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BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR
MATRIX

S. M. RUMP †

Abstract. The normwise distance of a matrix A to the nearest singular matrix is well known to be equal to ‖A‖/cond(A)

for norms being subordinate to a vector norm. However, there is no hope to find a similar formula or even a simple algorithm

for computing the componentwise distance to the nearest singular matrix for general matrices. This is because Rohn and Poljak

[7] showed that this is an NP -hard problem.

Denote the minimum Bauer-Skeel condition number achievable by column scaling by κ. Demmel [3] showed that κ−1 is

a lower bound for the componentwise distance to the nearest singular matrix. In this paper we prove that 2.4 · n1.7 · κ−1 is

an upper bound. This extends and proves a conjecture by N. J. Higham and J. Demmel. We give an explicit set of examples

showing that an upper bound cannot be better than n · κ−1. Asymptotically, we show that n1+ln 2+ε · κ−1 is a valid upper

bound.
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0. Introduction. Let A be an n by n matrix and denote its smallest singular value by σn(A). It is
well known that the distance to the nearest singular matrix in the 2-norm or Frobenius norm is equal to
σn(A). More general, for any consistent matrix norm ‖ · ‖ being subordinate to a vector norm we have

min { ‖δA‖ | A + δA singular } =
1

‖A−1‖ =
‖A‖

cond(A)
.(1)

An appropriate δA of rank 1 can be explicitly calculated (cf. [?], [13]). Such a perturbation does, in
general, alter each component of A. In many practical applications, one may be interested in leaving specific
components such as system zeros unaltered, for example, if the matrix arises from some discretisation scheme.
More general, this leads to the question of the componentwise distance to the nearest singular matrix. The
componentwise distance may be weighted by some nonnegative matrix E. More precisely, we define

σ(A,E) := min {α ∈ IR | A + Ẽ singular where |Ẽij | ≤ α · Eij for all i, j }.(2)

If no such α exists, we set σ(A,E) := ∞. For singular matrices, σ(A,E) = 0 for every weight matrix E.
Specific values of E are E = |A| for relative perturbations, or E = (1)nn for absolute perturbations. Among
others, the componentwise distance to the nearest singular matrix was discussed in [8], [11], [10], and in [3].
In [8] we also find a first approach towards an estimation of the nearness to singularity in a norm not being
subordinate to a vector norm, namely ‖A‖ := max

i,j
|Aij |.

We cannot expect to find a formula or even a simple algorithm forq calculating σ(A,E). This is because
Rohn and Poljak [7] proved that computation of σ(A,E) is NP -complete. For an outline of their proof see
also [3]. Nevertheless, we may find bounds for σ(A,E), and for classes of matrices even explicit formulas.

Another view of σ(A,E) is the maximum value such that the interval matrix [A−αE, A+αE] is nonsingular
for α < σ(A,E). The interval matrix is defined as being the set of all matrices Ã with Aij − αEij ≤ Ãij ≤
Aij + αEij for all i, j, or in short notation A−αE ≤ Ã ≤ A + αE. The interval matrix is called nonsingular
if every matrix Ã ∈ [A−αE, A+αE] is nonsingular. In a very interesting paper [9], Rohn gave 13 necessary
and sufficient criteria for [A− E, A + E] being nonsingular.

†Technische Informatik III, TU Hamburg-Harburg, EißendorferStraße 38, 21071 Hamburg, Germany

1



A thorough discussion of σ(A,E) can be found in the very interesting paper [3]. Demmel [3] proved that
σ(A,E) is equal to the inverse of min κ(AD, ED), the minimum taken over all diagonal matrices D, where
κ(A,E) := ‖ |A−1| · E‖ denotes the Bauer-Skeel condition number. For any p-norm, he proves

min
D

κ(AD, ED) = ρ( |A−1| · E),

extending a result by Bauer [1]. In other words, the minimum Bauer-Skeel condition number achievable by
column scaling is equal to the inverse of ρ( |A−1| ·E). Demmel and N. J. Higham conjecture that ρ( |A−1| ·E)
and σ(A,E) are not too far apart. They conjecture for relative perturbations existence of some constant
γ ∈ IR, possibly depending on the dimension, with

σ(A, |A| ) ≤ γ

ρ( |A−1| · |A| ) .(3)

In this paper, our main goal is to show existence of such constants γ(n) and to derive lower and upper bounds
for γ(n). First, we show that σ(A,E) ≥ σn(A) for ‖E‖2 = 1. A corresponding result for other norms is
given in §2. However, this bound can be arbitrarily weak. Following we give some new bounds for σ(A,E).

In §4 a perturbation formula for determinants is stated which is the key to prove an upper bound of γ(n).

In §5 we will prove γ ≥ n. In §6, for arbitrary weight matrices E we prove

1
ρ( |A−1| · E)

≤ σ(A,E) ≤ γ(n)
ρ( |A−1| · E)

with γ(n) = c · nα(4)

for c = 2.4 and α = 1.7. Moreover, for n →∞ we show that for every ε > 0, α can be replaced by 1+ln 2+ε.
In view of γ ≥ n, we conjecture γ = n.

In [3], Demmel gave reasons to be interested in the componentwise distance to the nearest singular matrix.
In §2, we add a lower and upper componentwise error bound for the solution of a linear system Ax = b

subject to componentwise perturbations of the matrix and the right hand side. Such upper bounds are
known in the literature and are valid for nonsingular A and |Ã−A| ≤ E with ρ(|A−1| ·E) < 1. We derive a
componentwise bound for the minimum perturbation of the solution subject to finite perturbations of A and
b. (4) shows that those estimates cover perturbation matrices Ã not too far from the next singular matrix.

The paper is organized as follows. In §1 we introduce the used notation. In §2 follows a componentwise
lower and upper perturbation bound for finite componentwise perturbations of a linear system. In §3, lower
bounds on σ(A, E) are given. For orthogonal matrices we show that γ (see (4)) is at least of the order of√

n.

In §4, a Sherman-Morrison-Woodbury like perturbation theorem for determinants is given. In fact, this is
an equality for finite perturbations of a matrix. In §5 we derive upper bounds on σ(A,E). For E being of
rank 1, such as for absolute perturbations, we show γ(n) ≤ n, and for relative perturbations we give a set
of matrices A ∈ Mn(R) with γ(n) = n. For a class of matrices including M -matrices wie prove γ(n) = 1,
i.e. σ(A,E) = ρ( |A−1| · E)−1.

In §6 the results are extended to obtain an explicit upper bound on γ(n) for general A and E, and in §7
those bounds are quantified into (4). We close with the conjecture that (4) is valid for γ(n) = n for all A, E.
If this is true, the set of matrices given in §5 would imply that inequality (4) with γ(n) = n is sharp.

1. Notation. In the following we list some notation from matrix theory, cf. for example [6], [5].
Vn(IR) denotes the set of vectors with n real components, Mm,n(IR) the set of real m by n matrices, and
Mn(IR) = Mn,n(IR). The components of a matrix A ∈ Mn(IR) are referred by Aij or Ai,j . For short
notation, components of A−1 are referred by A−1

ij . (1) denotes a vector with all components equal to 1,
(1)nn ∈ Mn(IR) the matrix with all columns equal to (1).

