Almost sharp bounds on the componentwise distance to the nearest singular matrix*

S. M. Rump, Hamburg

Abstract

The normwise distance of a regular matrix $A \in M_{n}(\mathbb{R})$ to the nearest singular matrix is well known to be $\left\|A^{-1}\right\|^{-1}$. Such a normwise distance neglects small entries in the matrix, and it does not allow for weights in a perturbation. The reciprocal $\left\|\left|A^{-1}\right| \cdot E\right\|^{-1}$ of the Bauer-Skeel condition number is known to be a lower bound for the componentwise distance of A to the nearest singular matrix weighted by the nonnegative matrix E. In this paper we derive an upper bound for this componentwise distance involving the Bauer-Skeel condition number. We show that this upper bound is sharp up to a constant factor less than $3+2 \sqrt{2}$, independent of A and E. For finite values of n, improved constants are given as well.

0 Introduction

It is well-known that the normwise distance of a regular matrix $A \in M_{n}(\mathbb{R})$ to the nearest singular matrix is equal to $\left\|A^{-1}\right\|^{-1}$. Such a normwise distance neglects small entries in the matrix, and it neglects possible weights for a perturbation. For example, for the matrix (cf.
[3]) $A=\left(\begin{array}{ccc}3 & 2 & 1 \\ 2 & 2 \varepsilon & 2 \varepsilon \\ 1 & 2 \varepsilon & -\varepsilon\end{array}\right)$ there exists a matrix Δ with $\|\Delta\|_{2}=2 \cdot \varepsilon$ and $A+\Delta$ singular. On the other hand, any relative perturbation less than 0.37 of the individual components of the matrix A cannot produce a singular matrix. This leads to the definition of the componentwise distance $\sigma(A, E)$ to the nearest singular matrix weighted by some nonnegative $E \in M_{n}(\mathbb{R})$:

$$
\begin{equation*}
\sigma(A, E):=\min \left\{\alpha \in \mathbb{R}| | A_{i j}^{\prime}-A_{i j} \mid \leq \alpha \cdot E_{i j} \text { for some singular } A^{\prime}\right\} . \tag{1}
\end{equation*}
$$

*Linear and Multilinear Algebra (LAMA), 42:93-107, 1997

If no such α exists, we define $\sigma(A, E):=\infty$.
Poljak and Rohn (cf. [7]) showed that the computation of the componentwise distance to the nearest singular matrix $\sigma(A, E)$ is $N P$-hard.

A condition number taking weights $E_{i j}$ into account is the Bauer-Skeel condition number $\operatorname{cond}_{B S}(A, E):=\left\|\left|A^{-1}\right| \cdot E\right\|$. In our example, $\operatorname{cond}_{B S}(A,|A|)=2$ for the 2-norm. Improper scaling of the matrix may lead to a large value of the Bauer-Skeel condition number. It has been shown by Demmel [1] that the minimum Bauer-Skeel condition number achievable by diagonal scaling can be explicitly calculated for p-norms, namely (ρ denotes the spectral radius)

$$
\begin{equation*}
\min _{D_{1}, D_{2}} \operatorname{cond}_{B S}\left(D_{1} A D_{2}, D_{1} E D_{2}\right)=\rho\left(\left|A^{-1}\right| \cdot E\right) . \tag{2}
\end{equation*}
$$

D_{1}, D_{2} are regular diagonal matrices. D_{1} can be omitted because the Bauer-Skeel condition number is invariant under row scaling. On the other hand, the inverse of this number is a well-known and easy-to-prove lower bound for the componentwise distance to the nearest singular matrix weighted by E :

$$
\frac{1}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \leq \sigma(A, E)
$$

One may ask, whether - like for normwise distances - a large (minimum) Bauer-Skeel condition number implies that not too far away in a componentwise sense there exists a singular matrix. More precisely, one may ask whether there are finite constants $\gamma(n) \in \mathbb{R}$ such that for any regular $A \in M_{n}(\mathbb{R})$ and nonnegative $E \in M_{n}(\mathbb{R})$ there holds

$$
\begin{equation*}
\frac{1}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \leq \sigma(A, E) \leq \frac{\gamma(n)}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \tag{3}
\end{equation*}
$$

For $E=|A|$ this has been conjectured by N.J. Higham and J. Demmel [1], see also [4]. For general E it is proved in $[8]$ that $\gamma(n) \leq 2.321 \cdot n^{1.7}$ with an asymptotic upper bound $n^{1+\ln 2}$. Moreover, it has been shown over there that validity of (3) implies $\gamma(n) \geq n$. In the present note we use results obtained in [9] to prove the following bound for $\gamma(n)$, which is sharp up to a small constant factor:

$$
\begin{equation*}
n \leq \gamma(n) \leq(3+2 \sqrt{2}) \cdot n \tag{4}
\end{equation*}
$$

For smaller values of n better bounds will be given.

