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S. M. Rump

Abstract

A method is described for calculating verified error bounds for zeros of a system
of nonlinear equations f(x) = 0 with continuous f : IRn → IRn. We do not require
existence of partial derivatives of f , and the function f may even be known only up to
some finite precision ε > 0.

An inclusion may contain infinitely many zeros of f . An example of a continuous
but nowhere differentiable function is given.

1 Notations

IPS denotes the power set over some set S. For example, an element of IPIRn×n is a set of

matrices.

If not stated explicitly otherwise, all operations in use are power set operations. As usual,

those are defined elementwise, i.e.

A ∈ IPS, B ∈ IPT ⇒ A ◦B := {a ◦ b | a ∈ A, b ∈ B}
for suitable A,B, S, T and some operation ◦.
To allow application on the computer, we will replace power set operations by interval oper-

ations. The inclusion monotonicity of interval operations then yields computable inclusions.
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2 Inclusion functions

Let f : D ⊆ IRn → IRn be a continuous function, and let

F : D → IPIRn satisfy x ∈ D ⇒ f(x) ∈ F (x). (1)

The function F can be thought of a computable error bound for f . For example, Stirling’s

formula yields (cf. [1])

f(x) := Γ(x) and

F (x) :=
√

2π · (x− 1)x− 1
2 · e−x+1+

[0,1]
12(x−1) . (2)

f and F satisfy condition (2.1) for D = {x ∈ IR | x > 0}, where the expression for F can be

evaluated using interval arithmetic and is executable on digital computers.

Second, we need a local expansion of f w.r.t. some x̃ ∈ D. That means we suppose existence

of some function sf : D × IPD → IPIRn×n with

x̃ ∈ D, X ∈ IPD, x ∈ X ⇒ f(x) ∈ f(x̃) + sf (x̃, X) · (x− x̃). (3)

We want to stress that we do not assume x̃ ∈ X. There are many possibilities to compute

such a function sf , for example by an automized slope computation [10], [4], [5], [9], [2].

This process is very similar to automatic differentiation [7], [3]. It is performed in such a

way that (2.3) is preserved in every operation. We have no further assumptions on sf such

as continuity. The set of matrices sf (x̃, X) need not even be connected.

A slope can be computed for x̃ ∈ D and some X ⊆ D using triples (fc, fr, fs) ∈ IPIR3

satysfying

f(x̃) ∈ fc, f(X) ⊆ fr, ∀x ∈ X : f(x) ∈ f(x̃) + fs · (x− x̃). (4)

Then operations +,−, ·, /, transcendental functions and so forth are defined for those tripels.

For details see [5] and for some improvements [9]. The initialisation consists of

f(x) ≡ c = const ⇒ fc = c, fr = c, fs = 0 and

f(x) = x ⇒ fc = x̃, fr = X, fs = 1.

This definition satisfies (2.4). The interesting fact is that if f is given only up to some finite

precision like in (2.2), the process of automatic slope evaluation still applies. A set constant

C ∈ IPIR is represented by
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fc = C, fr = C and fs = 0.

As an example, we demonstrate the slope evaluation of g(x) := e−x+1+
[0,1]

12(x−1) for x̃ = 4 and

X = [2.6, 2.8]. We have

α(x) := [0, 1] ⇒ αc = [0, 1], αr = [0, 1], αs = 0

β(x) := 12 ⇒ βc = 12, βr = 12, βs = 0

γ(x) := x ⇒ γc = 4, γr = [2.6, 2.8], γs = 1

δ(x) = γ(x)-1 ⇒ δc = 3, δr = [1.6, 1.8], δs = 1

ε(x) = β(x) · δ(x) ⇒ εc = 36, εr = [19.2, 21.6], εs = 12

ζ(x) = α(x)/ε(x) ⇒ ζc = [0, 0.0278], ζr = [0, 0.0521], ζs = [-0.0174, 0]

η(x) = ζ(x)-δ(x) ⇒ ηc = [-3, -2.9722], ηr = [-1.8, -1.5479], ηs = [-1.0174, -1]

ϑ(x) = eη(x) ⇒ ϑc = [0.0498, 0.0512], ϑr = [0.1653, 0.2127], ϑs = [-0.1154, -0.0963]

using

(f · g)s = (fs · gr + fc · gs) ∩ (fr · gs + fs · gc)

(f/g)s = (fs − hc · gs) / gr ∩ (fs − hr · gs) / gc with h := f/g.