Qkn denotes the set of strictly increasing sequences of k integers chosen from {1, . . . , n}. For ω ∈ Qkn, we
denote ω = (ω1, . . . , ωk). For C ∈ Mn(IR), ω ∈ Qkn, C[ω] ∈ Mk(IR) denotes the k by k submatrix of C lying
in rows and columns ω. A sequence ζ = (i1, . . . , ik), k ≥ 1 of mutually different integers iν ∈ {1, . . . , n} is
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called a cycle. We identify the cycles (i1, . . . , ik) and (ip, . . . , ik, i1, . . . , ip−1), where 1 ≤ p ≤ k. It is |ζ| := k.
A full cycle ζ on {1, . . . , n} is a cycle ζ with |ζ| = n.

For C ∈ Mn(IR) and a cycle ζ = (i1, . . . , ik) on {1, . . . , n}, we put

Πζ(C) := Ci1i2 · . . . · Cik−1ik
· Ciki1 ,

the cycle product for ζ. Note the last factor in the product. Therefore, |Πζ(C)|1/|ζ| is the geometric mean
of the elements of the cycle product. Each diagonal element Cii is a cycle product, namely of the cycle (i).
(Here our definition differs from Engel/Schneider [4]).

With one exception, throughout the paper, absolute value and comparison is used componentwise. For
example, for A, B ∈ Mn(IR),

|A| ≤ B means |Aij | ≤ Bij for 1 ≤ i, j ≤ n.

The exception are cycles ζ = (i1, . . . , ik), where |ζ| = k. The singular values of a matrix A ∈ Mn(IR) are
denoted in decreasing order with increasing indices, i.e. σ1(A) ≥ . . . ≥ σn(A) ≥ 0.

For A,E ∈ Mn(IR), E ≥ 0, σ(A,E) denotes the componentwise distance, weighted by E, to the nearest
singular matrix (cf. (0.2)).

For finite σ(A,E), the set of all matrices Ã ∈ Mn(IR) with |Ã − A| ≤ σ(A,E) · E is compact. For every
nonsingular Ã there is a neighbourhood of Ã consisting only of nonsingular matrices. Therefore

σ(A,E) < ∞ ⇒ ∃ δA ∈ Mn(IR) : |δA| = σ(A,E) · E and A + δA singular,

showing that we are allowed to use a minimum in the definition (0.2) of σ(A,E). ρ denotes the spectral
radius, whereas ρ0 denotes the real spectral radius:

B ∈ Mn(IR) : ρ0(B) := max
{ |λ|

∣∣ λ ∈ IR is an eigenvalue of B
}
.

If B has no real eigenvalues, we set ρ0(B) := 0. I denotes the identity matrix of proper dimension, especially
Ik ∈ Mk(IR) denotes the k by k identity matrix. A signature matrix S is a diagonal matrix with diagonal
entries +1 or −1, i.e. |S| = I.

We frequently use standard results from matrix and Perron-Frobenius theory such as

A ∈ Mnk(IR), B ∈ Mkn(IR) ⇒
The set of nonzero eigenvalues of AB and BA are identical,

(5)

cf. Theorem 1.3.20 in [5], and

A ∈ Mn(IR) and A ≥ 0, x ∈ Vn(IR) with x > 0 ⇒

min
i

(Ax)i

xi
≤ ρ(A) ≤ max

i

(Ax)i

xi
.

(6)

The latter can be found in [2].

2. Finite perturbations for a linear system. Calculating bounds on σ(A,E) can be motivated, for
example, by looking at linear systems with finite perturbations of the input data. For a linear system Ax = b

consider the perturbed system Ãx̃ = b̃ with δA := Ã−A, δb := b̃− b, δx := x̃− x. Then for nonsingular A,

A · (I + A−1 · δA) · (x̃− x) = Ã · (x̃− x) = b̃− Ãx = δb− δA · x.(7)

If ρ(A−1 · δA) < 1, then I + A−1 · δA and Ã = A · (I + A−1 · δA) are nonsingular, and (7) implies

δx = (I + A−1 · δA)−1 ·A−1 · (δb− δA · x).(8)
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If ρ
(|A−1| ·∆A

)
< 1 then I − |A−1| ·∆A is an M -matrix. If the perturbations δA, δb are componentwise

bounded by |δA| ≤ ∆A, |δb| ≤ ∆b then (2.2) implies

|δx| ≤ (I − |A−1| ·∆A)−1 · |A−1| · (∆b + ∆A · |x| ).(9)

For given weight matrix ∆A, consider the set of matrices with componentwise distance from A weighted by
∆A not greater than σ:

Ã ∈ Uσ(A, ∆A) ⇔ |Ã−A| ≤ σ ·∆A.

For σ ≤ ρ( |A−1| ·∆A), Perron-Frobenius-Theory yields

ρ(I −A−1 · Ã) = ρ
(
A−1 · (A− Ã)

) ≤ ρ( |A−1| ·∆A) < 1,

and therefore regularity of all Ã ∈ Uσ(A, ∆A). The bound (2.3) requires |A−1|·∆A to be convergent, whereas
(8) is valid for ρ(A−1 · δA) < 1. Therefore we may ask, how far a matrix Ã with ρ( |A−1| · |Ã − A| ) ≥ 1
can be from the nearest singular matrix. An answer to this question shows how strong the assumption
ρ( |A−1| ·∆A) < 1 is.

3. Lower bounds on σ(A, E). A simple and well-known lower bound on σ(A,E) is

1
ρ( |A−1| · E)

≤ σ(A,E) for all nonsingular A ∈ Mn(IR), 0 ≤ E ∈ Mn(IR).(10)

This can be seen using Perron-Frobenius Theory and

ρ( |A−1| · E) < 1 ⇒ ρ(A−1 · δA) < 1 for all |δA| ≤ E

⇒ A + δA = A · (I + A−1 · δA) is nonsingular.

Another lower bound is (cf. [12], Theorem 1.8, p. 75)

σn(A)
σ1(E)

≤ σ(A,E).(11)

This can be generalized in the following way.

Theorem 3.1. Let ‖ ·‖ be a matrix norm subordinate to an absolute vector norm ‖ ·‖. Then for nonsingular
A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR),

1
‖A−1‖ · ‖E‖ ≤ σ(A,E).(12)

(12) is especially valid for all p-norms. For absolute norms such as 1-norm and ∞-norm,

1
‖A−1‖ · ‖E‖ ≤

1
ρ( |A−1| · E)

≤ σ(A,E),(13)

whereas for the 2-norm

1
‖A−1‖2 · ‖E‖2 ≤

√
n

ρ( |A−1| · E)
.(14)

Proof. To prove (12), let δA ∈ Mn(IR) with |δA| ≤ σ · E for σ < ( ‖A−1‖ · ‖E‖ )−1. The vector norm is
absolute implying ‖x‖ = ‖ |x| ‖ and |x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖ for x, y ∈ Vn(IR) (cf. [13], Theorem II.1.2). Let
x ∈ Vn(IR) with ‖x‖ = 1 and ‖δA‖ = ‖δA · x‖. Then

‖δA‖ = ‖δA · x‖ = ‖ |δA · x| ‖ ≤ ‖σ · E · |x| ‖ ≤ ‖σ · E‖ · ‖ |x| ‖

= σ · ‖E‖ < ‖A−1‖−1.
(15)

For every 0 6= y ∈ Vn(IR) holds ‖y‖ ≤ ‖A−1‖ · ‖Ay‖, and (15) yields

‖δA · y‖ ≤ ‖δA‖ · ‖y‖ < ‖A−1‖−1 · ‖y‖ ≤ ‖Ay‖, and therefore (A + δA) · y 6= 0.
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Therefore, A + δA is nonsingular for |δA| ≤ σ · E, and σ < ( ‖A−1‖ · ‖E‖ )−1, proving (12). For absolute
matrix norms,

ρ( |A−1| · E) ≤ ‖ |A−1| · E‖ ≤ ‖A−1‖ · ‖E‖
proving (13). For the 2-norm holds

ρ( |A−1| · E) ≤ ‖ |A−1| ‖2 · ‖E‖2 ≤ ‖ |A−1| ‖F · ‖E‖2 = ‖A−1‖F · ‖E‖2 ≤
√

n · ‖A−1‖2 · ‖E‖2,

proving (14) and the theorem.