1 Notation and basic results

We use standard notation from matrix theory, cf. [5], [6]. In particular, $Q_{k n}$ denotes the set of k-tuples of strictly increasing integers out of $\{1, \ldots, n\}$. For $\omega \in Q_{k n}, A[\omega] \in M_{k}(\mathbb{R})$ denotes the principal submatrix of A consisting of rows and columns in ω. We denote the identity matrix of proper dimension by I, and by $(\mathbf{1}) \in \mathbb{R}^{n}$ the vector with all components equal to 1 .

Definition 1.1. A set $\omega=\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ of mutually different integers ω_{i} out of $\{1, \ldots, n\}$ defines a cycle

$$
A_{\omega}:=\left\{A_{\omega_{1} \omega_{2}}, \ldots, A_{\omega_{k-1} \omega_{k}}, A_{\omega_{k} \omega_{1}}\right\} .
$$

The length k of a cycle is denoted by $|\omega|:=k$. Any cycle defines a cyclic product

$$
\prod A_{\omega}:=\prod_{i=1}^{|\omega|} A_{\omega_{i} \omega_{i+1}} \text { with } \omega_{|\omega|+1}:=\omega_{1} .
$$

Note that any diagonal element forms a cycle of length 1. Diagonal similarity transformations do not change the value of any cyclic product. It is well-known that for any nonzero cyclic product there exists a diagonal matrix D such that all elements in $\left(D^{-1} A D\right)_{\omega}$ are equal in absolute value (see for example [8]), namely equal to the geometric mean $\left|\Pi A_{\omega}\right|^{1 /|\omega|}$ of the elements of $\left|A_{\omega}\right|$:

$$
\begin{equation*}
\prod A_{\omega} \neq 0 \Rightarrow \exists \text { diagonal } D:\left|D^{-1} A D\right|_{\omega_{i} \omega_{i+1}}=\left|\prod A_{\omega}\right|^{1 /|\omega|} \text { for } 1 \leq i \leq|\omega| \tag{5}
\end{equation*}
$$

Throughout the paper, we use comparison and absolute value of vectors and matrices entrywise (for a cycle $\omega,|\omega|$ denotes the length). For example, $E \geq 0$ for $E \in M_{n}(\mathbb{R})$ means $E_{i j} \geq 0$ for all i, j, and a short notation for (1) is

$$
\sigma(A, E):=\min \left\{\alpha \in \mathbb{R}| | A^{\prime}-A \mid \leq \alpha \cdot E \text { for some singular } A^{\prime}\right\} .
$$

The set of signature matrices \mathcal{S} consists of diagonal matrices S with diagonal entries in $\{-1,+1\}$, i.e. $S \in \mathcal{S} \Leftrightarrow|S|=I$. The real spectral radius $\rho_{0}(A)$ of $A \in M_{n}(\mathbb{R})$ is defined by

$$
\begin{equation*}
\rho_{0}(A)=\max \{|\lambda| \mid \lambda \text { real eigenvalue of } A\} \tag{6}
\end{equation*}
$$

If A has no real eigenvalues, we define $\rho_{0}(A):=0$.

For singular $A \in M_{n}(\mathbb{R})$, we have $\sigma(A, E)=0$ for any $0 \leq E \in M_{n}(\mathbb{R})$. Assume that A is regular. Then for $\widetilde{E} \in M_{n}(\mathbb{R}),|\widetilde{E}| \leq E$ there holds

$$
A-\widetilde{E}=A \cdot\left(I-A^{-1} \widetilde{E}\right)
$$

which means that singularity of $A-\tilde{E}$ is equivalent to the fact that $A^{-1} \tilde{E}$ has the real eigenvalue 1. This implies

$$
\begin{equation*}
\sigma(A, E)=\left\{\max _{|\widetilde{E}| \leq E} \rho_{0}\left(A^{-1} \widetilde{E}\right)\right\}^{-1} \tag{7}
\end{equation*}
$$

In [9], the sign-real spectral radius $\rho_{0}^{S}(A)$ has been defined and investigated:

$$
\rho_{0}^{S}(A):=\max _{S \in \mathcal{S}} \rho_{0}(S \cdot A)
$$

Many interesting properties and Perron-Frobenius like theorems have been proved over there, among them

$$
\begin{align*}
& \rho_{0}^{S}(A) \text { depends continuously on the entries of } A, \tag{8}\\
& \rho_{0}^{S}(A)=\rho_{0}^{S}\left(D^{-1} A D\right)=\rho_{0}^{S}\left(S_{1} A S_{2}\right) \text { for regular diagonal } D \text { and } S_{1}, S_{2} \in \mathcal{S}, \tag{9}\\
& \rho_{0}^{S}(A) \geq \max _{i}\left|A_{i i}\right|, \quad \text { and } \quad \rho_{0}^{S}(A) \geq \rho_{0}^{S}(A[\omega]) \text { for } \omega \in Q_{k n}, \tag{10}\\
& \rho_{0}^{S}(A)=\max _{x \in \mathbb{R}^{n}} \min _{x_{i} \neq 0}\left|\frac{(A x)_{i}}{x_{i}}\right|, \tag{11}\\
& \sigma(A, E)=\left[\rho_{0}^{S}\left(\begin{array}{cc}
0 & E \\
A^{-1} & 0
\end{array}\right)\right]^{-2} . \tag{12}
\end{align*}
$$

By (12) it follows that computation of the sign-real spectral radius ρ_{0}^{S} is also $N P$-hard. We will use the sign-real spectral radius to prove (4).

