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Abstract The result of a floating-point operation is usually defined to be the floating-
point number nearest to the exact real result together with a tie breaking rule. The
analysis of numerical algorithms is often solely based on the first and/or the second
standard model specifying the maximum relative error with respect to the true and/or
to the computed result, respectively. In this note we take a more general perspec-
tive. For an arbitrary finite set of real numbers we identify the rounding to minimize
the relative error in the first or the second standard model. The optimal “switching
points” are the arithmetic or the harmonic means of adjacent floating-point numbers.
Moreover, the maximum relative error of both models is minimized by taking the ge-
ometric mean. If the maximum relative error in one model is α, then α/(1−α) is the
maximum relative error in the other model. Those maximal errors, the unit roundoff,
are characteristic constants of a given finite set of reals: The floating-point model to
be optimized identifies the rounding and the unit roundoff.
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1 Introduction

Usually floating-point arithmetic over a finite set F ⊆ R is introduced by defining the
result of a floating-point operation op ∈ {+,−,∗, /} to be fl(aopb) for a,b ∈ F and a
rounding to nearest fl : R→ F. The rounding is unique up to a tie breaking rule.

More generally, rounding error analysis is often based on the first or the second
standard model [2, Section 2]. The first standard model of arithmetic declares

a,b ∈ F : fl(aopb) = (aopb)(1 +δ), |δ| 6 u, op = +,−,∗, /, (1.1)

while the second standard model assumes

fl(aopb) =
aopb
1 +δ

, |δ| 6 u. (1.2)

This is true for all a,b ∈ F as long as no overflow or underflow occurs, our general
assumption for this note. For F denoting the set of IEEE 754 binary64 floating-point
numbers [3] the relative rounding error unit u := 2−53 is used for both models.

In the following we assume an arbitrary finite set F ⊆ R to be given. Without fur-
ther assumptions we analyze best possible approximation properties of real numbers
by elements in F. For minimizing the relative error with respect to the true result,
i.e. the first standard model, this is clearly rounding to nearest. However, we may
alternatively and also simultaneously minimize the relative error with respect to the
second standard model.

The finiteness of F implies that a small relative error cannot be achieved for real
numbers which are very large or very small in absolute value. To state that more
precisely we define the normal range1 of F by

%(F) := [minF<0,maxF<0]∪ [minF>0,maxF>0] ⊂ R (1.3)

and assume %(F), ∅. Zero may be inF or not, but 0 < %(F) by (1.3). Here x>maxF>0
or x < minF<0 corresponds to overflow, and maxF<0 < x < minF>0 to underflow.
Note that %(F) consists of all real numbers in one of the two intervals in (1.3).

2 Main results

The smallest possible constant u for the first standard model (1.1) is characterized by

α := α(F) = sup
x∈%(F)

min
f∈F

∣∣∣∣∣ f − x
x

∣∣∣∣∣ . (2.1)

Note that the minimum is taken over all elements f ∈ F, whereas x is restricted to
the range of F. The constant α minimizes the relative error with respect to x, i.e. the
maximum error of the first standard model (1.1). It is a characteristic constant of a
given set F.

1 For the standard formats F in IEEE 754 the range could be slightly wider: For f denoting the rounded-
to-nearest result in Fwith infinite exponent range, return this f if it belongs to Fwith the bounded exponent
range. Since we are aiming on general sets F, there is no notion of “exponent range”.
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For a given x ∈ %(F), denote a minimizing f ∈ F in (2.1) by fl(x). Definition (2.1),
the continuity of |( f − x)/x| and the finiteness of F imply that fl(x) is unique up to
finitely many real numbers in %(F). The latter are called the switching points of the
otherwise uniquely defined rounding fl: %(F)→ F.

The concept can be extended to fl: R→ F, so that any rounding to nearest fl : R→
F with |fl(x)− x| = min{| f ′− x| : f ′ ∈ F} for all x ∈ R satisfies

α = sup
x∈%(F)

∣∣∣∣∣fl(x)− x
x

∣∣∣∣∣ , (2.2)

no matter how ties are rounded. The switching points are the arithmetic means of
adjacent elements in F.

The rounding defines the floating-point operations. For rounding to nearest fl : R→
F, the maximum error for the second standard model (1.2) is given by

β := β(F) = sup
x∈%(F)

∣∣∣∣∣fl(x)− x
fl(x)

∣∣∣∣∣ . (2.3)

Since the supremum is taken, the definition of β is independent of a tie breaking rule.
Thus, α and β are well defined and are characteristic invariants of the set F, and they
are related as follows.

Lemma 2.1 Let finite F ⊆ R with %(F) , ∅ be given. If the positive and the negative
parts of %(F) consist of at most one element, then α = β = 0. Otherwise,

α =
β

1 +β
= max{

∣∣∣∣∣g− f
g + f

∣∣∣∣∣ : f ,g adjacent in %(F) with f g > 0} < 1 (2.4)

for α and β defined by (2.1) and (2.3), respectively.