(13) shows that for absolute matrix norms such as the 1-norm or ∞-norm, the bound (12) cannot be better
than (10). The 2-norm is not absolute, and (14) shows that the lower bound (11) for σ(A,E) may be better
up to a factor

√
n than (10). In fact, we can identify a class of matrices for which this improvement is

approximately achieved.

Let Q ∈ Mn(IR) be orthogonal, and consider absolute perturbations E = (1)nn. Then (11) yields

σn(Q)
σ1

(
(1)nn

) =
1
n
≤ σ(Q,E).

On the other hand, E = (1)nn ∈ Mn(IR) and x = (1) ∈ Vn(IR) imply
{ |Q−1| · E}T · x = E · |Q| · x =

( ∑

i,j

|Qij |
)
· x,

and (6) yields ρ( |Q−1| ·E) =
∑
i,j

|Qij |. If Q is an orthogonalized random matrix with components uniformly

distributed in [−1, 1], then |Qij | ≈ n−1/2. Thus, for the ratio between the two lower bounds (11) and (10)
we obtain

{
σn(Q)/σ1(E)

}
/

{
1/ρ( |Q−1| · E)

} ≈ n−1 · n2 · n−1/2 =
√

n.

The same heuristic holds for E = |Q|, cf. [12]. For every Hadamard matrix (H ∈ Mn(IR) with HT H = n · I)
the ratio is equal to

√
n. This sheds a first light on a possible quantity γ(n) such that (4) holds. In §5 we

will prove γ(n) ≥ n.

Example 3.2. The lower bound (11) may be arbitrarily weak. Consider

A =

(
2ε −ε

−ε 1

)
and E = |A| for some ε > 0.

A is a diagonally dominant M -matrix. As we will see in (5.5), A being M -matrix implies equality in (10),
i.e. σ(A, |A| ) = ρ( |A−1| · |A| ) = 1 + 0(

√
ε). On the other hand, σ2(A)/σ1( |A| ) = 2ε + 0(ε2) underestimates

σ(A, |A| ) arbitrarily. This corresponds to σ2(A) = 2ε + 0(ε2). That means, the normwise distance in the 2-
norm or Frobenius norm to the nearest singular matrix can be arbitrarily small compared to a componentwise
distance.

4. A perturbation theorem for determinants. A lower bound on σ(A,E) is obtained by proving
regularity of a set of matrices. This was done in §3 by using spectral properties. To obtain an upper bound on
σ(A,E), we may construct a specific perturbation δA with |δA| ≤ σ0 ·E, σ0 ∈ IR such that A+δA is singular.
This proves σ(A,E) ≤ σ0. Another possibility to obtain an upper bound on σ(A, E) is the following. If
|δA| ≤ σ0 · E and det(A) · det(A + δA) ≤ 0, then a continuity argument yields σ(A,E) ≤ σ0. Therefore we
state the following explicit formula for the relative change of the determinant of a matrix subject to a rank-k
perturbation. It is a Sherman-Morrison-Woodbury like perturbation formula for determinants.

Lemma 4.1. Let A ∈ Mn(IR) and U, V ∈ Mn,k(IR) be given. Then for nonsingular A,

det(A + UV T ) = det(A) · det(Ik + V T A−1U),(16)

where Ik denotes the k by k identity matrix.
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Proof. It is

det(A + UV T ) = det(A) · det(In + A−1UV T ).

Denoting the eigenvalues of X ∈ Mn(IR) by λi(X) implies

det(In + A−1UV T ) =
n∏

i=1

λi(In + A−1UV T ) =
n∏

i=1

{
1 + λi(A−1UV T )

}
.

The set of nonzero eigenvalues of A−1UV T and V T A−1U are identical (see (5)), thus proving the
lemma.

This lemma has a nice and for itself interesting corollary.

Corollary 4.2. Let A ∈ Mn(IR) and u, v ∈ Vn(IR). Then for nonsingular A,

det(A + uvT ) = det(A) · (1 + vT A−1u).(17)

For arbitrary A ∈ Mn(IR) holds (adj(A) denotes the adjoint of A),

det(A + uvT ) = det(A) + vT · adj(A) · u.(18)

The corollary shows that the relative change of the determinant is linear for rank-1 perturbations of the
matrix. The second well-known formula follows, for example, by a continuity argument using A · adj(A) =
det(A) · I.

5. Upper bounds on σ(A,E). The perturbation lemma for determinants given in §4 allows for other
lower bounds on σ(A,E). The first result can be found in [8], Corollary 5.1, (iii).

Theorem 5.1. Let A ∈ Mn(IR) be nonsingular and E ∈ Mn(IR) with E ≥ 0. Then

σ(A,E) ≤ 1
max

i

{ |A−1| · E }
ii

,(19)

where 0−1 is interpreted as ∞.

Proof. Set α := max
i

{ |A−1| · E }
ii
6= 0 and let i be an index, for which this maximum is achieved. Denote

the iν-th component of A−1 by A−1
iν and define u ∈ Vn(IR) by uν := −α−1 · sign(A−1

iν ) · Eνi. Then

eT
i ·A−1 · u = −α−1 ·

n∑
ν=1

|A−1
iν | · Eνi = −1,(20)

and Corollary 4.2 implies det(A + u · eT
i ) = 0. Now |ueT

i | ≤ α−1 · E yields σ(A,E) ≤ α−1.

Example 5.2. The upper bound (19) can be arbitrarily weak. Consider

A =




ε 0 1 1
0 ε 1 1
1 1 ε 0
1 1 0 ε


 , E = |A| with |A−1| · |A| ≈




1 1 1/ε 1/ε

1 1 1/ε 1/ε

1/ε 1/ε 1 1
1/ε 1/ε 1 1


 ,(21)

where the components of |A−1|·|A| are accurate up to a relative error ε. Then (19) gives σ(A, |A| ) ≤ 1+0(ε).
On the other hand,

det(A + ε · δA) = 0 for δA =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

showing σ(A, |A|) ≤ ε.
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In Theorem 5.1, a rank-1 perturbation is used to prove (19). In a normwise sense, the minimum distance to
the nearest singular matrix is achieved by a rank-1 perturbation. This is no longer true for componentwise
distances, as will be shown by the following example.

Example 5.3. According to Corollary 4.2, the smallest σ such A + σe is singular with |e| ≤ σ · |A| and
rank(e) = 1 is given by σ = |ϕ̂|−1, where ϕ̂ is an optimal value of the constraint optimization problem

ϕ(u, v) := vT A−1u = Min! subject to |uvT | ≤ |A|.

