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On a quality measure for interval inclusions
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Abstract Verification methods compute intervals which contain the solution
of a given problem with mathematical rigour. In order to compare the quality
of intervals some measure is desirable. We identify some anticipated properties
and propose a method avoiding drawbacks of previous definitions.
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1 Introduction

Verification methods prove that a given a numerical problem is solvable and
produce mathematically rigorous error bounds for the solution of the problem.
For an overview of verification methods cf. [5,8] and [in Japanese] [6].

When developing a new verification method, it is desirable to have some
measure for the quality of an inclusion. We consider an inclusion interval X
as error bounds for an unknown real quantity x̂, i.e., x̂ P X. Depending on the
situation, we use synonymous notations for an inclusion interval, namely

X “ rx, xs :“ tx P R : x ď x ď xu

“ xm, ry :“ tx P R : m´ r ď x ď m` ru .
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A colloquial notation is xm, ry “ m˘ r. Consider

X1 :“ r´1, 2s, X2 :“ r´1, 1s, and X3 :“ r1, 2s .

It seems that all three intervals do not give much information, only X3 proves
at least that x̂ is positive. Now let A be a symmetric matrix with }A}2 “ 1010

and let the Xν be inclusions of an eigenvalue. Then all three inclusions Xν

reveal that the condition number σmaxpAq
σminpAq

of A is at least 5 ¨ 109.

The quality of an interval inclusion depends on the context. Having said
that, it may nevertheless be desirable to define a measure for the quality of an
interval, knowing the pros and cons of such an attempt. There is some folklore
about such measures, however, to that end we found only one paper in the
literature, see below.

In this note we develop some criteria for such a measure. We start with
some theoretical considerations in the next section, and conclude with some
practical remarks.

2 Theoretical considerations

Let % : RˆRě0 Ñ Rě0 be a function for the quality %pm, rq of xm, ry. The letter
% may remind of “relative error”, however, we prefer the wording “quality”
because mathematically % may be interpreted as relative error, but only in a
certain sense (see below). Note that %pm, rq “ 0 means best quality. We first
list some desirable properties of such a function:

I) non-negativity %pm, rq ě 0

II) zero value %pm, rq “ 0 ô r “ 0

III) scaling invariance %pXq “ %pαXq for 0 ‰ α P R

IV) monotonicity for fixed m r1 ą r ñ %pm, r1q ą %pm, rq

V) monotonicity for fixed r |m1| ą |m| ñ %pm1, rq ă %pm, rq

The rationale is as follows. Properties I) and II) are clear. As for III), the
quality of an inclusion interval X may well depend on the scaling for different
settings, see the above example. However, without knowing any setting, invari-
ance with respect to scaling seems the only option. For the monotonicity, an
interval with constant midpoint but increasing radius gives less information,
and with constant radius but increasing absolute value of the midpoint1 the
interval contains, in some sense, more information.

Moreover, we may demand % to be continuous in m and r except for
m “ r “ 0 because for r ą 0 it follows %p0, 0q ă %p0, rq “ %p0, 1q. As for

1 Note that III) implies %pm, rq “ %p´m, rq.
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differentiability note that %pm, rq “ %p´m, rq would imply d%
dm p0, rq “ 0 for all

r ą 0, but then V) and I) lead to a contradiction. Therefore we require

VI) continuity %pm, rq is everywhere continuous except for m “ r “ 0

VII) differentiability %pm, rq is everywhere differentiable except for m “ 0

Having listed the desired properties, we look for possible candidates. An ob-
vious choice is to use the midpoint m of X “ xm, ry as an approximation and
define %pXq to be the largest relative error of x P X with respect to m:

%1pm, rq :“ max
xPX

ˇ

ˇ

ˇ

ˇ

x´m

m

ˇ

ˇ

ˇ

ˇ

implying %1pXq “

ˇ

ˇ

ˇ

ˇ

x´ x

x` x

ˇ

ˇ

ˇ

ˇ

. (2.1)

All properties I) to VII) are satisfied, however, for a small or zero unknown
real quantity x̂ the midpoint may be zero causing an obvious problem. In this
case %1p0, rq is infinite no matter how small the radius r is.

A remedy is to use the maximum over the minimal relative error against
some x̃ P X, i.e.,

%2pXq :“ min
x̃PX

max
xPX

ˇ

ˇ

ˇ

ˇ

x̃´ x

x̃

ˇ

ˇ

ˇ

ˇ

. (2.2)

That is the definition in [4], the only reference we found. It is shown that

%2pm, rq “

$

’

&

’

%

r

|m|
if |m| ´ r ě 0

2r

maxp|m´ r|,m` rq
otherwise .

