
Almost sharp bounds on the componentwise distance to

the nearest singular matrix∗

S. M. Rump, Hamburg

Abstract

The normwise distance of a regular matrix A ∈ Mn(IR) to the nearest singular
matrix is well known to be ‖A−1‖−1. Such a normwise distance neglects small entries
in the matrix, and it does not allow for weights in a perturbation. The reciprocal
‖ |A−1| · E‖−1 of the Bauer-Skeel condition number is known to be a lower bound
for the componentwise distance of A to the nearest singular matrix weighted by the
nonnegative matrix E. In this paper we derive an upper bound for this componentwise
distance involving the Bauer-Skeel condition number. We show that this upper bound
is sharp up to a constant factor less than 3 + 2

√
2, independent of A and E. For finite

values of n, improved constants are given as well.

0 Introduction

It is well-known that the normwise distance of a regular matrix A ∈ Mn(IR) to the nearest

singular matrix is equal to ‖A−1‖−1. Such a normwise distance neglects small entries in the

matrix, and it neglects possible weights for a perturbation. For example, for the matrix (cf.

[3]) A =


3 2 1

2 2ε 2ε

1 2ε −ε

 there exists a matrix ∆ with ‖∆‖2 = 2 · ε and A+ ∆ singular. On

the other hand, any relative perturbation less than 0.37 of the individual components of the

matrix A cannot produce a singular matrix. This leads to the definition of the componentwise

distance σ(A,E) to the nearest singular matrix weighted by some nonnegative E ∈Mn(IR):

σ(A,E) := min {α ∈ IR | |A′
ij − Aij| ≤ α · Eij for some singular A′}. (1)
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If no such α exists, we define σ(A,E) := ∞.

Poljak and Rohn (cf. [7]) showed that the computation of the componentwise distance to

the nearest singular matrix σ(A,E) is NP -hard.

A condition number taking weights Eij into account is the Bauer-Skeel condition number

condBS(A,E) := ‖ |A−1| ·E‖. In our example, condBS(A, |A|) = 2 for the 2-norm. Improper

scaling of the matrix may lead to a large value of the Bauer-Skeel condition number. It

has been shown by Demmel [1] that the minimum Bauer-Skeel condition number achievable

by diagonal scaling can be explicitly calculated for p-norms, namely (ρ denotes the spectral

radius)

min
D1,D2

condBS(D1AD2, D1ED2) = ρ( |A−1| · E). (2)

D1, D2 are regular diagonal matrices. D1 can be omitted because the Bauer-Skeel condition

number is invariant under row scaling. On the other hand, the inverse of this number is a

well-known and easy-to-prove lower bound for the componentwise distance to the nearest

singular matrix weighted by E:

1

ρ( |A−1| · E)
≤ σ(A,E).

One may ask, whether - like for normwise distances - a large (minimum) Bauer-Skeel condi-

tion number implies that not too far away in a componentwise sense there exists a singular

matrix. More precisely, one may ask whether there are finite constants γ(n) ∈ IR such that

for any regular A ∈Mn(IR) and nonnegative E ∈Mn(IR) there holds

1

ρ( |A−1| · E)
≤ σ(A,E) ≤ γ(n)

ρ( |A−1| · E)
. (3)

For E = |A| this has been conjectured by N.J. Higham and J. Demmel [1], see also [4]. For

general E it is proved in [8] that γ(n) ≤ 2.321 · n1.7 with an asymptotic upper bound n1+ln2.

Moreover, it has been shown over there that validity of (3) implies γ(n) ≥ n. In the present

note we use results obtained in [9] to prove the following bound for γ(n), which is sharp up

to a small constant factor:

n ≤ γ(n) ≤ (3 + 2
√

2) · n. (4)

For smaller values of n better bounds will be given.
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1 Notation and basic results

We use standard notation from matrix theory, cf. [5], [6]. In particular, Qkn denotes the

set of k-tuples of strictly increasing integers out of {1, . . . , n}. For ω ∈ Qkn, A[ω] ∈ Mk(IR)

denotes the principal submatrix of A consisting of rows and columns in ω. We denote the

identity matrix of proper dimension by I, and by (1) ∈ IRn the vector with all components

equal to 1.

Definition 1.1. A set ω = {ω1, . . . , ωk} of mutually different integers ωi out of {1, . . . , n}
defines a cycle

Aω := {Aω1ω2 , . . . , Aωk−1ωk
, Aωkω1}.