Proof If the positive and/or negative part of %(F) is empty or consists of only one
element, there is nothing to prove for that part. Let fixed but arbitrary positive adjacent
elements f ,g ∈ F∩%(F) be given with 0 < f < g. For x ∈ [ f ,g] we have fl(x) ∈ { f ,g},
and clearly |fl(x)− x|/|x| is maximized for x = m := ( f + g)/2. This maximum is

α :=
m− f

m
=

g−m
m

=
(g− f )/2
(g + f )/2

=
g− f
g + f

.

This implies in particular α < 1. For increasing x ∈ [ f ,m) the function | f − x|/| f | in-
creases, and for increasing x ∈ (m,g] the function |g− x|/|g| decreases. For x := m−ε
and sufficiently small ε > 0 we have fl(x) = f and

| f − x|
| f |

=
(g + f )/2−ε− f

f
=

g− f
2 f
−O(ε).

For x := m +ε and sufficiently small ε > 0 we have fl(x) = g and

|g− x|
|g|

=
g− (g + f )/2−ε

g
<

g− f
2g

<
g− f
2 f

.
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Thus
β := sup{

∣∣∣∣∣fl(x)− x
fl(x)

∣∣∣∣∣ : f 6 x 6 g} =
g− f
2 f

.

Moreover,

α

1−α
=

(g− f )/(g + f )
(g + f −g + f )/(g + f )

=
g− f
2 f

= β and therefore α =
β

1 +β
.

A similar argument applies to negative adjacent elements f ,g ∈ %(F), so that on every
such interval [ f ,g] the maximal α and β are related by β = α/(1−α). Since f ,g are
chosen arbitrarily and since the mapping α→ α/(1−α) is increasing for 0 6 α < 1,
the proof is finished. ut

For F denoting the set F of IEEE 754 binary64 floating-point numbers barring
underflow we may restrict x in Definition (2.1) to the interval [1,2). Abbreviating
u := 2−53, the maximum is achieved for x = 1 + u, the midpoint of 1 and its successor
in F. It follows α = u/(1 + u) for the first standard model, and β = u for the second
one, the characteristic constants of F. In the literature (e.g. [2]) the same constant u is
used for both standard models. This improvement for the first model was also noted
in [4].

Next we ask for a rounding realizing the smallest possible constant u for the
second standard model (1.2). The corresponding characteristic constant is defined by

w := w(F) = sup
x∈%(F)

min
f∈F\{0}

∣∣∣∣∣ f − x
f

∣∣∣∣∣ . (2.5)

For given x ∈ %(F) we first identify ϕ ∈Fminimizing |ϕ− x|/|ϕ|. If x ∈F, then clearly it
suffices to take ϕ := x. Otherwise the definition (1.3) of the range implies the existence
of adjacent f ,g ∈ F∩%(F) with f < x < g. The function |ϕ− x|/|ϕ| decreases on ϕ ∈
(0, x] and increases on ϕ ∈ [x,∞), so that ϕ ∈ { f ,g}. For increasing y ∈ [ f ,g] the ratio
| f − y|/| f | increases and |g− y|/|g| decreases. Equality is achieved for y := h( f ,g) :=
2( 1

f + 1
g )−1, the harmonic mean of f and g, because∣∣∣∣∣ f − y

f

∣∣∣∣∣ =
2 f g/( f + g)− f

f
=

g− f
g + f

=
g−2 f g/( f + g)

g
=

∣∣∣∣∣g− y
g

∣∣∣∣∣ . (2.6)

Thus ϕ minimizing |ϕ− x|/|ϕ| is f for x ∈ [ f ,h( f ,g)), it is g for x ∈ (h( f ,g),g], and is
any of f or g if x = h( f ,g). Hence a rounding gl : %(F)→ F with the property∣∣∣∣∣∣gl(x)− x

gl(x)

∣∣∣∣∣∣ = min
f∈F

∣∣∣∣∣ f − x
f

∣∣∣∣∣
is characterized by being a projection and satisfying

gl(x)


= f for x ∈ [ f ,h)
∈ { f ,g} for x = h
= g for x ∈ (h,g]

(2.7)

for x ∈ [ f ,g] with adjacent f ,g ∈ %(F) and h denoting the harmonic mean of f and g.
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For rounding to nearest the switching point is the arithmetic mean of adjacent
elements f ,g ∈ F, now it is the harmonic mean. In both cases there is freedom about
the tie without jeopardizing the minimization properties.

For a rounding gl : %(F)→ F with (2.7) we showed

w = w(F) = sup
x∈%(F)

∣∣∣∣∣∣gl(x)− x
gl(x)

∣∣∣∣∣∣ , (2.8)

minimizing the error of the second standard model (1.2). Note that w, just like α,
solely depends on F. Using the rounding gl : %(F)→ F with (2.7) to minimize the
second standard model (1.2), the maximum error for the first standard model (1.1) is
given by

v := v(F) = sup
x∈%(F)

∣∣∣∣∣gl(x)− x
x

∣∣∣∣∣ . (2.9)

As before we will show that v is invariant for any rounding gl : R→ F with (2.7).
Thus v and w are well defined and are again characteristic invariants of the set F. For
any F, the invariants α,β,v,w are related as follows.

