
Expansion and Estimation of the Range of Nonlinear

Functions ∗

S. M. Rump, Hamburg

Abstract

Many verification algorithms use an expansion f(x) ∈ f(x̃) + S · (x− x̃), f : IRn → IR
for x ∈ X, where the set of matrices S is usually computed as a gradient or by means of
slopes. In the following, an expansion scheme is described frequently yielding sharper
inclusions for S. This allows also to compute sharper inclusions for the range of f over
a domain. Roughly speaking, f has to be given by means of a computer program. The
process of expanding f can then be fully automized.
The function f may be non-differentiable. For locally convex functions special improve-
ments are described. Moreover, in contrast to other methods x̃ ∩ X may be empty
without implying large overestimations for S. This may be advantageous in practical
applications.

AMS Subject Classification: 65G10

0 Notation

IIIR denotes the set of real intervals

X ∈ IIIR ⇒ X = [inf(X), sup(X)] = {x ∈ IR | inf(X) ≤ x ≤ sup(X) }.

IPT denotes the power set over a given set T , and IIIR ⊆ IPIR. IIIRn denotes the set of

n-dimensional interval vectors, i.e.

X ∈ IIIRn ⇒ X = { (xi) | xi ∈ Xi } with Xi ∈ IIIR, 1 ≤ i ≤ n.

∗published in Mathematics of Computation, 65(216):1503–1512, 1996

1

Interval vectors are closed and bounded. Interval operations and power set operations are

defined in the usual way. Details can be found in standard books on interval analysis, among

others [9], [2], [10]. If not explicitly noted otherwise, all operations are power set operations.

1 Expansion of nonlinear functions

A differentiable function f : D ⊆ IRn → IR can be locally expanded by its gradient. For

x̃ ∈ D, X ⊆ D, and [g] ∈ IIIRn with ∇f(x̃∪X) ⊆ [g] holds

∀ x ∈ X ∃ g ∈ [g] : f(x)− f(x̃) = gT · (x− x̃). (1.0)

The gradient, also for interval argument, can be computed using automatic differentiation

[4], [11]. This process is fully automized. This approach bears three disadvantages:

1) f needs to be differentiable,

2) [g] expands f w.r.t. every x̃ ∈ x̃∪X rather than w.r.t. some specific x̃ ∈ X,

3) x̃∪X has to be used enlarging [g].

Number 2) means that (1.0) still holds if x̃ in (1.0) is replaced by any y ∈ x̃∪X. Number

3) expresses that according to the n-dimensional Mean-Value-Theorem for all x ∈ X some

ζ(i) ∈ x̃∪x exists with (f(x)− f(x̃))i = ζ(i)T · (x− x̃). Using [g] ⊇ ∆f(x̃∪X) assures (1.0).

The three problems can be solved by means of so-called slopes. They have been intro-

duced and described in [12], [6], [8], [10]. In the following, we give some generalization and

improvement for slopes.

We start with a 1-dimensional function and will see that the approach easily extends to the

n-dimensional case. The first steps very much follow the treatise in [10].

Definition 1. Let f : D ⊆ IR → IR and X̃, X ⊆ D be given. The tripel (fc, fr, fs) ⊆
IR× IR× IR expands f in X w.r.t. X̃ if

∀ x̃ ∈ X̃ : f(x̃) ∈ fc

∀ x ∈ X : f(x) ∈ fr

∀ x̃ ∈ X ∀ x ∈ X ∃ f̃s ∈ fs : f(x)− f(x̃) = f̃s · (x− x̃).

Furthermore, the slope of f in X w.r.t. X̃ is defined by

slope (f) = slope(f, X̃, X) :=

{
f(x)− f(x̃)

x− x̃
| x̃ ∈ X̃, x ∈ X, x 6= x̃

}
.