(cf. [9]). Furthermore, the improved way for calculating slopes of locally convex functions

[9] is used to calculate ϑs. Continuing in this way we obtain

Γ(x) ∈ [1.11, 2.07] for x ∈ X = [2.6, 2.8],

a valid inclusion obtained by the somethat crude expansion (2.2). As a result of this chapter

we want to stress that an inclusion function F satisfying (2.1) and an expansion function sf

satisfying (2.3) can be computed for many functions f including those which are only known

up to a finite error margin. Basically, f has to be given by a computer program (for a precise

definition using the concept of algebras cf. [5]). The method is based on an expansion of f

within X w.r.t. some x̃, where x̃ need not be an element of X.

3 Inclusion theorems

With these assumptions, an inclusion theorem can be proved along the lines of [9]. Let

continuous f : D ⊆ IRn → IRn and functions F and sf satisfying (2.1) and (2.3), respectively

be given. Furthermore, let X ⊆ D be nonempty, convex and compact, x̃ ∈ D and R ∈ IRn×n.

Recommended but not assumed are x̃ to be an approximation of a zero of f, X a small
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region including x̃, and R to be an approximate inverse of some matrix within sf (x̃, X). The

function g : D → IRn defined by

g(x) := x−R · f(x) (5)

is continuous, and for every x ∈ X (2.3) yields

g(x) ∈ x−R · { f(x̃) + sf (x̃, X) · (x− x̃) }.
That means, there exists some matrix M ∈ sf (x̃, X) with

g(x) = x−R · { f(x̃) + M · (x− x̃) } = x̃−R · f(x̃) + { I −R ·M } · (x− x̃)

∈ x̃−R · F (x̃) + { I −R · sf (x̃, X) } · (X − x̃). (6)

If the r.h.s. of (3.2) is included in X, this implies g(X) ⊆ X, and Brouwer’s Fixed Point

Theorem yields existence of some x̂ ∈ X with g(x̂) = x̂ and R · f(x̂) = 0. The same is

true when assuming an interval version of the r.h.s. of (3.2) to be included in X.

x̂ is a zero of f if R is regular. This can be verified on the computer by assuming inclusion

in the interior
◦
X of X rather than in X (cf. [8], [9]). This proves the following theorem.

Theorem 3.1. Let f : D ⊆ IRn → IRn be continuous, F and sf be given according to

(2.1) and (2.3), ∅ 6= X ⊆ D compact and convex, x̃ ∈ D and R ∈ IRn×n. If

x̃−R · F (x̃) + {I −R · sf (x̃, X) } · (X − x̃) ⊆ ◦
X,

then there exists some x̂ ∈ X with f(x̂) = 0.

As has been pointed out already in [8], it is superior to calculate an inclusion of x̂− x̃ rather

than including x̂ itself. This observation (cf. also [9] and the references cited over there for

a detailed discussion) is applied in our following example.

4 Application to nowhere differentiable functions

Weierstraß [11] defines an everywhere continuous but nowhere differentiable function from

IR to IR as follows. Let
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0 < α < 1, b ∈ IN even with α · b > 1 + 3
2
π and

wn(x) :=
n∑

ν=1

αν · sin (bν · πx). (7)
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Then

w : IR → IR with w(x) := lim
n→∞wn(x)

is well-defined, everywhere continuous but nowhere differentiable. The idea goes back to

Bolzano. For fixed k ∈ IN we have

|
∞∑

ν=k+1

αν · sin (bν · πx) | ≤
∞∑

ν=k+1

αν =
αk+1

1− α
.

Therefore, a function W : IR → IPIR satisfying (2.1) for w, W instead of f, F can be defined

by

W (x) :=
k∑

ν=1

αν · sin (bν · πx) + [−c, c] with c :=
αk+1

1− α
. (8)

A corresponding expansion sW can be computed by an automized process as described in

Chapter 2.

The definition of the function f implies some “fractalness”: arbitrary zooming at any point

always decovers new peaks of w. Therefore, one may assume that zeros of w come in clusters.

This is true, and is made precise in the following theorem.