The length k of a cycle is denoted by |ω| := k. Any cycle defines a cyclic product

∏
Aω :=

|ω|∏
i=1

Aωiωi+1
with ω|ω|+1 := ω1.

Note that any diagonal element forms a cycle of length 1. Diagonal similarity transformations

do not change the value of any cyclic product. It is well-known that for any nonzero cyclic

product there exists a diagonal matrix D such that all elements in (D−1AD)ω are equal in

absolute value (see for example [8]), namely equal to the geometric mean |∏ Aω|1/|ω| of the

elements of |Aω|:

∏
Aω 6= 0 ⇒ ∃ diagonal D : |D−1AD|ωiωi+1

= |
∏

Aω|1/|ω| for 1 ≤ i ≤ |ω|. (5)

Throughout the paper, we use comparison and absolute value of vectors and matrices en-

trywise (for a cycle ω, |ω| denotes the length). For example, E ≥ 0 for E ∈ Mn(IR) means

Eij ≥ 0 for all i, j, and a short notation for (1) is

σ(A,E) := min {α ∈ IR| |A′ − A| ≤ α · E for some singular A′ }.

The set of signature matrices S consists of diagonal matrices S with diagonal entries in

{−1,+1}, i.e. S ∈ S ⇔ |S| = I. The real spectral radius ρ0(A) of A ∈Mn(IR) is defined by

ρ0(A) = max { |λ| | λ real eigenvalue of A }. (6)

If A has no real eigenvalues, we define ρ0(A) := 0.
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For singular A ∈ Mn(IR), we have σ(A,E) = 0 for any 0 ≤ E ∈ Mn(IR). Assume that A is

regular. Then for Ẽ ∈Mn(IR), |Ẽ| ≤ E there holds

A− Ẽ = A · (I − A−1Ẽ),

which means that singularity of A − Ẽ is equivalent to the fact that A−1Ẽ has the real

eigenvalue 1. This implies

σ(A,E) =

{
max
|Ẽ|≤E

ρ0(A
−1Ẽ)

}−1

. (7)

In [9], the sign-real spectral radius ρS0 (A) has been defined and investigated:

ρS0 (A) := max
S∈S

ρ0(S · A).

Many interesting properties and Perron-Frobenius like theorems have been proved over there,

among them

ρS0 (A) depends continuously on the entries of A, (8)

ρS0 (A) = ρS0 (D−1AD) = ρS0 (S1AS2) for regular diagonal D and S1, S2 ∈ S , (9)

ρS0 (A) ≥ max
i

|Aii|, and ρS0 (A) ≥ ρS0 (A[ω]) for ω ∈ Qkn, (10)

ρS0 (A) = max
x∈IRn

min
xi 6=0

∣∣∣∣∣ (Ax)i
xi

∣∣∣∣∣ , (11)

σ(A,E) =

ρS0
 0 E

A−1 0

−2

. (12)

By (12) it follows that computation of the sign-real spectral radius ρS0 is also NP -hard. We

will use the sign-real spectral radius to prove (4).

Combining (7) and (11) yields

σ(A,E) =
1

max
|Ẽ|≤E

ρ0(A−1Ẽ)
=

1

max
|Ẽ|≤E

ρS0 (A−1Ẽ)
=

1

max
|Ẽ|≤E

max
x∈IRn

min
xi 6=0

∣∣∣∣∣(A−1Ẽ · x)i
xi

∣∣∣∣∣
. (13)

Henceforth, any Ẽ with |Ẽ| ≤ E and any 0 6= x ∈ IRn yield an upper bound for σ(A,E).

We will construct a proper matrix Ẽ ∈Mn(IR) with |Ẽ| ≤ E, and choose some appropriate

x ∈ IRn in order to obtain a suitable upper bound of σ(A,E). This is the key to our proof

of the announced new and almost sharp bound (4) on γ(n).
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2 Main results

The first step in finding an upper bound on σ(A,E) using (13) is the following lower bound

on ρS0 (A). It is expressed by the geometric mean of the elements of a cycle of A.

Lemma 2.1. For A ∈Mn(IR) and any cycle ω there holds

ρS0 (A) ≥ |
∏
Aω|1/|ω| · (3 + 2

√
2)−1.

Proof by induction. For |ω| = 1 the lemma follows by (10). Assume |ω| > 1 and
∏
Aω 6= 0.