2

For Theorem 3 we also need the following definition. If X̃, X ⊆ D either consist of a single

point x̃, x ∈ D, resp., then slope (f) = (f(x)− f(x̃))/(x− x̃) provided x̃ 6= x. We define

slope (f, x̃, x) :=





slope (f, x̃, x) if x̃ 6= x

lim
ε→0+

f(x + ε)− f(x)

ε
if x̃ = x

and

slope (f, x̃, x) :=





slope (f, x̃, x) if x̃ 6= x

lim
ε→0−

f(x + ε)− f(x)

ε
if x̃ = x

This definition is only needed for convex or concave f . The values for slope, slope are allowed

in [−∞, +∞].

Instead of (fc, fr, fs) we sometimes write (fc(X̃,X), fr(X̃, X), fs(X̃, X)) in order to empha-

size the dependency on X̃ and X. Clearly, if (fc, fr, fs) expands f in X w.r.t. X̃ then

f(X̃) ⊆ fc, f(X) ⊆ fr, slope (f, X̃, X) ⊆ fs,

and (f(X̃), f(X), slope f(x̃, X)) expands f in X w.r.t. X̃.

The following theorem can basically be found in [10].

Theorem 2. A constant c ∈ IR and f(x) ≡ x is expanded in X w.r.t. X̃ by (c, c, 0) and

(X̃,X, 1), respectively. Let f, g : D ⊆ IR → IR and X̃, X ⊆ D be given. If (fc, fr, fs),

(gc, gr, gs) expand f , g in X w.r.t. X̃, resp., then (hc, hr, hs) expands f ◦g for ◦ ∈ {+,−, ·, /}
in X w.r.t. X̃ where

hc := fc ◦ fc, hr := fr ◦ gr for ◦ ∈ {+,−, ·, /},
hs := fs ◦ gs for ◦ ∈ {+,−},
hs := (fs · gr + fc · gs) ∩ (fr · gs + fs · gc) for ◦ = ·,
hs := (fs − hc · gs)/gr ∩ (fs − hrgs)/gc for ◦ = /,

provided no division by zero occurs. The same holds for h = g(f) with

hc := g(fc), hr := g(fr) and

hs := slope(g, fc, fr) · fs.

3

These statements remain valid if hr is replaced by

hr := hr ∩ {hc + hs · (X − X̃)}.

The proof is demonstrated for f ·g, f/g, and g(f). The others follow similarly. Computation

of hc and hr is obvious. For h = f · g

slope(f · g) =

{
f(x) · g(x)− f(x̃) · g(x̃)

x− x̃
| x̃ ∈ X̃, x ∈ X, x 6= x̃

}
.

For fixed but arbitrary x̃ ∈ X, x ∈ X there exist f̃s ∈ fs, g̃s ∈ gs with

f(x) · g(x)− f(x̃) · g(x̃) = [f(x̃) + f̃s · (x− x̃)] · [g(x̃) + g̃s · (x− x̃)]− f(x̃) · g(x̃) =

= [f̃s · g(x) + f(x̃) · g̃s] · (x− x̃).

Hence slope (f · g) ⊆ fs · gr + fc · gs and therefore slope (f · g) = slope (g · f) ⊆ fr · gs + fs · gc.

For fixed but arbitrary x̃ ∈ X̃, x ∈ X there exist f̃s ∈ fs, g̃s ∈ gs with

f(x)

g(x)
− f(x̃)

g(x̃)
=

[f(x̃) + f̃s · (x− x̃)] · g(x̃)− f(x̃) · [g(x̃) + g̃s · (x− x̃)]

g(x) · g(x̃)

=
f̃s · (g(x)− g̃s · (x− x̃))− (f(x)− f̃s · (x− x̃)) · g̃s

g(x) · g(x̃)
· (x− x̃)

=

{
f̃s

g(x̃)
− f(x) · g̃s

g(x)g(x̃)

}
· (x− x̃)

proving the second part of the formula for hs for division. The first part can be derived

similarly, cf. also [10]. For h = g(f) holds

slope (h) =

{
g(f(x))− g(f(x̃))

x− x̃
| x̃ ∈ X̃, x ∈ X, x 6= x̃

}
.

For f(x) 6= f(x̃), holds

g(f(x))− g(f(x̃)) =
g(f(x))− g(f(x̃))

f(x)− f(x̃)
· f(x)− f(x̃)

x− x̃
∈ slope (g, fc, fr) · fs.