Theorem 4.1. Let n ∈ IN and wn(x̂) = 0 for some x̂ ∈ IR. Then infinitely many zeros

x of w satisfy

|x− x̂| ≤ b−n (9)

The proof is technical and put into the Appendix. Note that every integer x is a zero of w1.

Computation of the zeros of one-dimensional functions could be performed by checking the

sign of the values at the endpoints. To make it more interesting we define

f : IR2 → IR2 by f(x, y) := (f1(x, y), f2(x, y))T with

f1(x, y) := ew(x) − w(y)− 1

f2(x, y) := w(x)2 + w(y)2 − cos (20x) · cos (20y)/
√

2.

In the following we display plots of zeros of f1 and f2 using the contour-function in MATLAB

[6]. The dashed lines are the zero lines of f1, the full lines the zero lines of f2. We start with
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the box [0, 1]× [0, 1] and zoom each plot by a factor of 10, where the range of the succeeding

plot is depicted by the small dotted box. While zooming, the contour-function displays more

and more details of the zero lines of f1 and f2.
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Table 4.2. Plots of zeros of f1 and f2.
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The following table lists inclusions of the visible zeros in the box [0.5, 0.6]× [0.2, 0.3] by our

method. We use IEEE 754 double precision equivalent to 16 to 17 decimals.

x̂1 ∈ 0.50212045007
5 ŷ1 ∈ 0.23546280359

7

x̂2 ∈ 0.514782868615
0 ŷ2 ∈ 0.235443268069

6

x̂3 ∈ 0.53502769902
0 ŷ3 ∈ 0.23503240118

6

x̂4 ∈ 0.5497771606
4 ŷ4 ∈ 0.2164438274

1

x̂5 ∈ 0.5497785
1 ŷ5 ∈ 0.2004305

294

x̂6 ∈ 0.5497788788
5 ŷ6 ∈ 0.2999843186

2

x̂7 ∈ 0.549778896586
1 ŷ7 ∈ 0.283315746188

4

x̂8 ∈ 0.5497790074
1 ŷ8 ∈ 0.2670405094

0

x̂9 ∈ 0.5497792478
5 ŷ9 ∈ 0.2497792478

5

x̂10 ∈ 0.57055538189
7 ŷ10 ∈ 0.23723258225

3

x̂11 ∈ 0.580277933
1 ŷ11 ∈ 0.2363746966

3

Table 4.3. Inclusion of visible zeros of f within [0.5, 0.6]× [0.2, 0.3]

However, there are also zeros for which the contour plot of the zero lines of f1 and f2 does

not give a hint to their existence. For example,

x̂12 ∈ 0.548750009
49998 ŷ12 ∈ 0.23438419

7

contains a zero, which is depicted by the small circle in the following contour plot over the

box [0.5, 0.6]× [0.2, 0.3].
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Table 4.4. Box [0.5, 0.6]× [0.2, 0.3] with extra zero of f .
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The zeros of the last plot in Table 4.2 can be included as well. Sample inclusions are listed

in the following table.

x̂1 ∈ 0.549779186515
09 ŷ1 ∈ 0.249772912623

17

x̂2 ∈ 0.5497791865374
2 ŷ2 ∈ 0.24977291262008

0

x̂3 ∈ 0.5497791865549
7 ŷ3 ∈ 0.2497729126201

199

x̂4 ∈ 0.54977918658088
3 ŷ4 ∈ 0.24977291262040

34

x̂5 ∈ 0.54977918659696
1 ŷ5 ∈ 0.24977291262042

36

x̂6 ∈ 0.549779186515
0 ŷ6 ∈ 0.2497729126388

39

x̂7 ∈ 0.54977918653732
27 ŷ7 ∈ 0.24977291263613

06

x̂8 ∈ 0.54977918655483
77 ŷ8 ∈ 0.24977291263616

08

x̂9 ∈ 0.54977918658088
3 ŷ9 ∈ 0.24977291263578

2

x̂10 ∈ 0.54977918659696
1 ŷ10 ∈ 0.24977291263576

0

x̂11 ∈ 0.5497791865142
099 ŷ11 ∈ 0.2497729126575

39

x̂12 ∈ 0.54977918653734
26 ŷ12 ∈ 0.2497729126556

4

x̂13 ∈ 0.54977918655483
77 ŷ13 ∈ 0.2497729126562

0

x̂14 ∈ 0.549779186580856
4 ŷ14 ∈ 0.249772912656114

2

x̂15 ∈ 0.54977918659696
1 ŷ15 ∈ 0.24977291265616

0

Table 4.5. Inclusion of zeros of f within [0.5497791866
5]× [0.2497729127

6].