Suitable renumbering puts ω into (1, . . . , |ω|), and the inheritance property (10) of ρS0 (A)

allows us to assume w.l.o.g. ω = (1, . . . , n). By (9), the sign-real spectral radius is invariant

under diagonal similarity transformations, and by (5) we may assume all elements in Aω to

be equal in absolute value. Proper scaling and observing ρS0 (cA) = |c| ·ρS0 (A) = |c| ·ρS0 (S ·A)

for any S ∈ S, c ∈ IR shows that we may assume w.l.o.g.

ω = (1, . . . , n), and all elements in Aω are equal to 1 .

Moreover, in view of the assertion, we may suppose ΠAω to be a cyclic product of maximum

absolute value. This implies |Aij| ≤ 1 for all i, j, because any Aij forms a cycle together with

suitable elements in the full cycle Aω. Summarizing, we have shown that we may assume

w.l.o.g.

ω = {1, . . . , n} ,
A12 = A23 = . . . = An−1,n = An1 = 1, and |Aij| ≤ 1 for 1 ≤ i, j ≤ n .

(14)

We split A into

A =


0

∗
0 · · · 0 0

 +


0 1

. . . . . . 0

0 0 1

1 0

 +


0 0 ∗

. . . . . .

0 0 0

0 ∗ · · · ∗


(15)

= L + P + U .

l
l

l
l

ll

l
l

l
l

l
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More precisely,

Lij :=

 Aij for i ≥ j and i 6= n

0 otherwise
,

P is the cyclic shift with p = 1 for p ∈ Pω, and U := A−L−P . Next, we show that for any

nonnegative vector x ∈ IRn there are signature matrices S, T ∈ S with

(S · L · T ) · x ≥ 0 and (S · P · T ) · x ≥ 0 . (16)

For this purpose, we first construct T recursively such that for 1 ≤ i ≤ n− 1

(L · T · x)i · (P · T · x)i ≥ 0 . (17)

This is achieved by the following algorithm:

T := I;

for i := 1 to n− 1 do

if (L · T · x)i < 0 then

for ν := 1 to i do Tνν := −Tνν ;

Note that (P · T · x)i = Ti+1,i+1 · xi+1, and that the case i = n is excluded in (17). In

the for-loop, for the current value of i it is (PTx)i ≥ 0 by definition, and execution of

the if-statement assures (17) for the current value of i. But (17) remains also valid for the

previous indices because all signs of the Tνν , 1 ≤ ν ≤ i are inverted. Hence (17) is valid for

1 ≤ i ≤ n− 1.

Next, we define S ∈ S by Sii := sign( (P · T )i,i+1) = Ti+1,i+1 for 1 ≤ i ≤ n − 1, and we set

Snn := 1. This yields the right inequality in (16), and with (17) also the left inequality of

(16).

Now we define

q := 1−
√

2/2 and x := (q, q2, . . . , qn)T ∈ IRn. (18)

By (9), the sign-real spectral radius of A is invariant under multiplication of A by signature

matrices from left or right. Using this together with (11) and the q and x as defined in (18)

yields

ρS0 (A) = ρS0 (S AT ) ≥ min
i

∣∣∣∣∣(S AT x)ixi

∣∣∣∣∣ = min
i

q−i · |S · (L+ P + U) · T · x|i .
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From (14) we know |S · U · T |ij ≤ 1. Moreover, (S P T )x ≥ 0 from (16), and x > 0 implies

S P T x = Px. Hence, in view of (16), there holds for 1 ≤ i ≤ n− 1

∣∣∣∣∣(S AT x)ixi

∣∣∣∣∣ = q−i · [|S · (L+ P + U) · T · x|]i

≥ q−i · [ (S · L · T + S · P · T − |U |) · x ]i

≥ q−i · [ (P − |U |) · x]i

≥ q−i · (qi+1 −
n∑

ν=i+2
qν) ≥ q · (2− 1

1− q
) = (3 + 2 ·

√
2)−1,

and similarly for i = n,

∣∣∣∣∣(S AT x)nxn

∣∣∣∣∣ = q−n · [|S · (L+ P + U) · T · x|]n ≥ q−n · (q −
n∑
ν=2

qν)

≥ q1−n · (2− 1

1− q
) > (3 + 2 ·

√
2)−1.

The max min characterization (11) of ρS0 (A) proves the lemma.

For small values of |ω| the bound in Lemma 2.1 can be improved. For example, for |ω| = 1

or |ω| = 2 the constant (3 + 2
√

2)−1 in Lemma 2.1 can be replaced by 1, i.e.