If f(x) = f(x̃) for x 6= x̃, then 0 ∈ fs, together yielding slope(g(f)) ⊆ slope(g, fc, fr) · fs.

Note that intersection for multiplication and division is possible because we are in the 1-

dimensional case. This is no longer possible in n dimensions because the slope is no longer

unique.

4

The intersection for hr in Theorem 2 combines naive interval evaluation with centered forms.

For example, (X̃, X, 1) expands the function f(x) ≡ x in X w.r.t. X̃. Defining g(x) := x−x

we obtain g(X) ⊆ X − X = [− diam(X), +diam(X)] by naive interval calculation. The

intersection gr := gr ∩ (gc + gs(X − X̃)) yields hr = gr ∩ (gc + 0 · (X − X̃)) = gc = 0.

It has already been observed in [10] that slope (g, fc, fr) can be replaced by g′(fc∪fr) if g is

differentiable. The disadvantage is that this set may be big. It covers slope (g, fc∪fr, fc∪fr)

thus expanding g in fc∪fr with respect to each x̃ ∈ fc∪fr. In special cases, slope (g, fc, fr)

can be computed explicitly. For example, let g(x) = x2. Then for every ỹ ∈ fc, y ∈ fr, y 6= ỹ

holds

g(y)− g(ỹ)

y − ỹ
=

y2 − ỹ2

y − ỹ
= y + ỹ ⇒ slope (g, fc, fr) ⊆ fc + fr. (1)

For g(x) =
√

x holds

g(y)− g(ỹ)

y − ỹ
=

√
y −√ỹ

y − ỹ
= (

√
y +

√
ỹ)−1 ⇒ slope (g, fc, fr) ⊆ (gc + gr)

−1. (2)

A similar principle can be extended to locally convex or concave functions. This may sharpen

the inclusion interval for slopes significantly.

Theorem 3. Let f : D ⊆ IR → IR, X̃, X ⊆ D be given and (fc, fr, fs) ⊆ IR × IR × IR

expanding f in X w.r.t. X̃. Let g : D′ ⊆ IR → IR, fc∪fr ⊆ D′ be given and define

hc := g(fc), hr := g(fr). If g is convex on fc∪fr, then (hc, hr, hs) expands g(f) on X w.r.t.

X̃ when

hs ⊇
[
slope (g, inf(fc), inf(fr)), slope (g, sup(fc), sup(fr))

]
· fs. (3)

If g is concave on fc∪fr, then the same holds for

hs ⊇
[
slope (g, sup(fc), sup(fr)), slope (g, inf(fc), inf(fr))

]
· fs. (4)

Proof. Let g be convex on fc∪fr. We prove that slope (g, y1, y2) increases when y1 or y2

increase. Let y1 < y < y2 with y = αy1 + (1− α)y2, 0 < α < 1, y1, y, y2 ∈ fc∪fr. Then due

to convexity g(αy1 + (1− α)y2) ≤ αg(y1) + (1− α)g(y2) and

g(y2)− g(y1)

y2 − y1

= α · g(y2)− g(y1)

y2 − y
≤ αg(y2)− g(y) + (1− α)g(y2)

y2 − y
=

g(y2)− g(y)

y2 − y
.

5

We proceed similarly for y1 ≤ y2 < y. Thus slope (g, fc, fr) achieve its extreme values at the

extremes of fc and fr and this proves (1.3). Concavity is treated similarly.

Note that in the calculation of (1.3) and (1.4) only slopes of g for points, not for intervals

are necessary. Theorem 3 yields sharper slopes for many functions. Moreover, it extends the

principle to non-differentiable functions such as absolute value.

As an example, consider ex2
for X̃ = {1} and X = [0.5, 1.5]. In the following table we com-

pare a standard gradient evaluation ∇f(x̃∪X), the slope using slope (g, fc, fr) ⊆ g′(fc∪fr)

and the slope computed by Theorem 3. Results are rounded to 4 figures.