Combining (7) and (11) yields

$$
\begin{equation*}
\sigma(A, E)=\frac{1}{\max _{|\widetilde{E}| \leq E} \rho_{0}\left(A^{-1} \widetilde{E}\right)}=\frac{1}{\max _{|\widetilde{E}| \leq E} \rho_{0}^{S}\left(A^{-1} \widetilde{E}\right)}=\frac{1}{\max _{|\widetilde{E}| \leq E} \max _{x \in \mathbb{R}^{n}} \min _{x_{i} \neq 0}\left|\frac{\left(A^{-1} \widetilde{E} \cdot x\right)_{i}}{x_{i}}\right|} \tag{13}
\end{equation*}
$$

Henceforth, any \widetilde{E} with $|\widetilde{E}| \leq E$ and any $0 \neq x \in \mathbb{R}^{n}$ yield an upper bound for $\sigma(A, E)$. We will construct a proper matrix $\widetilde{E} \in M_{n}(\mathbb{R})$ with $|\widetilde{E}| \leq E$, and choose some appropriate $x \in \mathbb{R}^{n}$ in order to obtain a suitable upper bound of $\sigma(A, E)$. This is the key to our proof of the announced new and almost sharp bound (4) on $\gamma(n)$.

2 Main results

The first step in finding an upper bound on $\sigma(A, E)$ using (13) is the following lower bound on $\rho_{0}^{S}(A)$. It is expressed by the geometric mean of the elements of a cycle of A.

Lemma 2.1. For $A \in M_{n}(\mathbb{R})$ and any cycle ω there holds

$$
\rho_{0}^{S}(A) \geq\left|\prod A_{\omega}\right|^{1 /|\omega|} \cdot(3+2 \sqrt{2})^{-1}
$$

Proof by induction. For $|\omega|=1$ the lemma follows by (10). Assume $|\omega|>1$ and $\Pi A_{\omega} \neq 0$. Suitable renumbering puts ω into $(1, \ldots,|\omega|)$, and the inheritance property (10) of $\rho_{0}^{S}(A)$ allows us to assume w.l.o.g. $\omega=(1, \ldots, n)$. By (9), the sign-real spectral radius is invariant under diagonal similarity transformations, and by (5) we may assume all elements in A_{ω} to be equal in absolute value. Proper scaling and observing $\rho_{0}^{S}(c A)=|c| \cdot \rho_{0}^{S}(A)=|c| \cdot \rho_{0}^{S}(S \cdot A)$ for any $S \in \mathcal{S}, c \in \mathbb{R}$ shows that we may assume w.l.o.g.

$$
\omega=(1, \ldots, n), \quad \text { and all elements in } A_{\omega} \text { are equal to } 1 .
$$

Moreover, in view of the assertion, we may suppose ΠA_{ω} to be a cyclic product of maximum absolute value. This implies $\left|A_{i j}\right| \leq 1$ for all i, j, because any $A_{i j}$ forms a cycle together with suitable elements in the full cycle A_{ω}. Summarizing, we have shown that we may assume w.l.o.g.

$$
\begin{align*}
& \omega=\{1, \ldots, n\} \\
& A_{12}=A_{23}=\ldots=A_{n-1, n}=A_{n 1}=1, \quad \text { and } \quad\left|A_{i j}\right| \leq 1 \text { for } 1 \leq i, j \leq n \tag{14}
\end{align*}
$$

We split A into

$$
\begin{align*}
& =\mathrm{L}+\mathrm{P} \quad+\quad \mathrm{U} \text {. } \tag{15}
\end{align*}
$$

More precisely,

$$
L_{i j}:=\left\{\begin{array}{cl}
A_{i j} & \text { for } i \geq j \text { and } i \neq n \\
0 & \text { otherwise }
\end{array}\right.
$$

P is the cyclic shift with $p=1$ for $p \in P_{\omega}$, and $U:=A-L-P$. Next, we show that for any nonnegative vector $x \in \mathbb{R}^{n}$ there are signature matrices $S, T \in \mathcal{S}$ with

$$
\begin{equation*}
(S \cdot L \cdot T) \cdot x \geq 0 \quad \text { and } \quad(S \cdot P \cdot T) \cdot x \geq 0 . \tag{16}
\end{equation*}
$$

For this purpose, we first construct T recursively such that for $1 \leq i \leq n-1$

$$
\begin{equation*}
(L \cdot T \cdot x)_{i} \cdot(P \cdot T \cdot x)_{i} \geq 0 . \tag{17}
\end{equation*}
$$

