
Computing, Supp\. 2, 157 - 164 (1980)
\J © by Springer- Verlag 1980

Small Bounds for the Solution of Systems of Linear Equations

S. M. Rump and E. Kaucher, Karlsruhe

Abstract

An algorithm is presented to solve a system of linear equations Ax = h of high order. There are no
restrictions for A; A may be a floating-point or interval matrix. The algorithm leads to small, guaranteed
bounds for the solution even for ill-conditioned matrices. It takes about six times the computing time
needs for the usual floating-point Gaussian algorithm with comparable accuracy.

O. Introduction

Here as throughout the paper "solving" always means giving guaranteed, provable
bounds for the exact solution. The approximation of the exact solution may have a
big relative error in case that the condition number is large (which in fact is not
known in general). If there is no (provable) error estimation one is not able to decide
whether an approximation is good or bad. Therefore an algorithm not yielding
guaranteed bounds for the exact solution may cause a lot of damage (e.g. repetition
of expensive experiments etc.) when a poor approximation is regarded as a good
one. With respect to this and other reasons we set a high value on provable bounds
to be computed by the algorithm.

Up to now most of those algorithms are either calculating bounds for the solution in
a brute-force way (naive interval arithmetic) or depending on a first inclusion of the
solution or even for the inverse of the matrix. We are looking for general algorithms
working with single precision but giving a solution of high accuracy and moreover
we wish to avoid the following lacks as well as possible:

computing with bnlysingle precision or without computing residual cor
rections produces intervals of a large width

to start an inclusion of the inverse or of the solution is needed

the algorithm converges slowly or cannot even start for more bad conditioned
problems

there are certain restrictions for the matrix to be satisfied

the algorithm needs a lot of time and (or) space

the algorithm is suitable working only for lower degrees, at most for degrees
less than 50

in general the algorithm cannot use the accuracy of classical methods

the iteration functions have to be inclusion isotone.

J 158 S. M. Rump and E. Kaucher

In the following an algorithm is presented satisfying the properties mentioned
above. Furthermore several improvements have been introduced, especially

computing bounds for a "residual equation",

going in contrast "from the inner to the outer", that means starting with a
certain interval (not necessarily including the solution) and by blowing it up
receiving an inclusion of the solution

using good floating-point approximations as well as possible.

The algorithm is working for floating-point as well as for interval systems and has
been implemented on the UNlY AC 1108 of the University of Karlsruhe. The
algorithm is written in FORTRAN and therefore portable.

Some computational results are given at the end.

1. Theoretical Background

In the paper [4] we presented very general and widely usable theorems concerning
Schauder's Fixpoint Theorem. We now present a special form of the cited .theorem.

Theorem 1. Letf: IW --+ [R" be a continuous mapping. Letfurrher F: I[R" --+ 1[R" be a
given arbitrary function with

1\ XE/=J(X)EF(I),
JEIR"

(1)

where 1[R" denotes the set of n-dimensional interval-rectors over IR. If for an Q E 1[R"
holds

F(Q) ~ Q

'then there exists a fixpoint x off with

.X:E F(Q)

and furthermore

XE n Fi(Q).
;=0

(2)

(3)

(4)

Note the very weak assumptions and the strong results of the theorem, especially
that the interval function F is not assumed to be inclusion monotone or convergent
in any sense.

Now let a system of linear equations Ax = b be given with an n x n-matrix A and an
n-dimensional vector b. We first assume A and b to be real, i.e. A E [R" x" and bE [R".

To apply the theorem above we first have to look for a real functionfand then for
an interval function F satisfying (I). The first idea for f may be the well-known
residual iteration (for invertible A)

f*(y) = y + A- J(b - Ay).

Of course the inverse matrix A -1 is in general not known; so one tries to replace it
by a floating point approximation R ~ A-I :

J(y) = y + R(b - Ay).

For a fixpoint)~of J we have

(5)

rJ
Small Bounds for the Solution of Systems of Linear Equations 159

)~=](f-) = .v + R(b - Af) == R(b - A.\') = O.

If R is not singular, then} is a solution of Ax = b. To find an interval function Fwe
write (5) in the following way

fer) = x + Rb - RAx + y - x - RAy + RAx

= x + R(b - Ax) + (E ~ RA)(v - x)

where E denotes the II x II unit matrix. Now let F be defined as

F(Y) = x + R(b - Ax) + (E - RA)* (Y - x), (6)

then (I) follows immediately. The function (6) occurs for instance in [5]. To get
bounds for the solution of Ax = b we need an interval-vector Q with F(Q) s; Q. To
find it we start with the interval yO consisting only of the point x + R(b - Ax) for a
certain x. Then we iterate

yk+l:= F(}n.) until yk+l s; yk. (7)

x may be any vector; however, we prefer a floating-point approximation.\' for the
solution .\- to get sharp bounds.