ρS0 (A) ≥ |
∏

Aω|1/|ω| for |ω| = 1 or |ω| = 2,

(cf. (10) and [8], Theorem 6.5). This is no longer true for |ω| ≥ 3, as is seen by

A =


−0.3 1 −0.8

−0.8 −0.3 1

1 −0.8 −0.3

 with ρS0 (A) < 0.95.

However, we can improve the constant (3 + 2
√

2) in Lemma 2.1 in the following way. We

proceed by induction over n and assume

ρS0 (A) ≥ |
∏
Aα|1/|α| · ψ−1

|α| for all |α| < n, (19)

where ψ1 = ψ2 = 1. We will construct a ψn satisfying (19) in several steps. First, we show

that w.l.o.g. we may assume |A| to be bounded by a circulant, second, the problem is reduced
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to an eigenvalue problem and finally, we show that ψn is the unique positive value solving

this eigenvalue problem. A posteriori, this is the definition of ψn satisfying (19).

Using the same arguments as in the proof of Lemma 2.1 together with proper scaling we

may assume w.l.o.g.

ω = {1, . . . , n}, A12 = A13 = . . . = An−1,n = An1 = 1. (20)

Hence, we want to find ψn such that ρS0 (A) ≥ ψ−1
n for a matrix satisfying (20).

Suppose |∏Aα|1/|α| ≥ ψ|α| · ψ−1
n for some cycle α with 1 ≤ |α| ≤ n − 1. Then (19) implies

ρS0 (A) ≥ |∏ Aα|1/|α| · ψ−1
|α| ≥ ψ|α| · ψ−1

n · ψ−1
|α| = ψ−1

n . Therefore, we may assume w.l.o.g.

|∏ Aα|1/|α| < ψ|α| · ψ−1
n for all cycles α with 1 ≤ |α| ≤ n− 1.

For α = {k}, 1 ≤ k ≤ n this means |∏ Aα|1/|α| = |Akk| < ψ−1
n . For α = {1, 2} this implies

|
∏

Aα|1/|α| = |A12A21|1/2 = |A21|1/2 < ψ2/ψn, and therefore |A21| < (ψ2/ψn)
2.

Setting α = {2, 3}, . . . , {n, 1} this implies |A32| < (ψ2/ψn)
2, . . . , |A1n| ≤ (ψ2/ψn)

2. For

α = {1, 2, 3} we have

|
∏

Aα|1/|α| = |A12A23A31|1/3 = |A31|1/3 < ψ3/ψn, and therefore |A31| < (ψ3/ψn)
3.

Proceeding in this way for α = {2, 3, 4}, . . . and so forth, we may assume w.l.o.g. that |A| is

bounded by the following circulant

|A| ≤



c1 1 cn−1 . . . c3 c2

c2 c1 1 cn−1 . . . c3
. . . . . . . . . . . .

c1 1

1 cn−1 . . . c2 c1


=: C with ci := (ψi/ψn)

i .

Outside the cycle ω = {1, . . . , n} we may even assume strong inequality. Note that ψi,

1 ≤ i ≤ n − 1 is already known by induction hypothesis, but ψn is not. That means, the

upper bound of |A| depends on ψn, the quantity we are looking for, and we wish to prove

ρS0 (A) ≥ ψ−1
n . Let C = L̃+P+Ũ be a splitting like in (15). Then Ũ depends on ψn. Suppose,

P − Ũ has a positive eigenvector x with positive eigenvalue ψ−1
n , i.e. (P − Ũ)x = ψ−1

n ·x > 0.

Then we may proceed as in the proof of Lemma 2.1, split A = L + P + U as in (15), and

assume w.l.o.g. L · x ≥ 0 and P · x ≥ 0. It is |U | ≤ Ũ , and for 1 ≤ i ≤ n,

∣∣∣∣∣(Ax)ixi

∣∣∣∣∣ ≥ x−1
i · [ (L+ P − |U |) · x]i ≥ x−1

i · [ (P − Ũ) · x]i = ψ−1
n ,
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and the max min characterization (11) yields ρS0 (A) ≥ ψ−1
n .

The problem remains to find ψn such that ψ−1
n is a positive eigenvalue to a positive eigenvector

of P − Ũ as defined above. For n = 3 this means


0 1 −(ψ2/ψ3)

2

0 0 1

1 −(ψ2/ψ3)
2 −ψ1/ψ3

 · x = ψ−1
3 · x.

Following an idea by Ludwig Elsner [2] one can prove that the ψn exist and are uniquely

defined. Set Ũψn = Ũ to indicate the dependency of Ũ on ψn. Then P − Ũψn = P · (I −P T ·
Uψn) = P ·M(ψn) with

M(ψn) :=



1 −cn−1 −cn−2 · · · −c1
1 −cn−1 · · · −c2

. . .
. . .