This is achieved by the following algorithm:

$$
\begin{aligned}
& T:=I ; \\
& \text { for } i:=1 \text { to } n-1 \text { do } \\
& \text { if }(L \cdot T \cdot x)_{i}<0 \text { then } \\
& \quad \text { for } \nu:=1 \text { to } i \text { do } T_{\nu \nu}:=-T_{\nu \nu} ;
\end{aligned}
$$

Note that $(P \cdot T \cdot x)_{i}=T_{i+1, i+1} \cdot x_{i+1}$, and that the case $i=n$ is excluded in (17). In the for-loop, for the current value of i it is $(P T x)_{i} \geq 0$ by definition, and execution of the if-statement assures (17) for the current value of i. But (17) remains also valid for the previous indices because all signs of the $T_{\nu \nu}, 1 \leq \nu \leq i$ are inverted. Hence (17) is valid for $1 \leq i \leq n-1$.

Next, we define $S \in \mathcal{S}$ by $S_{i i}:=\operatorname{sign}\left((P \cdot T)_{i, i+1}\right)=T_{i+1, i+1}$ for $1 \leq i \leq n-1$, and we set $S_{n n}:=1$. This yields the right inequality in (16), and with (17) also the left inequality of (16).

Now we define

$$
\begin{equation*}
q:=1-\sqrt{2} / 2 \quad \text { and } \quad x:=\left(q, q^{2}, \ldots, q^{n}\right)^{T} \in \mathbb{R}^{n} \tag{18}
\end{equation*}
$$

By (9), the sign-real spectral radius of A is invariant under multiplication of A by signature matrices from left or right. Using this together with (11) and the q and x as defined in (18) yields

$$
\rho_{0}^{S}(A)=\rho_{0}^{S}(S A T) \geq \min _{i}\left|\frac{(S A T x)_{i}}{x_{i}}\right|=\min _{i} q^{-i} \cdot|S \cdot(L+P+U) \cdot T \cdot x|_{i} .
$$

From (14) we know $|S \cdot U \cdot T|_{i j} \leq 1$. Moreover, ($S P T$) $x \geq 0$ from (16), and $x>0$ implies $S P T x=P x$. Hence, in view of (16), there holds for $1 \leq i \leq n-1$

$$
\begin{aligned}
\left|\frac{(S A T x)_{i}}{x_{i}}\right| & =q^{-i} \cdot[|S \cdot(L+P+U) \cdot T \cdot x|]_{i} \\
& \geq q^{-i} \cdot[(S \cdot L \cdot T+S \cdot P \cdot T-|U|) \cdot x]_{i} \\
& \geq q^{-i} \cdot[(P-|U|) \cdot x]_{i} \\
& \geq q^{-i} \cdot\left(q^{i+1}-\sum_{\nu=i+2}^{n} q^{\nu}\right) \geq q \cdot\left(2-\frac{1}{1-q}\right)=(3+2 \cdot \sqrt{2})^{-1}
\end{aligned}
$$

and similarly for $i=n$,

$$
\begin{aligned}
\left|\frac{(S A T x)_{n}}{x_{n}}\right| & =q^{-n} \cdot[|S \cdot(L+P+U) \cdot T \cdot x|]_{n} \geq q^{-n} \cdot\left(q-\sum_{\nu=2}^{n} q^{\nu}\right) \\
& \geq q^{1-n} \cdot\left(2-\frac{1}{1-q}\right)>(3+2 \cdot \sqrt{2})^{-1} .
\end{aligned}
$$

The max min characterization (11) of $\rho_{0}^{S}(A)$ proves the lemma.

For small values of $|\omega|$ the bound in Lemma 2.1 can be improved. For example, for $|\omega|=1$ or $|\omega|=2$ the constant $(3+2 \sqrt{2})^{-1}$ in Lemma 2.1 can be replaced by 1, i.e.

$$
\rho_{0}^{S}(A) \geq\left|\prod A_{\omega}\right|^{1 /|\omega|} \quad \text { for } \quad|\omega|=1 \text { or }|\omega|=2
$$

(cf. (10) and [8], Theorem 6.5). This is no longer true for $|\omega| \geq 3$, as is seen by

$$
A=\left(\begin{array}{ccc}
-0.3 & 1 & -0.8 \\
-0.8 & -0.3 & 1 \\
1 & -0.8 & -0.3
\end{array}\right) \quad \text { with } \rho_{0}^{S}(A)<0.95
$$

However, we can improve the constant $(3+2 \sqrt{2})$ in Lemma 2.1 in the following way. We proceed by induction over n and assume

$$
\begin{equation*}
\rho_{0}^{S}(A) \geq\left|\prod A_{\alpha}\right|^{1 /|\alpha|} \cdot \psi_{|\alpha|}^{-1} \quad \text { for all } \quad|\alpha|<n, \tag{19}
\end{equation*}
$$

where $\psi_{1}=\psi_{2}=1$. We will construct a ψ_{n} satisfying (19) in several steps. First, we show that w.l.o.g. we may assume $|A|$ to be bounded by a circulant, second, the problem is reduced
to an eigenvalue problem and finally, we show that ψ_{n} is the unique positive value solving this eigenvalue problem. A posteriori, this is the definition of ψ_{n} satisfying (19).

