r.t. all components of the

linear system. In this approach zero elements stay zero. In order to display the dependency

of the sensitivity w.r.t. different right hand sides we use

b := A−1 · (+1,−1, +1, . . .)T and b := V1
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for a singular value decomposition A = UΣV T . The minimum Sensmin and maximum Sensmax

sensitivity of the components of the solution for these two right hand sides w.r.t. pertur-

bations in A and b weighted by A∗ and b∗ are displayed. Finally we display the condition

numbers delivered by LINPACK condition estimator.

Our first example are Hilbert matrices. In order to keep the coefficients exactly representable

we use the inverse, i.e.

A := H−1 with Hij := (i + j − 1)−1.

The following results were obtained using theorem 2.5 for the linear case.

b = A−1 · (+1,−1, +1, . . .)T b = V1

n Sensmin Sensmax Sensmin Sensmax cond(A)

5 2.489E5 5.402E5 2.108E5 4.929E7 4.7E5

7 1.951E8 4.372E8 1.797E8 9.166E11 4.7E8

9 1.705E11 3.886E11 1.454E11 7.492E15 4.9E11

11 1.5
9

7
E14 3.

70

58
E14 1.

46

30
E14 1.3

8

3
E16 5.2E14

13
2.0

0
E17

1.4

0
E19

1.18

0.41
E17

5.2

0
E17 2.4E17

Table 6.2. Sensitivity Hilbert matrices

For n = 13 in some cases only upper bounds for the sensitivity are obtained which need not

be sharp. However, for a number of components still lower and upper bounds are obtained

like (0.77, 2.04) · 1017 implying a minimum sensitivity of the linear system.

Next we display the results for Pascal matrices defined by

Pij :=


 i + j

i




b = A−1 · (+1,−1, +1, . . .)T b = V1

n Sensmin Sensmax Sensmin Sensmax cond(A)

5 3.564E3 3.637E4 3.606E3 4.742E5 6.3E4

7 1.139E5 4.176E6 1.125E5 1.982E8 1.4E7

9 3.625E6 4.872E8 3.533E6 8.708E10 3.0E9

11 1.158E8 5.804E10 1.119E8 4.141E13 6.7E11

13 3.718E9 7.009E12 3.572E9 3.187E16 1.5E14

Table 6.3. Sensitivity Pascal matrices
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The results for Zielke matrices defined by

Zij :=


 n− i− 1

i− 1


 · n ·


 n− 1

n− j




i + j − 1

are even better. Supposedly this is due to the fact that the inverse is the same matrix with

a chessboard-like sign distribution and is therefore exactly representable.

b = A−1 · (+1,−1, +1, . . .)T b = V1

n Sensmin Sensmax Sensmin Sensmax cond(A)

7 1.150E6 8.780E8 1.097E8 2.166E8 1.8E9

9 1.360E8 1.447E12 9.632E10 1.889E11 4.9E12

10 1.497E9 6.414E13 2.580E12 3.443E12 2.7E14

11 1.658E10 2.533E15 8.966E13 1.752E14 1.5E16

Table 6.4. Sensitivity Zielke matrices

The tables verify again the well-known fact that the condition number may over- or under-

estimate the true sensitivity of the solution of a linear system. All results are of high quality.

Moreover, as is well-known, the sensitivity may depend significantly on the right hand side.

An advantage of the methods presented is that the sensitivity of each individual components

of the solution can be rigorously estimated w.r.t. weighted perturbations in the full set of

components or part of them. We will investigate this in a final example.

For a 50 × 50 random matrix with random right hand side (all numbers being uniformly

distributed in [0, 1]) we obtain for the sensitivity Sensi of the ith component of the solution

x̂ = A−1 · b for i = 9 and i = 19 with A∗ := |A|, b∗ := |b|
Sens10 = 248

Sens9 = 17900

cond(A) = 685

.

We have the possibility to check the sensitivity w.r.t. individual sets of coefficients in A and

b, for example w.r.t. the columns Ai of A. We obtain for the sensitivity of the 9th component

of the solution x̂

Sens9 w.r.t. A∗ = |A19|, b∗ = 0 8600

Sens9 w.r.t. A∗ = |A9|, b∗ = 0 6

Sens9 w.r.t. A∗ = 0, b∗ = |b| 1270.

For another right hand side, namely b = U − 50 with A = UΣV T , things change. We obtain

for the minimum and maximum sensitivity of the solution x̂ w.r.t. perturbations weighted

by A∗ = |A|, b∗ = |b|
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minimum 210

Sensitivity ofx̂

maximum 122851

as compared the condition number 685.

7 Conclusion

Methods have been described to compute rigorous bounds for the sensitivity of linear or

nonlinear systems of equations w.r.t. weighted perturbations in the input data. Together

with rigorous estimations on the solution the sensitivity information comes virtually free of

cost. The calculated estimations are very sharp.

A criticism of inclusion algorithm for data afflicted with tolerances was that correct bounds

for the solution set are computed and all experience showed that those bounds are very

sharp, but the degree of sharpness could not be estimated (see [14]). Another criticism

was that even a guaranteed and very sharp error bound may mislead a user in case of an

extremely sensitive problem. The presented theorems and practical results together with

those presented in [28] fill those gaps.

The sensitivity analysis offers the additional advantage that rather than a single number

estimating the condition of the problem in use a whole sensitivity vector can be computed

estimating variations of individual components of the solution for weighted perturbations in

the input data. As is well-known traditional condition numbers do not necessarily reflect

the true sensitivity of individual components of a solution.

The methods described can be implemented very effectively on digital computers. No spe-

cial computer arithmetic is necessary; a state of the art arithmetic e.g. described in the

IEEE 754 binary floating-point standard [12] or the arithmetic developed by Kulisch [17]

suffices. Especially all kinds of arithmetics representing sets on computers are suitable; in

our implementation we used a rectangular real or complex arithmetic.
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