1


, ci := (ψi/ψn)

i . (21)

For any ψn > 0, M(ψn)
−1 exists and is nonnegative upper triangular. Therefore, (P −

Ũψn)−1 = M(ψn)
−1 ·P T is nonnegative irreducible, and it has a uniquely determined positive

eigenvalue ρ
(

(P − Ũψn)−1
)

with positive eigenvector. Furthermore, the Neumann series

for (I − P T · Uψn)−1 shows that the Perron root of (P − Ũψn)−1 is strictly decreasing with

increasing ψn. Henceforth, there must be a unique value for ψn such that ρ
(

(P − Ũψn)−1
)

=

ρ(M(ψn)
−1 ·P T ) = ψn, and ψ−1

n is a positive eigenvalue of P − Ũψn to a positive eigenvector.

When calculating the ψn by using (P − Ũ)−1 explicitly or implicitly, the numerical compu-

tation becomes instable. We used instead the Neumann series for (P − Ũ)−1 and obtained

the following results for 1 ≤ n ≤ 36.

ψ1 = 1.0000 ψ10 = 3.3745 ψ19 = 4.2618 ψ28 = 4.6803

ψ2 = 1.0000 ψ11 = 3.5187 ψ20 = 4.3227 ψ29 = 4.7134

ψ3 = 1.5874 ψ12 = 3.6472 ψ21 = 4.3790 ψ30 = 4.7447

ψ4 = 1.9656 ψ13 = 3.7625 ψ22 = 4.4313 ψ31 = 4.7743

ψ5 = 2.2920 ψ14 = 3.8664 ψ23 = 4.4800 ψ32 = 4.8023

ψ6 = 2.5731 ψ15 = 3.9605 ψ24 = 4.5254 ψ33 = 4.8289

ψ7 = 2.8161 ψ16 = 4.0460 ψ25 = 4.5679 ψ34 = 4.8541

ψ8 = 3.0272 ψ17 = 4.1242 ψ26 = 4.6077 ψ35 = 4.8781

ψ9 = 3.2119 ψ18 = 4.1959 ψ27 = 4.6451 ψ36 = 4.9010

Table 2.2 Values for ψn
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A graph for larger values of ψn looks as follows.

Graph 2.3. Graph of ψn

We do not know whether the bound in Lemma 2.1 can be achieved asymptotically. The

proof of Lemma 2.1 can be regarded as finding the positive eigenvalue λ of (P − Ũ)−1 with

P T Ũ being strictly upper triangular with all components equal to 1 above the diagonal.

This implies ψn < (3 + 2
√

2) for all n. It has been shown by L. Elsner and S. Friedland [2]

that λ converges to (3 + 2
√

2)−1 for n→∞. Graph 2.3 shows that for larger n the values of

ψn are not too far from (3 + 2
√

2). In fact, for n = 500 the difference is less than 0.08. We

do not know the limit of the ψn for n→∞.

Summarizing, we have the following result.

Theorem 2.4. For A ∈Mn(IR) and any cycle ω there holds

ρS0 (A) ≥ |
∏
Aω|1/|ω| · ψ−1

|ω| ≥ |
∏

Aω|1/|ω| · (3 + 2
√

2)−1,

where ψ1 := ψ2 := 1, and ψk, k > 2 is defined recursively to be the unique positive number

such that ψk is the Perron root of M(ψk)
−1 · P T , where M(ψk) is defined in (21).

Some values of ψn are listed in Table 2.2 and shown in Graph 2.3. Theorem 2.4 may

be useful for practical applications because it frequently gives a reasonable and simple to

compute lower bound on ρS0 (A). For short cycles, the constant ψ|ω| is especially favourable.
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We need the following technical lemma to prove our main result.

Lemma 2.5. Let regular A ∈Mn(IR) and 0 ≤ E ∈Mn(IR) be given, and suppose |A−1| ·E
is row stochastic. Then

σ(A,E) ≤ n · ψn,

where ψn is defined as in Theorem 2.4.

Proof. We will construct a matrix Ẽ ∈ Mn(IR), |Ẽ| ≤ E with ρS0 (A−1Ẽ) ≥ {n · ψn}−1.

Define C := |A−1| · E and let Ci,mi
be maximum row elements, i.e.

Ci,mi
= max

ν
Ciν .