Using the same arguments as in the proof of Lemma 2.1 together with proper scaling we may assume w.l.o.g.

$$
\begin{equation*}
\omega=\{1, \ldots, n\}, \quad A_{12}=A_{13}=\ldots=A_{n-1, n}=A_{n 1}=1 . \tag{20}
\end{equation*}
$$

Hence, we want to find ψ_{n} such that $\rho_{0}^{S}(A) \geq \psi_{n}^{-1}$ for a matrix satisfying (20).
Suppose $\left|\Pi A_{\alpha}\right|^{1 /|\alpha|} \geq \psi_{|\alpha|} \cdot \psi_{n}^{-1}$ for some cycle α with $1 \leq|\alpha| \leq n-1$. Then (19) implies $\rho_{0}^{S}(A) \geq\left|\Pi A_{\alpha}\right|^{1 /|\alpha|} \cdot \psi_{|\alpha|}^{-1} \geq \psi_{|\alpha|} \cdot \psi_{n}^{-1} \cdot \psi_{|\alpha|}^{-1}=\psi_{n}^{-1}$. Therefore, we may assume w.l.o.g. $\left|\Pi A_{\alpha}\right|^{1 /|\alpha|}<\psi_{|\alpha|} \cdot \psi_{n}^{-1}$ for all cycles α with $1 \leq|\alpha| \leq n-1$.

For $\alpha=\{k\}, 1 \leq k \leq n$ this means $\left|\Pi A_{\alpha}\right|^{1 /|\alpha|}=\left|A_{k k}\right|<\psi_{n}^{-1}$. For $\alpha=\{1,2\}$ this implies

$$
\left|\prod A_{\alpha}\right|^{1 /|\alpha|}=\left|A_{12} A_{21}\right|^{1 / 2}=\left|A_{21}\right|^{1 / 2}<\psi_{2} / \psi_{n}, \text { and therefore }\left|A_{21}\right|<\left(\psi_{2} / \psi_{n}\right)^{2} .
$$

Setting $\alpha=\{2,3\}, \ldots,\{n, 1\}$ this implies $\left|A_{32}\right|<\left(\psi_{2} / \psi_{n}\right)^{2}, \ldots,\left|A_{1 n}\right| \leq\left(\psi_{2} / \psi_{n}\right)^{2}$. For $\alpha=\{1,2,3\}$ we have

$$
\left|\prod A_{\alpha}\right|^{1 /|\alpha|}=\left|A_{12} A_{23} A_{31}\right|^{1 / 3}=\left|A_{31}\right|^{1 / 3}<\psi_{3} / \psi_{n}, \text { and therefore }\left|A_{31}\right|<\left(\psi_{3} / \psi_{n}\right)^{3} .
$$

Proceeding in this way for $\alpha=\{2,3,4\}, \ldots$ and so forth, we may assume w.l.o.g. that $|A|$ is bounded by the following circulant

$$
|A| \leq\left(\begin{array}{ccccccc}
c_{1} & 1 & c_{n-1} & \ldots & & c_{3} & c_{2} \\
c_{2} & c_{1} & 1 & c_{n-1} & \ldots & & c_{3} \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & & & & c_{1} & 1 \\
1 & c_{n-1} & & \ldots & & c_{2} & c_{1}
\end{array}\right)=: C \quad \text { with } c_{i}:=\left(\psi_{i} / \psi_{n}\right)^{i} .
$$

Outside the cycle $\omega=\{1, \ldots, n\}$ we may even assume strong inequality. Note that ψ_{i}, $1 \leq i \leq n-1$ is already known by induction hypothesis, but ψ_{n} is not. That means, the upper bound of $|A|$ depends on ψ_{n}, the quantity we are looking for, and we wish to prove $\rho_{0}^{S}(A) \geq \psi_{n}^{-1}$. Let $C=\widetilde{L}+P+\widetilde{U}$ be a splitting like in (15). Then \widetilde{U} depends on ψ_{n}. Suppose, $P-\widetilde{U}$ has a positive eigenvector x with positive eigenvalue ψ_{n}^{-1}, i.e. $(P-\widetilde{U}) x=\psi_{n}^{-1} \cdot x>0$. Then we may proceed as in the proof of Lemma 2.1, split $A=L+P+U$ as in (15), and assume w.l.o.g. $L \cdot x \geq 0$ and $P \cdot x \geq 0$. It is $|U| \leq \widetilde{U}$, and for $1 \leq i \leq n$,

$$
\left|\frac{(A x)_{i}}{x_{i}}\right| \geq x_{i}^{-1} \cdot[(L+P-|U|) \cdot x]_{i} \geq x_{i}^{-1} \cdot[(P-\widetilde{U}) \cdot x]_{i}=\psi_{n}^{-1},
$$

and the max min characterization (11) yields $\rho_{0}^{S}(A) \geq \psi_{n}^{-1}$.
The problem remains to find ψ_{n} such that ψ_{n}^{-1} is a positive eigenvalue to a positive eigenvector of $P-\widetilde{U}$ as defined above. For $n=3$ this means

$$
\left(\begin{array}{ccc}
0 & 1 & -\left(\psi_{2} / \psi_{3}\right)^{2} \\
0 & 0 & 1 \\
1 & -\left(\psi_{2} / \psi_{3}\right)^{2} & -\psi_{1} / \psi_{3}
\end{array}\right) \cdot x=\psi_{3}^{-1} \cdot x
$$