In Example 5.2, partition the vectors u, v ∈ V4(IR) into two vectors Ui, Vi ∈ V2(IR), i ∈ {1, 2}, either having
2 components. That means u = (U1, U2)T , v = (V1, V2)T . Let

|uvT | ≤ |A|, i.e. UiV
T
i ≤ ε · I and UiV

T
j ≤ (1)22 for 1 ≤ i, j ≤ 2, i 6= j.

The large elements of A−1 are in the upper left and lower right 2 by 2 block:

A−1 ≈
(

X Y

Y X

)
with X =

1
2ε
·
(

1 −1
−1 1

)
and Y =

1
4

(
1 1
1 1

)

up to a relative error of the order ε. Therefore

|vT A−1u| ≤ |V T
1 XU1|+ |V T

2 XU2|+ |V T
1 Y U2|+ |V T

2 Y U1|
≤ 2ε ·∑ |Xij |+ 2 ·∑ |Yij | ≤ 6

Therefore, Corollary 4.2 implies that the minimum distance to the nearest singular matrix subject to rank-1
perturbations weighted by |A| is at least 1/6 compared to σ(A, |A| ) ≤ ε. This observation sheds light on the
difficulties to calculate σ(A,E) or to find upper bounds for it.

One may define the rank-k componentwise distance to the nearest singular matrix as follows

σk(A,E) := min{α ∈ IR | A + Ẽ singular for |Ẽ| ≤ α · E and rank(Ẽ) ≤ k }.

We use rank(Ẽ) ≤ k because E may be rank-deficient. We have just seen in Example 5.3 that σ2(A,E)/σ1(A, E)
may be arbitrarily small.

Given the lower bound (10), one may ask whether there exist finite constants γ(n) ∈ IR only depending on
n such that

1
ρ( |A−1| · E)

≤ σ(A,E) ≤ γ(n)
ρ( |A−1| · E)

(22)

for all nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR). This question has been raised in [3] and answered for
some classes of matrices. The main purpose of this paper is to derive bounds for γ(n). This will be done by
using Lemma 4.1. For this purpose we need the following result by Rohn (for notation see §1).

Theorem 5.4. (Rohn) For nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) holds

1
max
S1,S2

ρ0(S1A−1S2E)
= σ(A, E),

where ρ0 denotes the real spectral radius and the maximum is taken over all signature matrices. 1/0 is
interpreted as ∞.

Proof. cf. [9].

We start with a theorem bounding γ(n) for general weight matrices E, and identify a class of matrices with
γ(n) = 1.

Theorem 5.5. For nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR), the following is true.

i) Assume a matrix S ∈ Mn(IR) of rank 1 exists with
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Sij =





+1 if A−1
ij > 0

−1 if A−1
ij < 0

+1 or − 1 if A−1
ij = 0

.

Then (22) holds with γ(n) = 1.
ii) If 0 < η ≤ |Eij | ≤ ζ for all 1 ≤ i, j ≤ n, then (22) holds with γ(n) = n · ζ/η.

Proof. Let S = uvT with u, v ∈ Vn(IR), |u| = |v| = (1). Defining S1 = diag(u), S2 = diag(v), we
have S1A

−1S2 = |A−1| and Rohn’s characterization in Theorem 5.4 proves the first part. W.l.o.g. assume
σ(A,E) < ∞. It is η · ‖A−1‖∞ ≤ max

i
( |A−1| · E)ii and ρ( |A−1| · E) ≤ ‖A−1‖∞ · ‖E‖∞ ≤ n · ζ · ‖A−1‖∞.

Thus, Theorem 5.1 proves the second part and therefore the theorem.

For important classes of matrices such as nonnegative invertible matrices, among them all M -matrices, we
already have a precise formula for σ(A, E):

A ∈ MnIR nonnegative invertible, 0 ≤ E ∈ Mn(IR) ⇒ σ(A,E) =
1

ρ( |A−1| · E)
.(23)

Example 5.6. If constants γ(n) with (22) exist at all, we can give a lower bound on γ(n) by means of the
following. Define A ∈ Mn(IR) by

A :=




1 s

1 1 0
1 1

1 1
. . . . . .

0 1
1 1




with s := (−1)n+1.(24)

The determinant of A calculates to

det(A) =
n∏

i=1

Aii + (−1)n+1 ·Πζ(A) = 2, where ζ = (1, . . . , n)

and
∏

ζ(A) = A12 ·A23 · . . . ·An−1,n ·An1. If the elements of A are afflicted with relative perturbations, i.e.
E = |A|, then only the 1’s and s change. Therefore, any Ã with |Ã−A| ≤ σ · |A| with σ < 1 is nonsingular,
and therefore σ(A, |A| ) = 1. On the other hand, |A−1| · |A| = (1)nn and ρ( |A−1| · |A| ) = n. This proves the
following lemma.

Lemma 5.7. If constants γ(n) ∈ IR with (22) for every nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) exist
at all, then γ(n) ≥ n.

Next we show that γ(n) ≤ n for E being of rank 1. For the proof we use Corollary 4.2, which is a consequence
of Lemma 4.1 for k = 1. In the remaining part of the paper, we will extend this proof to k > 1 to obtain
upper bounds for γ(n) and for general A,E.

Theorem 5.8. Let nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) with E = uvT for some u, v ∈ Vn(IR),
u, v ≥ 0. Then

1
ρ( |A−1| · E)

≤ σ(A,E) ≤ n

ρ( |A−1| · E)
.

Proof. According to Theorem 5.4 and using (1.1),

σ(A,E)−1 = max
S1,S2

ρ0(S1A
−1S2uvT ) = max

S1,S2
vT S1A

−1S2u,(25)

where the maximum is taken over all signature matrices S1, S2. For any i, 1 ≤ i ≤ n, we can choose
appropriate signature matrices S1, S2 such that vT S1A

−1S2u ≥ vi · ( |A−1| · u)i. Using (25) this yields

σ(A,E)−1 ≥ max
i

vi · ( |A−1| · u)i.

On the other hand, using (1.1),
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ρ( |A−1| · E) = ρ( |A−1| · uvT ) = vT · |A−1| · u ≤ n ·max
i

vi · ( |A−1| · u)i.

Corollary 5.9. For nonsingular A ∈ Mn(IR) and absolute perturbations, i.e. E = (1)nn, estimation (22)
holds with γ(n) = n.

6. Estimation of γ(n). To make further progress in the estimation of γ(n) we show that for nonsingular
A, σ(A,E) depends continuously on A and E. Using this we can restrict the class of matrices A and E to
matrices with only nonzero components. For the proof we can hardly use a simple continuity argument on
ρ0(S1A

−1S2E) in connection with Theorem 5.4. This is because the search domain is restricted by E, and
the (in absolute value) largest real eigenvalue may be multiple and become complex under arbitrarily small
perturbations.

Lemma 6.1. For nonsingular A ∈ Mn(IR), σ(A,E) depends continuously on A and E.

Proof. For σ(A,E) = ∞ we show that σ(Ã, Ẽ) becomes unbounded for Ã → A, Ẽ → E. A compactness and
continuity argument shows that for every finite 0 < c ∈ IR:

∀ |e| ≤ c · E : |det(A + e)| ≥ δ > 0.