C is row stochastic, and therefore Ci,mi
≥ n−1 for 1 ≤ i ≤ n. Within the elements {Ci,mi

|
1 ≤ i ≤ n } there must be a cycle of length k, 1 ≤ k ≤ n, and suitable renumbering puts

this cycle into {1, . . . , k}. Hence, we may assume w.l.o.g.

c ≥ n−1 for all c ∈ Cω and ω = {1, . . . , k}, 1 ≤ k ≤ n.

Define Ẽ ∈Mn(IR) by

Ẽij :=


sign( (A−1)j−1,i) · Eij for 1 ≤ i ≤ n, 2 ≤ j ≤ k

sign( (A−1)ki) · Eij for 1 ≤ i ≤ n, j = 1

0 otherwise.

Then |Ẽ| ≤ E, and for C̃ := A−1Ẽ there holds

C̃i,i+1 =
n∑
ν=1

(A−1)iν · sign( (A−1)iν) · Eν,i+1 = Ci,i+1 ≥ n−1,

and similarly C̃k1 = Ck1 ≥ n−1. Hence, |∏ C̃ω|1/|ω| ≥ n−1, and (13) and Theorem 2.4 yield

σ(A,E) ≤ ρS0 (A−1Ẽ)−1 ≤ n · ψk ≤ n · ψn.

With these preliminaries we can prove the following result: if the minimum Bauer-Skeel

condition number achievable by column scaling is still large, then a singular matrix cannot
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be too far away in the componentwise sense. We quantify this statement in our main result.

Proposition 2.6. There are constants γ(n) ∈ IR such that for all A,E ∈Mn(IR), A regular

and E ≥ 0, there holds

1

ρ(|A−1| · E)
≤ σ(A,E) ≤ γ(n)

ρ(|A−1| · E)
. (22)

These constants γ(n) satisfy

n ≤ γ(n) ≤ (3 + 2 ·
√

2) · n. (23)

The left inequality in (23) is sharp. Furthermore, for the constants ψn being defined in

Theorem 2.4 there holds

n ≤ γ(n) ≤ ψn · n . (24)

Proof. By [8], Lemma 6.1 and (8) we know that σ(A,E) and ρS0 (A) depend continuously

on the entries of A,E. Hence, we may assume w.l.o.g. E > 0 and therefore |A−1| · E > 0.

Let x > 0 be the right Perron vector of |A−1| · E. For a regular and nonnegative diagonal

matrix D ∈ Mn(IR) there holds (cf. [1]) σ(A,E) = σ(AD,ED), and ρ(|(AD)−1| · ED) =

ρ(|A−1| · E) =: ρ. Defining diagonal D ∈ Mn(IR) by Dii := x−1
i shows that we may assume

w.l.o.g.

{|A−1| · E} · (1) = ρ · (1).

Furthermore, |A−1| · E > 0 implies ρ > 0 and therefore ρ−1 · |A−1| · E is row stochastic.

Applying Lemma 2.5 yields

σ(A,E) · ρ(|A−1| · E) ≤ n · ψn,

and therefore the right inequalities of (23) and (24). The left inequality is contained in [8],

Lemma 5.7 together with the fact that it is sharp. The proposition is proved.

We mention that in many applications the product σ(A,E) · ρ(|A−1| · E) is, for the specific

data, not too far from 1. For classes of matrices like M-matrices it is in fact equal to 1

12



([8], (5.5)). From the proof of Lemma 2.5, from Theorem 2.4 and Proposition 2.6 we also

conclude the following corollary.

Corollary 2.7. Let A,E ∈ Mn(IR), A regular and E ≥ 0, be given. Then for any cycle ω

and the constants ψ|ω| as defined in Theorem 2.4,

1

ρ(|A−1| · E)
≤ σ(A,E) ≤

ψ|ω|∏
(|A−1| · E)

1/|ω|
ω

, (25)

where the r.h.s. of (25) becomes at least as small as n · ψn/ρ(|A−1| · E) ≤ (3 + 2
√

2) ·
n/ρ(|A−1| · E) for some ω.

For given data, (25) frequently yields reasonable bounds. Proposition 2.6 shows the asymp-

totically linear behaviour of

γ(n) := sup{σ(A,E) · ρ(|A−1| · E) | A,E ∈Mn(IR), A regular, E ≥ 0}. (26)

From (23) we know n ≤ γ(n) ≤ (3 + 2 ·
√

2) · n, where the lower bound is sharp. We repeat

our conjecture as has been stated in [8].

Conjecture 2.8. For γ(n) as defined in (26), there holds γ(n) = n.
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