∇f(X̃∪X) standard slope new slope (Theorem 3)

x2 [1, 3] [1.5, 2.5] [1.5, 2.5]

ex2
[1.284, 28.46] [1.926, 23.72] [2.869, 13.54]

Table 1. Expansions for X̃ = {1}, X = [0.5, 1.5]

Here we set X̃ = {mid(X)}. In practical applications, sometimes one cannot assure X̃ ⊆ X

unless extra function evaluations are spent. If we take the same X = [0.5, 1.5] but X̃ = {2}
then Table 1 looks as follows.

∇f(X̃∪X) standard slope new slope (Theorem 3)

x2 [1, 4] [2.5, 3.5] [2.5, 3.5]

ex2
[1.284, 218.4] [3.21, 191.1] [35.54, 90.22]

Table 2. Expansions for X̃ = {2}, X = [0.5, 1.5]

In order to apply Theorems 2 and 3 to the n-dimensional case, first we generalize Definition

1 in the following way.

Definition 4. Let F : D ⊆ IR → IPIR and X̃,X ⊆ D be given. The tripel (Fc, Fr, Fs) ⊆ IR3

expands F in X w.r.t. X̃ if

∀ x̃ ∈ X̃ : F (x̃) ⊆ Fc

∀ x ∈ X : F (x) ⊆ Fr

∀ x̃ ∈ X̃ ∀ x ∈ X ∀ ỹ ∈ F (x̃) ∀ y ∈ F (x) ∃ F̃s ∈ Fs : y − ỹ = F̃s · (x− x̃)

Furthermore, the slope of F w.r.t. X and X̃ is defined by

slope (F) = slope (F, X̃,X) :=
{

y − ỹ

x− x̃
| y ∈ F (X), ỹ ∈ F (X̃), x ∈ X, x̃ ∈ X̃, x 6= x̃

}

6

As before we have F (X̃) ⊆ Fc, F (X) ⊆ Fr and slope (F, X̃, X) ⊆ Fs and (F (X̃), F (X),

slope (F, X̃,X)) expands F in X w.r.t. X̃.

Let f : D ⊆ IRn → IR and X̃, X ∈ IIIRn with X̃,X ⊆ D be given. We need Definition 4 to

apply it to the following “component functions” F k : IR → IPIR defined by

F k(y) := f(X1, . . . , Xk−1, y, X̃k+1, . . . , X̃n) for 1 ≤ k ≤ n.

Then (F k(X̃k), F
k(Xk), slope (F k, X̃k, Xk)) expands F k in Xk w.r.t. X̃k and by induction

follows for x ∈ X, x̃ ∈ X̃ and 0 ≤ k ≤ n

f(x1, . . . , xk, x̃k+1, . . . , x̃n) ⊆ f(x̃) +
k∑

ν=1

slope (F ν , X̃ν , Xν) · (Xν − X̃ν).

Of course, Definition 4 could substitute Definition 1 at the beginning; we split it for didactical

purposes. Theorem 2 and 3 can be adapted to Definition 4 and applied to every component

function F k. In the practical application, the vector V = (V0, . . . , Vn) ∈ IIIRnn with

f(X1, . . . , Xk−1, X̃k, . . . , X̃n) ⊆ Vk for 0 ≤ k ≤ n (5)

is stored and

F k(X̃k) ⊆ Vk−1 and F k(Xk) ⊆ Vk

is used. The difference to Neumaier’s approach [10] is that he stores (fc, fr, fs) ∈ IIIR×IIIR×
IIIRn with f(X̃) ⊆ fc, f(X) ⊆ fr and corresponding slope. In the approach described above

more information is stored. It is very much in the spirit of Hansen [5], where the concept

of componentwise application of the n-dimensional Mean-Value-Theorem is used to improve

gradients, see also [1].

2 Implementation and examples

In the following we give some implementation hints and some computational results. We

use a Pascal-like notation together with an operator concept. In fact, it is the notation of

TPX (Turbo Pascal eXtended, [7]), a precompiler for Turbo Pascal offering these and other

features. We use the data structure

slope = record

r : array[0..n] of interval;

7

s : array[1..n] of interval;

end;

X̃, X ∈ IIIR are fixed and globally avaible constants. X̃ is denoted by Xs. Then f.r represents

the range vector V as in (1.4) and for all x̃ ∈ X̃, x ∈ X we have

f(x1, . . . , xk−1, x̃k, . . . , x̃n) ∈ f.r[i] for 0 ≤ k ≤ n

f(x) ∈ f(x̃) +
n∑

ν=1
f.s[i] · (xi − x̃i).