The properties I) to VI) are satisfied for %2, however, differentiability VII) is
not met:

%2p1, 1` eq “

$

’

&

’

%

1` e if e ď 0

1` e

1` e{2
if e ě 0 .

As has been mentioned there is some folklore about quality measures, in par-
ticular

%3pXq :“
x´ x

|x| ` |x|
(2.3)

with 0{0 :“ 0. That avoids the zero midpoint problem, but for all intervals X
containing zero x ď 0 ď x implies

0 P X : %3pXq “
x` |x|

|x| ` x
“ 1 .

The properties I) to VI are satisfied, but %3 is not differentiable for one end-
point zero:

%3pr0, esq “

$

’

&

’

%

1 if e ą 0

e

|e|
if e ă 0 .
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In order to find a function % sharing all properties I) to VII) but avoiding the
problems for zero midpoint we use, in view of %pm, rq “ %p´m, rq, the ansatz

%pm, rq “
α|m| ` βr

γ|m| ` δr

for constants α, β, γ, δ to be determined. Property II) implies α “ 0 and γ ‰ 0,
so that using III) and some scaling we can restrict our attention to

%pm, rq “ ψ
r

ϕ|m| ` r

with a scaling factor ψ defining the maximum of %. Rewriting %pm, rq “

ψ
´

ϕ |m|r ` 1
¯´1

it is easy to verify that this definition satisfies all proper-

ties I) to VII) for any ϕ ą 0. In order to find a suitable choice for ϕ we look
at intervals with fixed left endpoint x “ ´1 and right endpoints ´1 ď x ď 1,
that is Xr :“ x´1` r, ry for 0 ď r ď 1. Then

%pXrq “
ψr

ϕp1´ rq ` r
.

A good choice may be ϕ “ 1 in which case %pXrq grows linearly with r. Hence,

%pm, rq :“
ψr

|m| ` r
.

Now it is a matter of taste to fix ψ. We may feel that %pr0, 1sq “ 1 should hold.
That implies ψ “ 2, so that we define

%4pm, rq :“
2r

|m| ` r
(2.4)

implying %4pm, rq ď 2 for all m, r. For X “ rx, xs it follows

%4pXq “ min

ˆ
ˇ

ˇ

ˇ

ˇ

x´ x

x

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

x´ x

x

ˇ

ˇ

ˇ

ˇ

˙

with the convention 0
0 “ 0, the minimal relative error of the endpoints against

each other. In verification methods magpXq :“ maxt|x| : x P Xu is called the
magnitude of an interval. Hence %4pXq “ diampXq{magpXq. An advantage
over %3 is that no case distinction is necessary in the computation. An almost
identical formulation

%14pXq “
x´ x

maxp|x|, |x|, ηq

was suggested by Demmel [1]. It is equal to %4 except that it is tailored to
binary64 of the IEEE754 [3] arithmetic standard by using the gradual under-
flow unit, i.e., the smallest positive floating-point number η “ 2´1074. If the
endpoints x, x are binary64 floating-point numbers, then %4pXq “ %14pXq.

In Figure 2.1 the four definitions %ν are compared for fixed midpoint m “ 1
and for fixed left endpoint x “ ´1.
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Fig. 2.1: The functions %ν for fixed midpoint m “ 1 (left) and fixed left
endpoint -1 (right)

The first function %1 [relative error against midpoint, red] shows a linear
behaviour for fixed midpoint and growing radius, and tends to infinity if the
midpoint approaches zero. As discussed the second function %2 [Kreinovich’s
definition, black with circles] it is not differentiable at m “ r. The “folklore”
function %3 [green] is not differentiable for zero endpoint and flat equal to the
maximal value 1 for intervals containing zero, no discrimination in terms of
small or large radius. Moreover, it is not concave. Finally, the new definition %4
[blue] is, as %1, linear for fixed midpoint and growing radius, and everywhere
differentiable except for m “ 0.

The first three definitions coincide in the left picture for X “ x1, ry with
r P r0, 1s, and in the right picture for X “ r´1,´1`ds with d P r0, 1s. In both
pictures Kreinovich’s definition %2 and the proposed %4 coincide for r ě 1
and d ě 1, respectively. So the proposed measure %4 differs from the other
definitions for r P r0, 1s and d P r0, 1s in the left and right picture, respectively.
This ensures differentiability everywhere except zero midpoint.

The definition %4pXq “
diampXq
magpXq with the interpretation 0

0 “ 0 can be used

for complex intervals as well. It replaced the function relerr in the latest
Version 13 of INTLAB [7], the Matlab/Octave toolbox for reliable computing.
Executable Matlab/INTLAB code is as follows:

function res = relerr(X)

diamX = diam(X);

res = diamX;

index = find(res); % careful with sparse input
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if any(index(:)) % diam(X)./mag(X)

magX = mag(X);

res(index) = res(index)./magX(index);

end

res(isinf(diamX)) = 1;

The code is working for scalar, vector and matrix input X, full or sparse, real
or complex. The “if”-statement takes care of 0

0 , and of sparse input avoiding
full output.