If the spectral radius of E - RA is smaller than one then surely A and Rare non
singular. So in this case the last yk+ 1 of (7) contains the unique solution .\- of
Ax = b.

2. Impr(n'ements

First we give a sample for our algorithm; an improved version will follow later.

I) Compute a floating-point approximation R of A - t

2) Compute B: = E e R 0 A by interval arithmetic; if IIBI! ~ I then stop
3) Let.~: = R . b be a floating-point approximation of i
4) YO: = z: = .~EBR 0 (b e A O.\') by interval arithmetic
5) repeat yk+ 1: = Z EBB 0 (yk e.\') until yk+ 1 s; yk.

The operations in a circle always denote an interval operation.

One fundamental improvement is to construct an inclusion for the solution of the
residual equation

Ay = b - Ai

instead of the original equation Ax = b, where .\' is a floating-point approximation
due to step 3). If y is the solution of the residual equation (*) then.~ + y is equal to .\-,
and if an interval Y contains y then .\- is contained in .\' EB Y. If furthermore .v is a
floating-point approximation to y and z the solution of Az = b - A.\' - A.y, then
.~= .\'+ ;i+ z. If Z is an interval containing z, then .\' EB.v EB Z contains .\-.

This method can be continued in an obvious way. However, these computations
make only sense. if the residuals b - A.~ - A.v - ... are computed with higher
accuracy.

For this purpose for instance the algorithm of Boh1cnder [2J can be used or a long
accumulator as described in [3].

In step 3) of the sketched algorithm it is superior not to take R· h as an
approximation of .\' but to iterate with the residual iteration

160 S. M. Rump and E. Kaucher

(8)

In the case of a floating-point computation the problem arises when to stop the
iteration (8). In our algorithm there is no essential dependence on this question.
Here a simple stopping criterion is used which. roughly spoken, guarantees a "win
of at least one decimal digit"' in two iteration steps. So we proceed as follows: First
(8) is executed, where the last iterative' is noted as .~. Then

yO: = R(b - A_~); l + 1 : = yk.+ R(b - ki: - Ayk) . (9)

is executed, where j' denotes the last iterative.

With

YO: = .Y EBR 0 (b 8 A 0 .~8 A 0 n (10)

we proceed in step (5) yielding an interval vector Y, thus .Y E.~ EB Y. The residual
b 8 A O.~8 A 0 Y in (10) has to be computed in double precision interval
arithmetic.

When proceeding in step 5) it turns out that it is better to use a "Einzelscnrittver
fahren", that means to calculate componentwise and using the computed com
ponents at once.

Furthermore an e-expansion wiII be introduced. We define

It follows

10 e : = I .+ d(l) . e * [- I, I]

d(Io r.) = d(l) .+ 21: . d(l) = (I .+ 21:) . del),

(II)

so the width of the interval lis relatively enlarged by 21: and can be interpreted as an
"artificial rounding". We write step 5) now as follows

k:= - I;
rcpcatk:~k.+ I; yk+l:= yk:= ykoe;

for i: = I to 11 do ~ + J : = Zj EBBj 0 (yk 8 }')

until yk+ 1 ~ p; (12)

Here Yj and Zj are the ith component of Y~lI1dZ and Bj the ith row of B, resp. In
practice it turns out that I: = 0.1 is a good value. It should be noted explicitely that
with the e-expansion we achieve an improvement of the speed of convergence.
Regarding (3) one might proceed with

(13)

until yH 1 = yk. However. even computing with double precision interval arith
metic in (13) gives no significant improvement of the bounds.

Obviously, if the matrix A is satisfying special conditions then special improve
ments can be introduced. If. for instance. the matrix A is strong diagonal dominant.
then we can use D-! instead of R as an approximation of A-I. The invcrsc D-1 of
the diagonal of A is very eas'y to compute.