For every Ã, Ẽ close enough to A, E, this implies |det(Ã + ẽ)| ≥ δ/2 > 0 for every |ẽ| ≤ c · Ẽ, and hence
σ(Ã, Ẽ) > c.

Assume σ := σ(A,E) < ∞. We will show that for small enough ε > 0, there exists some δ > 0 such that
both of the following statements are true:

∀ e ∈ Mn(IR) : |e| ≤ (σ − ε) · E ⇒ det(A) · det(A + e) > δ,(26)

∃ e ∈ Mn(IR) : |e| ≤ (σ + ε) · E and det(A) · det(A + e) < −δ.(27)

(26) is seen as follows. For ε > 0, the set of matrices A + e with |e| ≤ (σ − ε) ·E is nonempty and compact.
Hence, det(A) · det(A + e) achieves a minimum on this set. By definition of σ, this minimum is positive. To
see (27), observe that det(A) · det(A + e) ≥ 0 for all |e| ≤ σ · E. For any index pair i, j, the determinant
det(A + ε · eie

T
j ) depends linearly on ε. Now proceed as follows. There is some e such that A + e is singular

and |e| = E. If for an index pair i, j, the determinant det(A + e) is independent on eij , then replace eij by
0. At each step of this process, det(A + e) = 0 and |e| ≤ E. The definition of σ(A, E) < ∞ implies that
during this process we must arrive at some e and an index pair k, l, such that det(A + e) is not constant
when changing ekl. Then defining e′ ∈ Mn(IR) by e′ij := eij for (i, j) 6= (k, l) and e′kl := ekl · (1+ ε′) for small
ε′ > 0 proves (27).

Now the continuity of the determinant implies for Ã, Ẽ close enough to A,E,

∀ |ẽ| ≤ (σ − ε) · Ẽ : det(Ã) · det(Ã + ẽ) > δ/2 and

∃ |ẽ| ≤ (σ + ε) · Ẽ : det(Ã) · det(Ã + ẽ) < −δ/2,

and therefore σ(A, E)− ε < σ(Ã, Ẽ) < σ(A,E) + ε.

Corollary 6.2. If (22) holds for each E > 0, then it holds for each E ≥ 0.

Our goal for this chapter is to prove the following upper bound for σ(A, E). The quantities ϕt occuring in
this estimation will be quantified and estimated in §7.

Proposition 6.3. Let A,E ∈ Mn(IR) with A nonsingular and E ≥ 0 be given. Define recursively ϕ1 := 1,
ϕ2 := 1 and ϕt ∈ IR, 2 < t ∈ IN to be the (unique) positive root of

Pt(x) ∈ IR[x] with Pt(x) := xt−1 − xt−2 −
t−1∑
ν=1

ϕν
ν · xt−1−ν .(28)
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Then

σ(A,E) ≤ n · ϕn

ρ( |A−1| · E)
.(29)

Therefore, the quantities γ(n) defined in (5.4) satisfy

γ(1) = 1, γ(2) = 2 and

n ≤ γ(n) ≤ n · ϕn.

(30)

The proof divides into several parts and needs some preparatory lemmata. First, we will construct a specific
rank-k perturbation in order to be able to apply Lemma 4.1 to bound γ(n) for general A,E. We use the
same principle as in the proof of Theorem 5.1 adapted to rank-k perturbations.

Lemma 6.4. Let nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) be given, and set C := |A−1| · E. For
1 ≤ k ≤ n define

i′ :=

{
i + 1 for 1 ≤ i < k

1 for i = k
(31)

and U, V ∈ Mn,k(IR) by

Uνi′ := sign(A−1
iν ) · Eνi′ and Vµi := δµi

for 1 ≤ µ, ν ≤ n, 1 ≤ i ≤ k and the Kronecker symbol δ. Set C̃ := V T A−1U . Then

i) |C̃| ≤ C[ω] for ω = (1, . . . , k).
ii) C̃ii′ = Cii′ for 1 ≤ i ≤ k.
iii) |UV T | ≤ E.
iv) σ(A,E) ≤ {ρ0(C̃)}−1, where 0−1 is interpreted as ∞.

Proof. For 1 ≤ i, j ≤ k follows

| (V T A−1U)ij | = |
n∑

ν=1

n∑
µ=1

VµiA
−1
µν Uνj | ≤

n∑
ν=1

|A−1
iν | · Eνj = Cij ,

and therefore |C̃| ≤ C[ω] and i). For 1 ≤ i ≤ k holds

C̃ii′ = (V T A−1U)ii′ =
n∑

ν=1

n∑
µ=1

VµiA
−1
µν Uνi′ =

n∑
ν=1

A−1
iν · sign(A−1

iν ) · Eνi′ = Cii′ .

and therefore ii). For 1 ≤ µ, ν ≤ n holds

| (UV T )νµ| = |
k∑

i=1

UνiVµi|,

such that |(UV T )νµ| = Eνµ for 1 ≤ µ ≤ k, and |(UV T )νµ| = 0 for k + 1 ≤ µ ≤ n. This proves iii). For
λ := ρ0(C̃) > 0, it is det(λ · I − s · C̃) = 0 for s = −1 or s = 1. Lemma 4.1 implies

det(A− s · λ−1 · UV T ) = det(A) · det(Ik − s · λ−1 · V T A−1U) = 0.

Together with iii) and the definition (0.2) of σ(A,E), this proves iv) and the theorem.

Our aim is to construct a rank-k perturbation of A with large real spectral radius. Then Lemma 4.1 allows
to give an upper bound on σ(A,E). A first step is the following, first generalization of Theorem 5.1. It will
later yield the precise value for γ(2).

Theorem 6.5. Let A ∈ Mn(IR) be nonsingular and E ∈ Mn(IR) with E ≥ 0. For C := |A−1| · E holds

σ(A,E) ≤ 1
max

i,j

√
Cij · Cji

.(32)
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Proof. For i = j, (32) has been proved in Theorem 5.1. Reordering of indices puts the cycle (i, j), for which
the maximum in (6.7) is achieved, into the cycle (1,2), and Lemma 6.4 proves for i 6= j existence of a 2
by 2 matrix C̃ =

(
α β
γ δ

)
with 0 ≤ β = Cij , 0 ≤ γ = Cji, |α| ≤ Cii, |δ| ≤ Cjj , and σ(A,E) ≤ ρ0(C̃)−1.

If |αδ| ≥ βγ, then
√

Cii · Cjj ≥
√

Cij · Cji and Theorem 5.1 yields (32). Otherwise, det(C̃) < 0. The

characteristic polynomial of C̃ is λ2− trace(C̃) ·λ + det(C̃), so that the eigenvalues of C̃ are 1
2 ·

{
trace(C̃)±√

trace(C̃)2 − 4 · det(C̃)
}

= 1
2 ·

{
α+δ±

√
(α− δ)2 + 4βγ

}
are both real. The absolute value of one of them

is not less than
√

βγ, i.e. σ(A,E) ≤ ρ0(C̃)−1 ≤ (βγ)−1/2.

The idea of the proof of Theorem 6.5 is the following: for a given cycle of C of length 2, a suitable rank-2
perturbation of A is constructed which allows to prove an upper bound of σ(A,E) by using Lemma 6.4. In
the following we will carry this idea to cycles of C of length k, 1 ≤ k ≤ n.