Following an idea by Ludwig Elsner [2] one can prove that the ψ_{n} exist and are uniquely defined. Set $\widetilde{U}_{\psi_{n}}=\widetilde{U}$ to indicate the dependency of \tilde{U} on ψ_{n}. Then $P-\widetilde{U}_{\psi_{n}}=P \cdot\left(I-P^{T}\right.$. $\left.U_{\psi_{n}}\right)=P \cdot M\left(\psi_{n}\right)$ with

$$
M\left(\psi_{n}\right):=\left(\begin{array}{ccccc}
1 & -c_{n-1} & -c_{n-2} & \cdots & -c_{1} \tag{21}\\
& 1 & -c_{n-1} & \cdots & -c_{2} \\
& & \ddots & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right), \quad c_{i}:=\left(\psi_{i} / \psi_{n}\right)^{i}
$$

For any $\psi_{n}>0, M\left(\psi_{n}\right)^{-1}$ exists and is nonnegative upper triangular. Therefore, $(P-$ $\left.\widetilde{U}_{\psi_{n}}\right)^{-1}=M\left(\psi_{n}\right)^{-1} \cdot P^{T}$ is nonnegative irreducible, and it has a uniquely determined positive eigenvalue $\rho\left(\left(P-\widetilde{U}_{\psi_{n}}\right)^{-1}\right)$ with positive eigenvector. Furthermore, the Neumann series for $\left(I-P^{T} \cdot U_{\psi_{n}}\right)^{-1}$ shows that the Perron root of $\left(P-\widetilde{U}_{\psi_{n}}\right)^{-1}$ is strictly decreasing with increasing ψ_{n}. Henceforth, there must be a unique value for ψ_{n} such that $\rho\left(\left(P-\widetilde{U}_{\psi_{n}}\right)^{-1}\right)=$ $\rho\left(M\left(\psi_{n}\right)^{-1} \cdot P^{T}\right)=\psi_{n}$, and ψ_{n}^{-1} is a positive eigenvalue of $P-\widetilde{U}_{\psi_{n}}$ to a positive eigenvector. When calculating the ψ_{n} by using $(P-\widetilde{U})^{-1}$ explicitly or implicitly, the numerical computation becomes instable. We used instead the Neumann series for $(P-\widetilde{U})^{-1}$ and obtained the following results for $1 \leq n \leq 36$.

$$
\begin{array}{llll}
\psi_{1}=1.0000 & \psi_{10}=3.3745 & \psi_{19}=4.2618 & \psi_{28}=4.6803 \\
\psi_{2}=1.0000 & \psi_{11}=3.5187 & \psi_{20}=4.3227 & \psi_{29}=4.7134 \\
\psi_{3}=1.5874 & \psi_{12}=3.6472 & \psi_{21}=4.3790 & \psi_{30}=4.7447 \\
\psi_{4}=1.9656 & \psi_{13}=3.7625 & \psi_{22}=4.4313 & \psi_{31}=4.7743 \\
\psi_{5}=2.2920 & \psi_{14}=3.8664 & \psi_{23}=4.4800 & \psi_{32}=4.8023 \\
\psi_{6}=2.5731 & \psi_{15}=3.9605 & \psi_{24}=4.5254 & \psi_{33}=4.8289 \\
\psi_{7}=2.8161 & \psi_{16}=4.0460 & \psi_{25}=4.5679 & \psi_{34}=4.8541 \\
\psi_{8}=3.0272 & \psi_{17}=4.1242 & \psi_{26}=4.6077 & \psi_{35}=4.8781 \\
\psi_{9}=3.2119 & \psi_{18}=4.1959 & \psi_{27}=4.6451 & \psi_{36}=4.9010
\end{array}
$$

Table 2.2 Values for ψ_{n}

A graph for larger values of ψ_{n} looks as follows.

Graph 2.3. Graph of ψ_{n}

We do not know whether the bound in Lemma 2.1 can be achieved asymptotically. The proof of Lemma 2.1 can be regarded as finding the positive eigenvalue λ of $(P-\widetilde{U})^{-1}$ with $P^{T} \tilde{U}$ being strictly upper triangular with all components equal to 1 above the diagonal. This implies $\psi_{n}<(3+2 \sqrt{2})$ for all n. It has been shown by L. Elsner and S. Friedland [2] that λ converges to $(3+2 \sqrt{2})^{-1}$ for $n \rightarrow \infty$. Graph 2.3 shows that for larger n the values of ψ_{n} are not too far from $(3+2 \sqrt{2})$. In fact, for $n=500$ the difference is less than 0.08 . We do not know the limit of the ψ_{n} for $n \rightarrow \infty$.