Small Bounds for the Solution of Systems of Linear Equations 161

(14)

We should mention that if a bound a of the spectral radius of E - RA is known and
a « I holds, one might use the formula

IIxO - ,\-11~ _1- 'lixo - xl;1I-a
to give a bound for the solution.~ as is proposedjn 1:1], [6]. But from (14) we get an
inclusion "sphere" for .\-independent of the location of its components. Up to now
there is not general equilibration method known. Therefore all components of
relatively small modulus are overestimated proportional to the maximum differ
ence of the exponents of .,' and so (14) yields in general poor bounds, We avoid this
disadvantage for it is more convenient to estimate bounds for £ using all
information (e.g. the whole matrix A) instead of using the only number a.
Furthermore the execution of (12) is of very low cost compared with whole
computing time and the gained quality of the bounds.

Moreover for a nearly I or a ? I or unknown a the method (\4) does not work.
Remember that a < I in our algorithm is only needed to prove R to be non
singular. This can be done e.g. externally or by proving R . A to be of property AI or
strong diagonal dominant or by some other methods. For the reasons mentioned it
is not worthwhile to include (14) in the algorithm, especially not to complicate the
program unnecessarily.

3. The Algorithm

With the improvements introduced above we can write down the final version of the
algorithm:

1) Compute R ;:::::A -I by Ooating-point arithmetic.
2) Compute C = A 0 Rand B = lee by interval arithmetic. If C is not a matrix

of property AI (or strong diagonal dominant) and IIBII ? I then stop.
3) Set XO = R . b; k: = - I;

repeat k: = k + I; xk+ I = .>!' + R . (b - A.~)
until Ixk+ I - xkl/I-,*I? lO-kl2 or

I~+I - .01/I,~1 < 101-';
the final Xk + I is named x and r: = k + I.

Set yO = R(b - A,~); k : = - I,
repeat k : = k + I ;yk+ I = y* + R(b - A.\' - Ay*)
untiIlyk+ I _ /'1/1/'1 ? 10-*'2 or

Iyk+ I _ /'I/Iykl < .102-, ;
the final yk+ I is named)i and r: = r + k + 1.

4) Compute YO:=Z:=YEBRO(beAO.\,8AOY);k:=-1
by interval arithmetic.

5) repeatk:=k+ I; yk+I:= }ri<:= }ri<:e,

for i:= I to 11 do }~+ I := Zj (f) Bj 0(yk e)-;)
until yk+1 ~ y* or {k > 2.25' r - I} = :bool;
if bool then stop.

6) The final yk + I is named Y and ,\-E.\' EB Y.

\

S. M. Rump and E. Kaucher

Rcmarks. In step I) the Gauss-Jordan algorithm \\~ith pivoting is used. It turned
out to be better than the Gaussian elimination method. In step 3) and 4) only the
residuals are to be computed in double precision. I denotes the number of digits of
the mantissa of the computer. The exit stop means that the algorithm fails to
compute bounds and may be repeated with higher accuracy.

It is very easy to extend the algorithm to irite'rval" equations. Just replace every
interval matrix A or interval vector b by the midpoint m(A) or m(h) where A or b is
occurring in a floating-point computation, resp.

4. Complexity

Let ~I be the cost to compute a floating-point approximation for .\:and :X2 be the
cost to compute bounds for .\:with the presented algorithm, both \vith comparable
accuracy. As a measure for the additional costs to compute bounds we take the ratio

~2

P =;;
W.l.o.g. we use the Gaussian elimination method with r residual iterations (step 3»
to compute a floating-point approximation. Then (neglecting linear terms in 11) we
get Ct.l ~ n3/3 + 2m2•

Adding the additional computing times for the steps I) to 5), where step 5) was
executed s times, yields (neglecting linear terms)

(X2 ~ 2.'13 + n2(3r + 4s + 4)

~ 6 . :XI + 112(- 9r + 4s + 4).

So

p ~ 6 + - 9r + 4s + 4
11/3 + 2r

can be estimated as follows: If s ~ (9r - 4)/4 then p ~ 6, otherwise p ~ 6 .
{I + (2s - 3.5r)/n}. In fact we have p = 6 + 0(1/11); in the algorithm p ~ 6 is

satisfied. If the algorithm fails (via exit: stop) and is repeated with doubled accuracy
etc., the finally p is in the most pessimistic case estimated by p ~ 6 . L~04 - i =
6 '} = 8. It is remarkable that p is independent of 11 and the condition number of A.

5. Empirical Results

The empirical results given were computed on the UNIVAC 1108 of the University
of Karlsruhe with 1= 8t decimal digit accuracy for single precision. All computing
were done in single precision arithmetic except the residuals. which were computed
in double precision but stored in single precision. First we give an example to show
what happens when only few iterations are executed in step 3). We take the Hilbert
7 x 7-matrix, where the coefficients are rational integers and b = (I, ... , I). The
condition number is 4.8 . 108 and (J less than 0.55. Due to 3) we have r = 6 iterations
and we get for the first component .