The zeros of the continuous but nowhere differentiable function f in this box differ only

in the 11th place after the decimal point. Inclusions are still possible demonstrating the

capabilities of the method.

Using theoretical considerations like Theorem 4.1 computation of bounds of zeros can be

derived from bounds for zeros of the function obtained by using the finite sum (4.1) instead

of w(x). However, we wish to emphasize that the described method can be used in a fully

automized computer program using only the inclusion function W (x).

Appendix. The proof of Theorem 4.1 needs some preliminary lemmata. In addition to

(4.1) and (4.2) we set

pν(x) := αν · sin (bν · πx) such that wn(x) =
n∑

ν=1
pν(x). (1)

Note that 0 < α < 1, αb > 1 + 3
2
π and b ∈ IN even implies b ≥ 6. pn has the period

2 · b−n, that is

pn(x) = pn(x + 2 · b−n) for all n ∈ IN. (2)

Furthemore, wn(x) is differentiable, and for all x ∈ IR,

10



|w′
n(x) | = | π · n∑

ν=1
(αb)ν · cos (bν · πx) | ≤ π · (αb)n+1−1

αb−1
< 2

3
· (αb)n+1. (3)

Lemma 1. Let n ∈ IN, x̂ ∈ IR and wn(x̂) = 0. Then there are x̃1, x̃2 ∈ IR with

wn+1(x̃i) = 0, i = 1, 2 and

x̃1 ≤ x̂ < x̂2,
2
5
· b−n−1 < x̃2 − x̂ ≤ x̃2 − x̃1 < 11

5
· b−n−1 (4)

and

|x̃1 − x̂| ≤ 2
3
· b−n−1, |x̃2 − x̂| ≤ 7

5
· b−n−1 (5)

Proof. Set k := bbn+1 · x̂c ∈ IN. Without loss of generality we may assume pn+1(x̂) ≥ 0

with

k · b−n−1 ≤ x̂ ≤ (k + 1
2
) · b−n−1. (6)

That means x̂ lies in the first quarter of the period of pn+1 and 0 ≤ pn+1(x̂) ≤ αn+1.

It is

wn+1(x̂) = wn(x̂) + pn+1(x̂) = pn+1(x̂) ≥ 0, (7)

and for ε ∈ IR and suitable ζ ∈ IR holds

wn+1(x̂ + ε) = wn(x̂) + w′
n(ζ) · ε + pn+1(x̂ + ε) = w′

n(ζ) · ε + pn+1(x̂ + ε). (8)

Set y := (k − 1
6
) · b−n−1. Then (6) implies 0 ≤ x̂− y ≤ 2

3
· b−n−1, (8), (2) and (3) yield

wn+1(y) ≤ 2
3
αn+1 · 2

3
+ pn+1(y) < 4

9
· αn+1 − 1

2
· αn+1 < 0.

Hence, (7) implies existence of some x̃1 with wn+1(x̃1) = 0 and

(k − 1
6
) · b−n−1 < x̃1 ≤ x̂. (9)

Together with (6) this yields the first part of (5). For ε := 2
5
· b−n−1, (8), (6) and (3) imply

wn+1(x̂ + ε) ≥ −2
3
· αn+1 · 2

5
+ pn+1(x̂ + ε)

> − 4
15
· αn+1 + min { sin(πx) | 2

5
≤ x ≤ 2

5
+ 1

2
} · αn+1 (10)

> − 4
15
· αn+1 + 3

10
· αn+1 > 0.

Furthemore, for y := (k + 7
5
) · b−n−1, (6) gives 0 ≤ y − x̂ ≤ 7

5
· b−n−1, and (8), (2) and (3)

imply

wn+1(y) ≤ 2
3
· αn+1 · 7

5
+ sin(7

5
π) · αn+1 < 0.

Now, (10) implies existence of x̃2 with wn+1(x̃2) = 0 and

x̂ + 2
5
· b−n−1 < x̃2 ≤ x̂ + 7

5
· b−n−1.