First, we will identify a class of matrices for which we can give explicit lower bounds for their real spectral
radius. The class of matrices is constructed in such a way that the matrices given in Lemma 6.4 can be used
to bound σ(A,E) from above.

Lemma 6.6. Let nonnegative C ∈ Mk(IR) and some 0 < a ∈ IR be given. Define ϕ1 := 1, ϕ2 := 1, and for
t > 2 define recursively ϕt ∈ IR to be the positive zero of

Pt (x) ∈ IR[x] with Pt (x) := xt−1 − xt−2 −
t−1∑
ν=1

ϕν
ν · xt−1−ν .(33)

Suppose

∀ 1 ≤ µ < k ∀ ω ∈ Γµk : (Πω(C))1/µ ≤ ϕµ · a,(34)

and for ω = (1, . . . , k),

|Πω(C)|1/k ≥ ϕk · a.(35)

Then, for i′ defined as in (6.6) and every C̃ ∈ Mk(IR) with

|C̃| ≤ C and C̃ii′ = Cii′ for 1 ≤ i ≤ k,(36)

holds

ρ0(C̃) ≥ a.

Proof. The proof divides in the following parts. First, we transform C into a standard form such that all
Cii′ in the cycle (1, . . . , k) in (35) are equal. Second, we bound C by a circulant, show regularity of that
matrix and det(C̃ − λI) 6= 0 for all 0 ≤ λ < a. Finally, the sign of the determinant of any C̃ with (36) is
determined, from which the lemma follows.

The case k = 1 is trivial; for k = 2 the proof of ρ0(C̃) ≥ a is included in the proof of Theorem 6.5.

Assume k > 2, and set b := |Πω(C)|1/k. Direct computation shows that any similarity transformation of C

by a diagonal matrix D leaves all cycle products invariant.

Thus (34) and (35) remain valid for any diagonal D with positive diagonal entries. Define diagonal D ∈
Mk(IR) by

fi := b−1 · Cii′ and Dii :=
k∏

ν=i

fν for 1 ≤ i ≤ k.

We show that w.l.o.g. C can be replaced by D−1CD. We have fi > 0, and (6.10) implies D11 = 1. It is

(D−1CD)ii′ =

(
k∏

ν=i

f−1
ν

)
· Cii′ ·

(
k∏

ν=i′
fν

)
= Cii′ · f−1

i = b.(37)
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If C̃ ∈ Mk(IR) is any matrix satisfying (36), then |D−1C̃D| ≤ D−1CD, and (37) yields (D−1C̃D)ii′ =
(D−1CD)ii′ = b. Since the set of eigenvalues of C̃ and D−1C̃D are identical, we can restrict our attention
to matrices C ∈ Mn(IR), C ≥ 0 and

Cii′ = b for 1 ≤ i ≤ k.(38)

Set

C =




c1,1 b c1,k−1 . . . c1,2

c2,2 c2,1 b c2,k−1 . . . c2,3

. . . c3,1 b . . .

ck−1,k−1 ck−1,k−2 . . . b

b c0,k−1 . . . c0,1




.(39)

Let µ ∈ IN, 1 ≤ µ < k be given and define ω ∈ Γµk by ω = (1, . . . , µ). Then setting q := a/b, (34) implies

cµµ ·
µ−1∏
i=1

b ≤ (ϕµ · a)µ and therefore cµµ ≤ b · ϕµ
µ · qµ.

Applying the same argument successively for ω =
(
i, (i + 1) mod µ, . . . , (i + µ) mod µ

)
yields

ci,µ ≤ b · ϕµ
µ · qµ for all 0 ≤ i < k, 1 ≤ µ < k.(40)

Therefore,

C ≤ b ·




c1 1 ck−1 c2

c2 c1 1 ck−1 . . . c3

c1 1
. . . . . . . . .

ck−1 ck−2 . . . 1
1 ck−1 c1




=: b · C(41)

with cµ := ϕµ
µ · qµ for 1 ≤ µ < n.

Let C̃ ∈ Mk(IR) with (36) be given, and let λ ∈ IR with 0 ≤ λ < a. Next we show that all matrices C̃ − λI

are nonsingular. By assumption (6.11) and using (6.16),

|C̃ − λI| ≤ C + λ · I ≤ b · C + λI and (C̃ − λI)ii′ = C̃ii′ = Cii′ = b.(42)

By (41) and (33), using q := a/b ≤ ϕ−1
k from (35) and ϕ2 = 1, we have for k ≥ 3,

λ + b ·
k−1∑
ν=1

cν < b ·
{

q +
k−1∑
ν=1

ϕν
ν · qν

}
≤ b ·

{
ϕ−1

k +
k−1∑
ν=1

ϕν
ν · ϕ−ν

k

}
=

= b · ϕ−k+1
k ·

{
ϕk−2

k +
k−1∑
ν=1

ϕν
ν · ϕk−ν−1

k

}
= b · ϕ−k+1

k · ϕk−1
k = b.

(43)

This shows that the element b = C̃ii′ = Cii′ strictly dominates the sum of the absolute values of the other
components in each row of C + λI and of C̃ − λI. That means, multiplication by a suitable permutation
matrix produces a strictly diagonally dominant matrix and proves regularity of every C̃−λI with C̃ satisfying
(36) and 0 ≤ λ < a.

We proved that for every C̃ ∈ Mk(IR) with (36), the determinant of C̃ − λI is nonzero for 0 ≤ λ < a.
Therefore, the value of the characteristic polynomial p(λ) = det(λI−C̃) of C̃ has the same sign for 0 ≤ λ < a.
Now p(λ) → +∞ for λ → +∞. Therefore, the lemma is proved if we can show p(0) < 0, because in this case
the characteristic polynomial must intersect with the real axis for some λ∗ ≥ a, thus proving ρ0(C̃) ≥ λ∗ ≥ a.

We already proved that every matrix C̃ satisfying (36) is nonsingular. Therefore

12



sign
(
p(0)

)
= sign

(
det(−B)

)
for every matrix B with |B| ≤ C and Bii′ = Cii′ = b. Define

Bij :=

{
Cii′ for j = i′

0 otherwise
.

Then sign
(
det(B)

)
= (−1)k+1 and therefore sign

(
p(0)

)
= (−1)2k+1 = −1. The theorem is proved.

Example 6.7. One can show that, at least for odd n, the bounds in Lemma 6.6 are sharp in the sense that
there are examples with equality in (34) and (35) such that C̃ with (36) exists with ρ0(C̃) = a. Consider

C :=




a b c

c a b

b c a


 with b := ϕ3 · a and c := a/ϕ3 and C̃ :=



−a b −c

−c −a b

b −c −a


 .

Then C11 = ϕ1 · a = a,
√

C12C21 = ϕ2 · a = a and (C12C23C31)1/3 = ϕ3 · a. C̃ is a circulant, and
its eigenvalues compute to P (εk), k = 0, 1, 2 where ε = e2πi/3 and P (x) = bx2 − cx − a (cf.[6]). It is
b − c − a = b(1 − ϕ2

2q
2 − ϕ1q) = b · ϕ−1

3 = a with q := a/b. The other two eigenvalues are complex, thus
ρ0(C̃) = a. The example extends to odd n ∈ IN.