Small Bounds for thc Solution of Systcms of Lincar Equations

of .\.k: 11.658, 5.336, 7.594, 6.788 and

of /: 0.2884,0.1853,0.2221, 0.209.

With the final values for .Xand)"";we get

163

.X+)"";= 6.?9~,

far away from the exact value 7.0. With yo = [0:21 36253bb] we get after 9 iterations
of step 5)

.~ E [6.999999471,7.00000029'4]

with an accuracy of 7 correct decimal positions. By the way, using the estimation
(14) we would get the bad inclusion:

X E [- 21.96,35.95].

If we would have 18 iterations in step 3) the relative error bound of the final
inclusion would have been bounded by 5 . 10-11• We see that in special cases it
might be better to iterate a bit longer· in step 3); however, it is not necessary to
achieve good results.

Finally, we give a sample of some bad-conditioned matrices of higher degree.

degree(A) cond(A) :;;at least guarantced decimal
n=

IIAII'IIRII =positions in each component
[Iog(d(y)/1I Yjl)]

25

3.1 . 10712 9
50

9, 107II 10
100

2.6' 10812 16
150

8, 10713 8

200

6, 10713 3
200

7· 10713 4
200

5, 10714 4 s p

2 3.4
3 4.0
4 4.1
2 5.1
I 5.7
2 5.7
I 5.6

The maximum degree 200 is caused by the limited storage of the UNIY AC 1108 and
is no bound for the algorithm.

6. Conclusion

A fast direct method to 'solve an arbitrary system of linear equations is the well
known Gaussian elimination. However, we have seen that the result may be
arbitrary false without taking any precautions (see Hilbertrmatrix). Even if the
residual iterations "seem" to converge, one is not sure of the true value of the
solution. To achieve guaranteed bounds for the s01ution one needs a special
algorithm (using a specified rounding). We presented such an algorithm with the
following advantages:

any Ooating-point algorithm to achieve a good approximation of the solution
is usable

:3 164
S. M. Rump and E. Kaucher

there is no restriction on the matrix or the right-hand side

it is working for interval-matrices, too

no inclusion for the solution or the inverse matrix is needed

interval arithmetic is used very la.te _

the algorithm is very fast.

After finishing the algorithm with step 6) it is proved, that

A is not singular

Ax = b is uniquely solvable

exact bounds for the solution are given.

When the residuals ar~ computed with double precision, we got the following
experimental results:

matrices with a condition number up to J08 can be trieved when single
precision has an 8 decimal digit mantissa

in step 4) usually 4, in very bad conditioned cases up to 16 iterations are
necessary

in step 5) one iteration is necessary, ~n very bad conditioned cases up to four

. with an 8 decimal digit mantissa at least 10 decimal digits accuracy is achieved
in all components of the solution.

The computing time on the UNIVAC 1108 at the University of Karlsruhe were 2
minutes for degree 100 and 12 minutes for degree 200; the computing time for the
'Gaussian elimination were always t, independent of the degree. The algorithms
were programmed in ALGOL and FORTRAN and are available.

References

[1] A1efeld, G., Apostolatos. N.: Praktische Anwendung Yon Abschatzungsformeln bei Iterations
verfahren, Bericht des Instituts fur Angewandte Mathematik und Rechenzentrum der Universitat
Karlsruhe, Januar 1968, 9 p.

[2] Bohlender, G.: Floating-point computation offunctions with maximum accuracy. IEEE Computer
Society, Symposium on Computer Arithmetic, Dallas 1975, pp. 14-23.

[3] Kaucher, E .. Klatte, R., Rump, S. M.: Der dynamische Intervallrechner, Bericht des Instituts fUr
Angewandte Mathematik der Universitat Karlsruhe, September 1978, 15 p.

[4] Kaucher, E., Rump, S. M.: Generalized iteration methods for bounds of the solution of fixed point

operator equations. (This volume.)
[5] Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken.

Computing 4, 182-201 (1969).
[6] Kulisch, U.: Grundzuge der Intervallrechnung. Oberblicke Mathematik 2 (Laugwitz. D., ed.),

pp. 51-98. Mannheim: Bibliographisches Institut 1969.

Dipl.-Math. S. M. Rump
Dr. E. Kaucher

Institut fur Angewandte Mathematik
Universitiit Karlsruhe
Kaiserstrasse) 2
0-7500 Karlsruhe

Federal Republic of Germany