Lemma 2.2 Let finite F ⊆ R with %(F) , ∅ be given. Let v, w, α and β as defined in
(2.9), (2.5), (2.1) and (2.3), respectively. If the positive and the negative parts of %(F)
consist of at most one element, then v = w = 0. Otherwise,

v =
w

1−w
= max{

∣∣∣∣∣ g− f
2min{| f |, |g|}

∣∣∣∣∣ : f ,g adjacent in %(F) with f g > 0} (2.10)

and therefore
v = β and w = α < 1. (2.11)

Proof If the positive and/or negative part of %(F) is empty or consists of only one
element, there is nothing to prove for that part. Let fixed but arbitrary positive adjacent
elements f ,g ∈ F∩%(F) be given with 0 < f < g. By (2.6) the ratio |gl(x)− x|/|gl(x)|
is maximal for x being the harmonic mean of f and g. That maximum value is (g−
f )/(g+ f ), so that applying this argument to the negative part of %(F) and using (2.4)
shows w = α < 1.

The supremum of the ratio |gl(x)− x|/|x| is also achieved for the harmonic mean
x := 2 f g/( f + g), and using x− f < g− x it is equal to

g− x
x

=
g

2 f g/( f + g)
−1 =

g− f
2 f

=
α

1−α

for α := (g− f )/(g+ f ). Applying the same argument to the negative part of %(F) and
using (2.9) and (2.4) implies

v = sup{
∣∣∣∣∣ g− f
2min{| f |, |g|}

∣∣∣∣∣ : f ,g adjacent in %(F) with f g > 0} =
α

1−α
.

A computation using (2.4) yields β = α/(1−α), and the results follow. ut
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For a given set F ⊆ R, knowing one of the invariants v, w, α or β means knowing
the others. Choosing the appropriate rounding fl or gl, i.e. the switching points being
the arithmetic or the harmonic mean, the maximum error for both models is the same.

For any finite set F one invariant can be computed using (2.4) or (2.10), then the
other invariants follow. As an example consider a logarithmic number system (LNS)

F := {ck : k ∈ Z,k1 6 k 6 k2} for 1 < c ∈ R. (2.12)

Earliest references of this well studied concept include [5,7,6]; see [1] and the litera-
ture cited over there for recent publications. Assume the integers k1,k2 satisfy k1 < k2
to ensure that %(F) has at least two elements. Then %(F) = [ck1 ,ck2 ], and (2.10) yields

v =
ck+1− ck

2ck =
c−1

2
and w =

v
1 + v

=
c−1
c + 1

.

These characteristic constants are the same for F∪ (−F) or for F∪ {0} ∪ (−F). The
elements could be stored by the integer exponent. If the product or quotient of ele-
ments in F is in %(F), then they are in F. In terms of floating-point operations this
means that multiplication and division are error-free if no over- or underflow occurs.

Moreover, those sets bear the advantage that the maximum relative rounding error
for the first and for the second standard model is attained on each interval [ f ,g] of
adjacent elements in %(F). In contrast, there is a factor of up to β for floating-point
systems to base β, depending on whether the interval [ f ,g] is slightly larger or smaller
than a power of β.

A possible choice is c := 2ε for ε := 2−52. Spending one bit for the sign, integers up
to about ±262 can be stored in 64-bit, so that the positive range is about [2−1024,21024],
similar to IEEE 754 double precision. The relative rounding error unit is then about
0.77 ·10−16 compared to about 1.11 ·10−16 in double precision. With this choice of c
powers of 2 are in F, however, as a disadvantage, F contains no other integers.

3 Conclusion

From the perspective of a rounding function the situation for binary64 can be sum-
marized as follows. If the switching point for the rounding is set to the arithmetic
mean of adjacent elements, that is the usual rounding to nearest, then we obtain the
bound β = 2−53 for the second standard model, and α = 2−53/(1+2−53) is the optimal
error bound for the first standard model.

Defining the switching points to be the harmonic mean of adjacent elements,
the invariants change places: The maximum relative error with respect to x (the first
standard model) is v = 2−53, whereas the maximum error relative to its rounded value
f (the second standard model) becomes w = 2−53/(1+2−53). Now w = α becomes the
optimal error bound for the second standard model.

By continuity there must be a switching point between the harmonic and the arith-
metic mean for which both the maximum relative error of all x with respect to both
standard models is bounded by the same constant. Using the arithmetic-geometric
mean inequality one verifies that for adjacent floating-point numbers 0 < f < g the
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maximum relative error for both models is equal to
√

g/ f −1 for x equal to the geo-
metric mean

√
f g, and that this relative error is maximized for f = 2e and its succes-

sor g = (1 + 2v)2e.
It follows that for the switching points x := sign( f )

√
| f g| the relative errors of both

the first and the second standard models are bounded by the same characteristic con-
stant

√
1 + 2v−1, slightly less than v and slightly larger than v/(1 + v). The relation

harmonic 6 geometric 6 arithmetic mean finds its counterpart in the corresponding
maximal relative errors v/(1 + v) 6

√
1 + 2v−1 6 v.
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