As an example we display the algorithm for the multiplication operator.

function mul(f, g : expansion): expansion implements ∗;
var i : integer; R : interval;

begin

R := f.r[0] ∗ g.r[0]; mul.r[0] := R;

for i := 1 to n do begin

mul.s[i] := intersection(f.r[i] ∗ g.s[i] + g.r[i− 1] ∗ f.s[i],

g.r[i] ∗ f.s[i] + f.r[i− 1] ∗ g.s[i]);

R := R + mul.s[i] ∗ (X[i]−Xs[i]);

mul.r[i] := intersection(f.r[i] ∗ g.r[i], R);

end;

end {mul};

Algorithm 2.1 Multiplication for strong expansions

The procedure gives enough detail for an implementation of basic operators for the compu-

tation of slope expansions. Note that all operations are interval operations. The main point

is that replacing the data type double by slope, automatically creates the slope expansion.

We close the implementation hints by giving a procedure for the absolute value, a convex but

not everywhere differentiable function. It implements Theorem 3. We assume the function

abs to be given for interval arguments, that is abs(X) := { |x| | x ∈ X }.
function abs (f : expansion) : expansion;

var i : integer; R : interval; Sl, Su : double;

begin

R := abs(f.r[0]); abs.r[0] := R;

for i := 1 to n do begin

if f.r[i].inf = f.r[i− 1].inf then

if f.r[i].inf >= 0.0 then Sl := 1.0 else Sl := −1.0

else

Sl := (abs(f.r[i].inf)− abs(f.r[i− 1].inf)/(f.r[i].inf − f.r[i− 1].inf);

8

if f.r[i].sup = f.r[i− 1].sup then

if f.r[i].sup <= 0.0 then Su := −1.0 else Su := 1.0

else

Su := (abs(f.r[i].sup)− abs(f.r[i− 1].sup)/(f.r[i].sup− f.r[i− 1].sup);

abs.s[i] := hull(Sl, Su) ∗ f.s[i];

R := R + abs.s[i] ∗ (X[i]−Xs[i]);

abs.r[i] := intersection (abs(f.r[i]), R);

end;

end {abs};
Algorithm 2.2 Slope expansion of absolute value

For the implementation of not globally convex functions, case distinctions for local convexity

have to be used. Next we compare the following three methods for expanding a function:

Method 1: Gradients ∇f

Method 2: Slopes according to [10]

Method 3: Slopes as described above

As an example for comparing these methods we use f : IR2 → IR with

f(x, y) := exy − x for X = [−1, 1], Y = [0, 2], X̃ = 0, Ỹ = 1. (6)

Method 1 with automatic differentiation yields

zi(X, Y) 5zi(X, Y)

z1 = X [−1, 1] 1 0

z2 = Y [0, 2] 0 1

z3 = z1 · z2 [−2, 2] [0, 2] [−1, 1]

z4 = ez3 [0.135, 7.390] [0, 14.779] [−7.390, 7.390]

z5 = z4 − z1 [−0.865, 8.390] [−1, 13.779] [−7.390, 7.390]

Table 2.1. Method 1 for (2.1)

The final value z5 equals the function value at X. Slopes according to [10] compute as

9

follows.

(zi)c (zi)r (zi)s

z1 = X 0 [−1, 1] 1 0

z2 = Y 1 [0, 2] 0 1

z3 = z1 · z2 0 [−2, 2] 1 [−1, 1]

z4 = ez3 1 [0.135, 7.390] [0.135, 7.390] [−7.390, 7.390]

z5 = z4 − z1 1 [−0.865, 8.390] [−0.865, 6.390] [−7.390, 7.390]

Table 2.2. Method 2 (slopes) for (2.1)

The results of Table 2.2 are exactly the same for the componentwise definition of gradients

according to Hansen [5]. The estimation for the range f(X, Y) is the same as for method 1.