Summarizing, we have the following result.

Theorem 2.4. For $A \in M_{n}(\mathbb{R})$ and any cycle ω there holds

$$
\rho_{0}^{S}(A) \geq\left|\prod A_{\omega}\right|^{1 /|\omega|} \cdot \psi_{|\omega|}^{-1} \geq\left|\prod A_{\omega}\right|^{1 /|\omega|} \cdot(3+2 \sqrt{2})^{-1}
$$

where $\psi_{1}:=\psi_{2}:=1$, and $\psi_{k}, k>2$ is defined recursively to be the unique positive number such that ψ_{k} is the Perron root of $M\left(\psi_{k}\right)^{-1} \cdot P^{T}$, where $M\left(\psi_{k}\right)$ is defined in (21).

Some values of ψ_{n} are listed in Table 2.2 and shown in Graph 2.3. Theorem 2.4 may be useful for practical applications because it frequently gives a reasonable and simple to compute lower bound on $\rho_{0}^{S}(A)$. For short cycles, the constant $\psi_{|\omega|}$ is especially favourable.

We need the following technical lemma to prove our main result.

Lemma 2.5. Let regular $A \in M_{n}(\mathbb{R})$ and $0 \leq E \in M_{n}(\mathbb{R})$ be given, and suppose $\left|A^{-1}\right| \cdot E$ is row stochastic. Then

$$
\sigma(A, E) \leq n \cdot \psi_{n}
$$

where ψ_{n} is defined as in Theorem 2.4.

Proof. We will construct a matrix $\widetilde{E} \in M_{n}(\mathbb{R}),|\widetilde{E}| \leq E$ with $\rho_{0}^{S}\left(A^{-1} \widetilde{E}\right) \geq\left\{n \cdot \psi_{n}\right\}^{-1}$. Define $C:=\left|A^{-1}\right| \cdot E$ and let $C_{i, m_{i}}$ be maximum row elements, i.e.

$$
C_{i, m_{i}}=\max _{\nu} C_{i \nu} .
$$

C is row stochastic, and therefore $C_{i, m_{i}} \geq n^{-1}$ for $1 \leq i \leq n$. Within the elements $\left\{C_{i, m_{i}} \mid\right.$ $1 \leq i \leq n\}$ there must be a cycle of length $k, 1 \leq k \leq n$, and suitable renumbering puts this cycle into $\{1, \ldots, k\}$. Hence, we may assume w.l.o.g.

$$
c \geq n^{-1} \text { for all } c \in C_{\omega} \text { and } \omega=\{1, \ldots, k\}, 1 \leq k \leq n .
$$

Define $\widetilde{E} \in M_{n}(\mathbb{R})$ by

$$
\widetilde{E}_{i j}:=\left\{\begin{array}{lll}
\operatorname{sign}\left(\left(A^{-1}\right)_{j-1, i}\right) \cdot E_{i j} & \text { for } 1 \leq i \leq n, \quad 2 \leq j \leq k \\
\operatorname{sign}\left(\left(A^{-1}\right)_{k i}\right) \cdot E_{i j} & \text { for } 1 \leq i \leq n, \quad j=1 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then $|\widetilde{E}| \leq E$, and for $\widetilde{C}:=A^{-1} \widetilde{E}$ there holds

$$
\widetilde{C}_{i, i+1}=\sum_{\nu=1}^{n}\left(A^{-1}\right)_{i \nu} \cdot \operatorname{sign}\left(\left(A^{-1}\right)_{i \nu}\right) \cdot E_{\nu, i+1}=C_{i, i+1} \geq n^{-1}
$$

and similarly $\widetilde{C}_{k 1}=C_{k 1} \geq n^{-1}$. Hence, $\left|\Pi \widetilde{C}_{\omega}\right|^{1 /|\omega|} \geq n^{-1}$, and (13) and Theorem 2.4 yield $\sigma(A, E) \leq \rho_{0}^{S}\left(A^{-1} \widetilde{E}\right)^{-1} \leq n \cdot \psi_{k} \leq n \cdot \psi_{n}$.

With these preliminaries we can prove the following result: if the minimum Bauer-Skeel condition number achievable by column scaling is still large, then a singular matrix cannot
be too far away in the componentwise sense. We quantify this statement in our main result.