Together with (9) and (6) this proves lemma.
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Lemma 2. Let n ∈ IN, x̂ ∈ IR and wn(x̂) = 0. Then there is some z ∈ IR with

f(z) = 0 and |z − x̂| ≤ 7
8
· b−n−1. (11)

Proof. According to (5) in Lemma 1 and b ≥ 6, there is a sequence xν |ν≥0 with x0 := x̂ and

|x̂− xν | ≤ 7
10
· b−n−1 · ∞∑

i=0
b−i < 7

8
· b−n−1.

(xν) is bounded, and there is a convergent subsequence xνk
→ z with |z − x̂| ≤ 7

8
· b−n−1.

Definition (1) implies for all x ∈ IR

|wµ(x)− w(x) | = | ∞∑
ν=µ+1

pν(x) | ≤ αµ+1 · ∞∑
ν=0

α−ν = αµ+1

1−α
.

That means

∀ε > 0 ∃k0 ∈ IN ∀k ≥ k0 : |xνk
− z| < ε and |w(xνk

)| < ε.

The continuity of f implies f(z) = 0. The lemma is proved.

Lemma 3. Let n ∈ IN, x̂ ∈ IR and wn(x̂) = 0 and some 1 ≤ k ∈ IN be given. Then there

are strictly increasing xi ∈ IR, 0 ≤ i ≤ k with

wn+k(xi) = 0 and |xi − x̂| ≤ 2 · b−n−1 for 0 ≤ i ≤ k, and (12)

2
5
· b−n−k < xi+1 − xi for 0 ≤ i ≤ k − 1. (13)

Proof. We prove by induction for 1 ≤ k ∈ IN,

|xi − x̂| ≤ 7
5
· b−n−1 · k−1∑

ν=0
b−ν . (14)

Lemma 1 implies that (13) and (14) are true for k = 1. Suppose (13) and (14) are satisfied

for k ∈ IN. By Lemma 1, for every xi, 0 ≤ i ≤ k there exist xi, xi with wn+k+1(xi) =

wn+k+1(xi) = 0 and

xi ≤ xi < xi and 2
5
· b−n−1−k < xi − xi < 11

5
· b−n−1−k. (15)

We will show that the numbers x0, x0, x1, · · · , xk satisfy our assertions (12), (13) and (14).

(15) and b ≥ 6 imply for 0 ≤ i ≤ k,

xi+1 − xi = xi+1 − xi+1 + xi+1 − xi − (xi − xi)

≥ 2
5
· b−n−1−k + 2

5
· b−n−k − 11

5
· b−n−k−1

> (2
5

+ 12
5
− 11

5
) · b−n−k−1

> 2
5
· b−n−k−1.

Together with (15) this demonstrates (13). With (14) we obtain

|xk − x̂| ≤ |xk − x̂|+ |xk − xk| ≤ 7
5
· b−n−1 · k−1∑

ν=0
b−ν + 7

5
· b−n−1−k.

This verifies (14), and using b ≥ 6 and
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∞∑
ν=0

bν = 6
5

proves the lemma.

Proof of Theorem 4.1. Let 2 ≤ k ∈ IN be given. According to Lemma 3, there are strictly

increasing xi ∈ IR, 0 ≤ i ≤ k with

wn+k(xi) = 0, |xi − x̂| ≤ 2 · b−n−1 and xi+1 − xi > 2
5
· b−n−k. (16)

According to Lemma 2, there exist zi ∈ IR, 0 ≤ i ≤ k with

w(zi) = 0 and |zi − xi| ≤ 7
8
· b−n−k−1. (17)

Using b ≥ 6 together with (16) and (17) yields for 1 ≤ i ≤ k − 1,

|zi+1 − zi−1| ≥ |xi+1 − xi−1| − |xi+1 − zi+1| − |zi−1 − xi−1|
≥ 2 · 2

5
· b−n−k − 2 · 7

8
· b−n−k−1

> 2 · b−n−k · (2
5
− 7

8
· 1

6
) > 0. (18)

Moreover,

|zi − x̂| ≤ |zi − xi|+ |xi − x̂| ≤ 7
8
· b−n−k−1 + 2 · b−n−1 < b−n. (19)

In other words, there are bk/2c zeros of w(x), which are distinct by (18), satisfying (4.3).
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