It cannot be improved by using

f(X, Y) ⊆ {fc + fs · (X − X̃, Y − Ỹ)T} ∩ fr.

Finally we give the results for the new method 3 using Theorems 2 and 3.

(Rzi
)0 (Rzi

)1 (Rzi
)2 (Szi

)1 (Szi
)2

z1 = X 0 [−1, 1] [−1, 1] 1 0

z2 = Y 1 1 [0, 2] 0 1

z3 = z1 · z2 0 [−1, 1] [−2, 2] 1 [−1, 1]

z4 = ez3 1 [0.367, 2.719] [0.135, 7.390] [0.633, 1.719] [−4.671, 4.671]

z5 = z4 − z1 1 [0.281, 1.719] [−0.865, 6.390] [−0.367, 0.719] [−4.671, 4.671]

Table 2.3. Method 4 for (2.1)

Method 3 stores more information and computes better inclusions. The last line of Table

2.3 shows a sharper inclusion [−0.865, 6.390] for the range f(X,Y) and sharper slopes. The

true range is [0, 6.390], thus the upper bound is already sharp.

Slope expansions for non-continuous functions like signum (x) or bxc := max{ k ∈ ZZ | k ≤ x }
according to Theorem 2 and 3 can easily be implemented along the lines of Algorithms 2.1

and 2.2.

The following example is taken from Broyden’s function [3]

f(x1, x2) := (1− 1/(4π)) · (e2x1 − e) + x2 · e/π − 2ex1.

Setting X̃ = (0.5, π) and X := X̃ · [1− 0.3, 1 + 0.3] we obtain the following ranges computed

by methods 1), 2), and 3) without and with using Theorem 3.

10

method range f(X)

method 1 [-3.019, + 3.947]

method 2 [-3.019, + 3.947]

method 3 without Theorem 3 [-1.364, + 1.364]

method 3 with Theorem 3 [-0.761, + 0.762]

We summarize the main properties of our expansion scheme.

• The method is applicable to rather general, non-differentiable and even non-continuous

functions and can be used in an automized way similar to automatic differentiation.

• The quality of the inclusions is improved through various intersections and special

treatment of locally convex or concave functions.

• In practical applications, expansions may be necessary w.r.t. some x̃ ∈ IRn not being

exactly representable on the computer; therefore X̃ ∈ IIIRn is used instead of x̃.

• We do not require X̃ ⊆ X nor use X̃ ∪ X.

• The computational effort and storage as compared to standard slopes increase by about

a factor of 2.

References

[1] G. Alefeld. Intervallanalytische Methoden bei nichtlinearen Gleichungen. In S.D. Chat-

terji et al., editor, Jahrbuch Überblicke Mathematik 1979, pages 63–78. Bibliographisches

Institut, Mannheim, 1979.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,

New York, 1983.

[3] C.G. Broyden. A new method of solving nonlinear simultaneous equations. Comput.

J., 12:94–99, 1969.

[4] A. Griewank. On Automatic Differentiation, volume 88 of Mathematical Programming.

Kluwer Academic Publishers, Boston, 1989.

[5] E.R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Math.

Comput. 22, pages 374–384, 1968.

[6] E.R. Hansen. A generalized interval arithmetic. In K. Nickel, editor, Interval Mathe-

matics, volume 29, pages 7–18. Springer, 1975.

11

[7] D. Husung. Precompiler for Scientific Computation (TPX). Technical Report 91.1, Inst.

f. Informatik III, TU Hamburg-Harburg, 1989.

[8] R. Krawczyk and A. Neumaier. Interval Slopes for Rational Functions and Associated

Centered Forms. SIAM J. Numer. Anal., 22(3):604–616, 1985.

[9] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[10] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1990.

[11] L.B. Rall. Automatic Differentiation: Techniques and Applications. In Lecture Notes

in Computer Science 120. Springer Verlag, Berlin-Heidelberg-New York, 1981.

[12] J.W. Schmidt. Die Regula-Falsi für Operatoren in Banachräumen. Angew. Math. Mech.,

41:61–63, 1961.

12