Proposition 2.6. There are constants $\gamma(n) \in \mathbb{R}$ such that for all $A, E \in M_{n}(\mathbb{R}), A$ regular and $E \geq 0$, there holds

$$
\begin{equation*}
\frac{1}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \leq \sigma(A, E) \leq \frac{\gamma(n)}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \tag{22}
\end{equation*}
$$

These constants $\gamma(n)$ satisfy

$$
\begin{equation*}
n \leq \gamma(n) \leq(3+2 \cdot \sqrt{2}) \cdot n . \tag{23}
\end{equation*}
$$

The left inequality in (23) is sharp. Furthermore, for the constants ψ_{n} being defined in Theorem 2.4 there holds

$$
\begin{equation*}
n \leq \gamma(n) \leq \psi_{n} \cdot n \tag{24}
\end{equation*}
$$

Proof. By [8], Lemma 6.1 and (8) we know that $\sigma(A, E)$ and $\rho_{0}^{S}(A)$ depend continuously on the entries of A, E. Hence, we may assume w.l.o.g. $E>0$ and therefore $\left|A^{-1}\right| \cdot E>0$. Let $x>0$ be the right Perron vector of $\left|A^{-1}\right| \cdot E$. For a regular and nonnegative diagonal matrix $D \in M_{n}(\mathbb{R})$ there holds (cf. [1]) $\sigma(A, E)=\sigma(A D, E D)$, and $\rho\left(\left|(A D)^{-1}\right| \cdot E D\right)=$ $\rho\left(\left|A^{-1}\right| \cdot E\right)=: \rho$. Defining diagonal $D \in M_{n}(\mathbb{R})$ by $D_{i i}:=x_{i}^{-1}$ shows that we may assume w.l.o.g.

$$
\left\{\left|A^{-1}\right| \cdot E\right\} \cdot(\mathbf{1})=\rho \cdot(\mathbf{1})
$$

Furthermore, $\left|A^{-1}\right| \cdot E>0$ implies $\rho>0$ and therefore $\rho^{-1} \cdot\left|A^{-1}\right| \cdot E$ is row stochastic. Applying Lemma 2.5 yields

$$
\sigma(A, E) \cdot \rho\left(\left|A^{-1}\right| \cdot E\right) \leq n \cdot \psi_{n}
$$

and therefore the right inequalities of (23) and (24). The left inequality is contained in [8], Lemma 5.7 together with the fact that it is sharp. The proposition is proved.

We mention that in many applications the product $\sigma(A, E) \cdot \rho\left(\left|A^{-1}\right| \cdot E\right)$ is, for the specific data, not too far from 1. For classes of matrices like M-matrices it is in fact equal to 1
([8], (5.5)). From the proof of Lemma 2.5, from Theorem 2.4 and Proposition 2.6 we also conclude the following corollary.

Corollary 2.7. Let $A, E \in M_{n}(\mathbb{R}), A$ regular and $E \geq 0$, be given. Then for any cycle ω and the constants $\psi_{|\omega|}$ as defined in Theorem 2.4,

$$
\begin{equation*}
\frac{1}{\rho\left(\left|A^{-1}\right| \cdot E\right)} \leq \sigma(A, E) \leq \frac{\psi_{|\omega|}}{\Pi\left(\left|A^{-1}\right| \cdot E\right)_{\omega}^{1 /|\omega|}}, \tag{25}
\end{equation*}
$$

where the r.h.s. of (25) becomes at least as small as $n \cdot \psi_{n} / \rho\left(\left|A^{-1}\right| \cdot E\right) \leq(3+2 \sqrt{2})$. $n / \rho\left(\left|A^{-1}\right| \cdot E\right)$ for some ω.

For given data, (25) frequently yields reasonable bounds. Proposition 2.6 shows the asymptotically linear behaviour of

$$
\begin{equation*}
\gamma(n):=\sup \left\{\sigma(A, E) \cdot \rho\left(\left|A^{-1}\right| \cdot E\right) \quad \mid \quad A, E \in M_{n}(\mathbb{R}), A \text { regular, } E \geq 0\right\} \tag{26}
\end{equation*}
$$

From (23) we know $n \leq \gamma(n) \leq(3+2 \cdot \sqrt{2}) \cdot n$, where the lower bound is sharp. We repeat our conjecture as has been stated in [8].

Conjecture 2.8. For $\gamma(n)$ as defined in (26), there holds $\gamma(n)=n$.

References

[1] J. Demmel. The Componentwise Distance to the Nearest Singular Matrix. SIAM J. Matrix Anal. Appl., 13(1):10-19, 1992.
[2] L. Elsner. private communication, 1996.
[3] R. Hamming. Introduction to Applied Numerical Analysis. McGraw Hill, New York, 1971.
[4] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 1996.
[5] R.A. Horn and Ch. Johnson. Matrix Analysis. Cambridge University Press, 1985.
[6] M. Marcus and H. Minc. A survey of matrix theory and matrix inequalities. Dover publications, New York, 1992.
[7] S. Poljak and J. Rohn. Checking Robust Nonsingularity Is NP-Hard. Math. of Control, Signals, and Systems 6, pages 1-9, 1993.
[8] S.M. Rump. Bounds for the Componentwise Distance to the Nearest Singular Matrix. SIAM J. Matrix Anal. Appl., 18(1):83-103, 1997.
[9] S.M. Rump. Theorems of Perron-Frobenius type for matrices without sign restrictions. Linear Algebra and its Appl., 266:1-42, 1997.