The combination of Lemma 6.4, Theorem 6.5, and Lemma 6.6 gives the key to construct a rank-k perturbation
of A to achieve an upper bound for σ(A,E). The following theorem is the generalization of Theorems 5.1
and 6.5 for cycles of length k, 1 ≤ k ≤ n.

Theorem 6.8. Let A,E ∈ Mn(IR) with nonsingular A and E ≥ 0 be given and define C := |A−1| · E. For
1 ≤ k ≤ n and any ω ∈ Γkn set

0 6= τ :=
(
Πω(C)

)1/k
.(44)

Then for ϕk defined as in Lemma 6.6,

σ(A,E) ≤ ϕk/τ.

In other words, ϕk divided by the geometric mean of the elements of any cycle of C bounds σ(A,E) from
above.

Proof. Let some ω ∈ Γkn and τ from (44) be given and set a := τ/ϕk. If for k = 1 or k = 2 there exists
some ω ∈ Γkn with {Πω(C)}1/k ≥ ϕk · a, then ϕ1 = ϕ2 = 1 and Theorem 5.1 and Theorem 6.5 imply
σ(A,E) ≤ a−1 = ϕk/τ . Therefore, we may assume {Πω(C)}1/k < ϕk · a for all ω ∈ Γkn and k ∈ {1, 2}.
Hence, there is some m ∈ IN, 2 ≤ m ≤ k such that

∀ 1 ≤ µ < m ∀ ω ∈ Γµn : (Πω(C))1/µ ≤ ϕµ · a,

and

∃ ω̃ ∈ Γmn : (Πω(C))1/m ≥ ϕm · a.

After suitable rearrangement of indices we may assume ω̃ = (1, . . . , m), and Lemma 6.4 yields a matrix
C̃ ∈ Mm(IR) with properties i) and ii) of Lemma 6.4 and σ(A,E) ≤ ρ0(C̃)−1. But Lemma 6.6 shows for all
such matrices ρ0(C̃) ≥ a = τ/ϕm. Regarding m ≤ k, the theorem is proved if we can show

t ∈ IN ⇒ ϕt ≤ ϕt+1.(45)

We know ϕ1 = ϕ2 = 1, from the definition (6.8) we see ϕ3 = 1 +
√

2, and for t ≥ 3

Pt+1(x) = x · Pt(x)− ϕt
t.

Hence Pt+1(ϕt) < 0 and ϕt+1 > ϕt. The theorem is proved.

Theorem 6.8 reduces the problem of finding upper bounds of σ(A,E) to finding proper cycles of some length
k of |A−1| · E with large geometric mean corresponding to a suitable rank-k perturbation. This is done in
the following proof of Proposition 6.3.
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Proof. of Proposition 6.3. Corollary 6.2 allows us to assume E > 0. Therefore, |A−1| · E is positive, and
Perron-Frobenius Theory yields existence of a positive eigenvector x ∈ Vn(IR) with |A−1|·E ·x = ρ( |A−1|·E)·
x, ρ( |A−1| ·E) > 0. Define the diagonal matrix Dx ∈ Mn(IR) by (Dx)ii := xi. We may replace A by A ·Dx

and E by E · Dx, because for any nonsingular diagonal matrices D1, D2, σ(A,E) = σ(D1AD2, D1ED2).
This is because |δA| ≤ σ ·E iff |D1 · δA ·D2| ≤ σ · |D1ED2| and A + δA is singular iff D1AD2 + D1 · δA ·D2

is singular (cf. [3]). Then

C := | (A ·Dx)−1| · E ·Dx = D−1
x · |A−1| · E ·Dx and C · (1) = ρ( |A−1| · E) · (1).

That means C is a multiple of a row stochastic matrix. Set ρ := ρ( |A−1| · E).

Denote an index of the maximal component of C in row i by mi. Then either {mi | 1 ≤ i ≤ n } = {1, . . . , n}
or, there is a cycle mj ,mj+1, . . . , mj+k−1, mj+k = mj of length k. That means, with a suitable renumbering,
there is some k ∈ IN, 1 ≤ k ≤ n such that for the upper left k by k principal submatrix of C holds

Cii′ ≥ ρ/n for 1 ≤ i ≤ k,(46)

where i′ is defined as in (6.6).

Then Theorem 6.8, (6.20) and (6.21) imply for ω = (1, . . . , k),

σ(A,E) ≤ ϕk · {Πω(C)}−1/k ≤ n · ϕk/ρ ≤ n · ϕn/ρ.

In the remaining §7, we will replace the bound (30) by giving explicit bounds for γ(n) only depending on n.
An asymptotic bound will be given as well.

7. Explicit bounds for γ(n). The main result in §6 is the upper bound (30) in Proposition 6.3. This
bound is given in terms of ϕk, the positive zeros of the polynomial Pt defind in (28). In the remaining part
of the paper we will give bounds on γ(n) showing the dependence on n by a simple function. Moreover, the
asymptotic behaviour of γ(n) for n →∞ is given.

The polynomials Pt(x) ∈ IR[x] defined in (28) satisfy

Pt(x) = xt−1 − xt−2 −
t−1∑
ν=1

ϕν
ν · xt−1−ν and Pt(ϕt) = 0 for t > 2.(47)

Therefore, for n ≥ 3,

ϕ−1
n +

n−1∑

i=1

ϕi
i · ϕ−i

n = 1.(48)

By (6.20), x +
n−1∑
i=1

ϕi
i · xi is strictly increasing for x > 0. Hence, for x > 0,

x +
n−1∑

i=1

ϕi
i · xi ≤ 1 implies x ≤ ϕ−1

n , that is ϕn ≤ x−1.(49)

We are aiming on a bound of the form

ϕk ≤ c · kα(50)

for some constants c and α. To determine c and α, we notice that if (7.4) is satisfied for 1 ≤ k < n, then

n−1∑

i=1

(
i

n

)αi

≤ 1− c−1 · n−α implies ϕn ≤ c · nα.(51)

This is because the left hand side of (7.5) yields

1 ≥ c−1 · n−α +
n−1∑

i=1

iαi · n−αi ≥ (c · nα)−1 +
n−1∑

i=1

ϕi
i · (c · nα)−i,

and (7.3) implies (c · nα)−1 ≤ ϕ−1
n .
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Therefore, our first step is to derive upper bounds for
n−1∑

i=1

σi with σi :=
(

i

n

)iα

.(52)

σi depends on n and α. We use the abbreviation σi for fixed n and α and omit extra parameters for better
readability. In order to estimate the sum (52), we will split it into 3 parts, which will be bounded individually.
For i ≥ 1 holds

σi+1

σi
=

(
i + 1

n

)(i+1)α

·
(n

i

)(i+1)α

·
(

i

n

)α

=
(

i

n

)α

·
(

1 +
1
i

)(i+1)α

>

(
i

n

)α

· eα,

and therefore

σi <
( n

i · e
)α

· σi+1 for i ≥ 1.(53)

For all β ∈ IR with 1 < β < e and k := dn·β
e e holds k − 1 < n·β

e ≤ k. Then (53) gives

n−1∑

i=k

σi < σn−1 +
n−2∑

i=k

( n

i · e
)α

· σi+1 = σn−1 +
n−1∑

i=k+1

(
n

(i− 1) · e
)α

· σi,

and therefore

σn−1 − σk >

n−1∑

i=k+1

{
1−

(
n

(i− 1) · e
)α}

· σi ≥
n−1∑

i=k+1

{
1−

( n

k · e
)α}

· σi,

and n
k·e ≤ β−1 yields

σn−1 − σk > (1− β−α) ·
n−1∑

i=k+1

σi.