3 Practical considerations

Our definition %4pXq seems a good theoretical measure for the relative error of
an interval X. However, from a practical and numerical point of view, there is
a drawback. Mathematically a small %4pY q means a small forward error, i.e.,
a small relative error with respect to the true result. But numerically we can
only hope for a small backward error, introduced and popularized by Wilkinson
[11,12], see also [2]. The backward error of an approximation x̃ is small if x̃
is the true solution of the original problem after a small perturbation of the
input data. Without further measurements such as a residual iteration that is
about the best what we can expect.

Now consider, similar to our introductory problem, an approximation x̃ “
1.23456 ¨ 10´10 of a singular value of a matrix A with }A}2 “ 1 to the true
singular value x̂ “ 1.23457 ¨ 10´10. Then %4px̃Yx̂q “ 8.1 ¨ 10´6. If computed
in binary64 equivalent to some 16 decimals precision, the accuracy of x̃ might
be considered as not bad, but far from best possible. With the additional
information of the context }A}2 “ 1, however, we know that this is close to
the best possible approximation we can hope for.

Therefore, from a practical and numerical point of view it seems reasonable
to pass information about the context. We therefore propose a relative accuracy
defined by

αpX, τq :“
diampXq

maxpmagpXq, τq
, (3.1)

where τ is the context information. That implies αpX, }A}2q “ 10´15, a value
we may expect from a practical, numerical point of view. In Version 13 of
INTLAB the function relacc computes the relative accuracy. A typical call
is

alpha = relacc(X,’thresh’,tau);

The following Figure 3.1 illustrates this definition and compares it to the
relative error %4. We compute approximations sk of the singular values of a
square matrix with 1000 rows and condition number 1012. The well accepted
rule thumb says that the approximations sk of the smallest singular values may
be correct to some 4 decimals. The dotted green line2 in Figure 3.1 displays

2 Relative errors zero are set to 10´25 to avoid gaps.
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Fig. 3.1: Relative error and relative accuracy of singular value inclusions.

the values %4pskYσkq, where σk are the true singular values of A. As expected
the relative error increases from 10´14 for the largest to about 10´6 for the
smallest singular values. The dotted blue line displays the relative accuracy
αpX, }A}2q and reflects what we would expect from a numerical point of view.

Additionally we use INTLAB’s routine verifysingvalall to compute in-
clusions Xk of all singular values of A. The solid black line shows the relative
error %4pXq of the inclusions, while the solid line displays the relative accu-
racy αpX, }A}2q. From the black line we might conclude that the inclusions
are of reasonable, but not too good quality for the smallest singular values,
whereas the red line shows that the inclusions are of almost best quality for an
inclusion method without extra iterative refinement. For other problems the
context may be passed similarly.

We want to stress that neither the function relerr nor relacc is a panacea.
As noted at the beginning of this note the judgement of the quality of an
inclusion depends on the context. As an example let matrices R,A be given.
Then }I ´ RA} ă 1 for any matrix norm proves that both R and A are
nonsingular. Typically, a good choice for R is an approximate inverse of A.
Denote by X the stacked columns of an inclusion of the residual I ´ RA. As
an example, we display the first and last two elements in Table 3.1 .

It is well known that one step of iterative refinement in working precision
implies backward stability of the result of Gaussian elimination [9,10]. A for-
ward stable result, i.e., an approximation with close to maximum accuracy
can be achieved with residuals computed in twice the working precision.

The computed X may be applied in some iterative refinement. The intervals
have relatively wide diameters but are small in magnitude. If that is true for
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Table 3.1: Inclusion vector X with relative error and relative accuracy

X relerr(X) relacc(X,’thresh’,norm(A))

r´1.45 ¨ 10´11, 2.18 ¨ 10´11s 1.7 3.6 ¨ 10´11

r´9.09 ¨ 10´13, 2.73 ¨ 10´12s 1.3 3.6 ¨ 10´12

... ... ...

r2.93 ¨ 10´11, 8.00 ¨ 10´11s 0.6 5.1 ¨ 10´11

r0, 3.64 ¨ 10´12s 1.0 3.7 ¨ 10´12

all entries, the wide diameters show that a residual of that quality is not suited
for iterative refinement, so that relerr provides that information. However,
the small magnitude shows that the residuals are good enough to prove that
A is nonsingular, so that relacc provides that information.
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