By choice, β > 1, and α ≥ 0 implies (1− β−α)−1 > 1. Therefore,

n−1∑

i=k

σi < (1− β−α)−1 · σn−1 = (1− β−α)−1 ·
(

n− 1
n

)(n−1)α

=: µn(54)

holds for every α ≥ 0, 1 < β < e and k := dnβ
e e. This is the first part of the sum (7.6) for a suitable k to be

determined. Define

f(x) :=
(x

n

)xα

with f ′(x) =
(x

n

)xα

·
{

α · ln x

n
+ α

}
.

For x > 0, f(x) has exactly one minimum at x = n
e . Then f(i) = σi shows

σk ≥ σl for 1 ≤ k ≤ l ≤ n

e
, and σk ≤ σl for

n

e
≤ k ≤ l ≤ n− 1.(55)

Set M := dn/ee. Then k = dnβ
e e satisfies M ≤ k ≤ n, and (55) implies for n ≥ 3,

k−1∑
i=M

σi ≤ (k −M) · σk−1 <

(
nβ

e
+ 1− n

e

)
· f

(
nβ

e

)
<

nβ

e
· f

(
nβ

e

)

≤ n ·
(

β

e

)n βα
e +1

=: νn.

(56)

This is the second part of the sum (7.6). Finally, (7.9) implies

M−1∑

i=1

σi <

(
1
n

)α

+
(

2
n

)2α

+
(

3
n

)3α

+
(

4
n

)4α

·
(n

e

)
=: ξn,(57)

which is the third part of the sum (7.6). The inequalities (54), (56) and (57) together yield

n−α +
n−1∑

i=1

(
i

n

)iα

≤ n−α + µn + νn + ξn for n ≥ 3.(58)
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Next, we show that all three sequences µn, νn, ξn are decreasing for large enough n.
(
1 + 1

n

)n is monotonically
increasing for n ≥ 1, therefore for n ≥ 2,

(
n + 1

n

)nα

≥
(

n

n− 1

)(n−1)α

⇒ µn+1 ≤ µn.

Suppose

n0 ≥
{(

e

β

) βα
e

− 1

}−1

.(59)

Then for n ≥ n0,

1 +
1
n
≤

(
e

β

) βα
e

⇒ (n + 1) ·
(

β

e

) βα
e

≤ n ⇒ (n + 1) ·
(

β

e

)(n+1) βα
e +1

≤ n ·
(

β

α

)n βα
e +1

,

and therefore νn+1 ≤ νn for n ≥ n0 with n0 satisfying (59). Finally, for n ≥ 1 and α > 0.25, 1− 4α < 0 and
therefore

(n + 1)1−4α ≤ n1−4α ⇒
(

4
n + 1

)4α

·
(

n + 1
e

)
≤

(
4
n

)4α

·
(n

e

)
⇒ ξn+1 ≤ ξn.

Summarizing, this proves the following lemma.

Lemma 7.1. Define ϕ1 := 1, ϕ2 := 1 and recursively ϕn to be the positive zero of Pn(x) given in (47). Let
constants c, α ∈ IR, α ≥ ln 2 and 3 ≤ n0 ∈ IN be given with ϕn ≤ c · nα for n < n0. If a constant β ∈ IR,
1 < β < e exists such that (59) is satisfied and µn, νn, ξn defined in (54), (56), (57) satisfy

n−α + µn + νn + ξn ≤ 1 for n = n0,(60)

then

ϕn ≤ c · nα for all n ∈ IN.

Proof. (50) is satisfied for 1 ≤ k < n, and (58) and (7.14) prove the left hand side of (51) for n = n0, and
therefore (7.4) for k = n. The quantities n−α, µn, νn and ξn are decreasing for increasing n. Thus, (7.14)
and therefore (7.4) is valid for all n ≥ n0. By assumption, ϕn ≤ c · nα for n < n0 as well.

For example, for β := 2.697, α := 0.7 and n0 := 3000, one checks by explicit calculation ϕn ≤ 2.321 · nα

for 1 ≤ n ≤ n0. The lower bound (59) for n0 is less than 183, µn < 0.992, νn < 0.0003, ξn < 0.0038, and
n−α < 0.0038 for n = n0. This proves the following result.

Corollary 7.2. For all n ≥ 1, ϕn ≤ 2.321 · n0.7. The difference 2.321 · n0.7 − ϕn is less than 2.8 for
1 ≤ n < 20, and less than 2.0 for 20 ≤ n ≤ 2000.

Summarizing, Corollary 7.2, Proposition 6.3, and Lemma 5.7 prove the following result.

Proposition 7.3. Let A,E ∈ Mn(IR) with nonsingular A and E ≥ 0 be given. Then for all n ≥ 1

1
ρ( |A−1| · E)

≤ σ(A,E) ≤ γ(n)
ρ( |A−1| · E)

,

with

n ≤ γ(n) ≤ 2.321 · n1.7.

The lower bound for γ(n) is sharp.

Finally, we will show the asymptotic behaviour of upper bounds for γ(n). Let α := ln(2 + 2η), η > 0. For
any 1 < β < e and n →∞,

n−α → 0, µn → (1− β−α)−1 · e−α, νn → 0 and ξn → 0.
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For ln β := (2 + η)/(2 + 2η), a short computation yields

(1− β−α)−1 · e−α =
2 + η

2 + 4η + 2η2
< 1.

Hence, for this β and large enough n0, (59) holds and

n−α + µn + νn + ξn < 1 for all n ≥ n0.

Therefore, for large enough c with ϕn ≤ c ·nα for n < n0, Lemma 7.1 implies that ϕn ≤ c ·nα for all n ∈ IN.
Using α > ln 2 proves the following.

Proposition 7.4. Let γ(n) be defined as follows:

γ(n) := inf{σ(A, E) · ρ(|A−1| · E) | A ∈ Mn(IR) nonsingular and 0 ≤ E ∈ Mn(IR) }.
Then γ(n) is finite for all n ∈ IN. Moreover, for any ε > 0 there exists some n0 ∈ IN such that for all n ≥ n0

holds

n ≤ γ(n) ≤ n1+ln 2+ε.(61)

The lower bound in (61) is sharp. †)

In his paper [3], Demmel showed that for the Bauer-Skeel condition number κ(A,E) := ‖ |A−1| · E‖ with
any p-norm, 1 ≤ p ≤ ∞, there holds

1
ρ( |A−1| · E)

=
1

min
D

κ(AD, ED)
,

where the minimum is taken over all diagonal D. Thus, Proposition 7.3 and Proposition 7.4 prove that the
componentwise relative distance to the nearest singular matrix for any weight matrix E ≥ 0 is not too far
from the reciprocal of the smallest condition number achievable by column scaling. The evidence presented
in this paper leads us to the following conjecture.

Conjecture 7.5. For all nonsingular A ∈ Mn(IR) and 0 ≤ E ∈ Mn(IR) holds

1
ρ( |A−1| · E)

≤ σ(A,E) ≤ n

ρ( |A−1| · E)
.(62)

If the conjecture is true, Lemma 5.7 shows that it is sharp.
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