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Abstract : It is well known that it is an ill-posed problem to decide whether a function has a multiple
root. For example, an arbitrarily small perturbation of a real polynomial may change a double real
root into two distinct real or complex roots. In this paper we describe a computational method for the
verified computation of a complex disc to contain exactly k roots of a univariate nonlinear function. The
function may be given by some program. Computational results using INTLAB, the Matlab toolbox for
reliable computing, demonstrate properties and limits of the method.
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1. Introduction
It is well known that to decide whether a univariate polynomial has a multiple root is an ill-posed problem: An
arbitrary small perturbation of a polynomial coefficient may change the answer from yes to no. In particular a
real double root may change into two simple (real or complex) roots.

Therefore it is hardly possible to verify that a polynomial or a nonlinear function has a double root if not the
entire computation is performed without any rounding error, i.e. using methods from Computer Algebra.

Let a suitably smooth nonlinear function f : K → K for K ∈ {R,C} be given with a numerically k-fold root
x̃. In a recent paper [10] we dealt with the problem as follows. We calculated an inclusion X ∈ IK such that
a slightly perturbed function g has a true k-fold root within X. Moreover, an inclusion of the amount of the
perturbation is calculated. In this paper we also demonstrated a similar method for double roots of a system of
nonlinear equations.

For real or complex polynomials we solved the problem in [9] in a different way. We presented ten methods
to calculate a complex disc containing exactly or at least k roots of the original polynomial. In the present
paper we treat the problem in the same way for general nonlinear functions.

There is not much literature on this problem. In [5] Neumaier gives a similar sufficient criterion, namely that
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|Re f (k)(z)
k!
| >

k−1∑
i=0

| f
(i)(z̃)
i!
| ri−k (1)

is satisfied for all z in the disc D(z̃, r). Under this condition he proves that f has exactly k roots in D. In our
formulation we can omit the (k − 1)-st summand on the right of (1), and we present sharper expressions for the
left hand side in (14), (15) and (25). Moreover, we give a constructive scheme how to find a suitable disc D.

In [3] a general method for systems of nonlinear equations is described based on the topological degree.
However, sometimes significant computational effort is needed.

2. Inclusion of 2 roots
Let a function f : D0 → C being analytic in the open disc D0 be given. We suppose some x̃ ∈ D0 to be given
such that x̃ is a numerically double root, i.e. | f ′′(x̃)| ≫ 0 and

f (x̃) ≈ 0 ≈ f ′(x̃) . (2)

We first give a sufficient criterion for a certain disc Y near x̃ to contain (at least) 2 roots of f .
The analytic function admits for z, z̃ ∈ D0 the Taylor expansion

f (z) =
∞∑
ν=0

cν(z − z̃)ν , (3)

where cν = 1
ν! f (ν)(z̃) denote the Taylor coefficients. Let X ⊂ D0 denote a real interval or complex closed disc

near x̃ such that f ′(x̂) = 0 for some x̂ ∈ X. The assumption (2) implies that it is likely that there is a simple
root of f ′ near x̃, so that the corresponding X can be computed by well-known verification routines [7]. Such
a routine is implemented as Algorithm verifynlss in INTLAB, the Matlab toolbox for reliable computing
([8], see http://www.ti3.tu-harburg.de/rump).

We aim to prove that some closed disc Y ⊂ D0 with X ⊆ Y contains at least 2 roots of f .
We expand f with respect to x̂ and split the series into

f (y) = f (x̂) +
(

1
2 f ′′(x̂) +

∑∞
ν=3 cν(y − x̂)ν−2

)
(y − x̂)2

=: f (x̂) + g(y)(y − x̂)2 .
(4)

Note that g is holomorphic in D0, and that c1 = 0 by assumption. Later we will see how to estimate g(Y); for
the moment we assume that an inclusion interval G with {g(y) : y ∈ Y} ⊆ G is known and 0 < G. With this we
can state the following theorem.

Theorem 1 Let holomorphic f : D0 → C in the open disc D0 be given, and closed discs X,Y ⊂ D0 with
X ⊆ Y . Assume there exists x̂ ∈ X with f ′(x̂) = 0. Define g(y) as in (4) and let G ∈ IC be a complex interval
with g(y) ∈ G for all y ∈ Y . Assume 0 < G, and define the two functions N1,2 : Y → C by

N1,2(y) := x̂ ±
√
− f (x̂)/g(y) . (5)

Assume
Nν(Y) ⊆ Y for ν = 1, 2 . (6)

Then, counting multiplicities, the function f has at least two roots in Y .

Proof. Since g(y) , 0 for y ∈ Y , both N1,2 are continuous functions. Complex intervals are non-empty,
convex, closed and bounded, so Brouwer’s Fixed Point Theorem and (6) imply the existence of y1,2 ∈ Y with
Nν(yν) = yν or

(yν − x̂)2 = − f (x̂)/g(yν) for ν = 1, 2 . (7)

Now (4) implies
0 = f (x̂) + g(yν)(yν − x̂)2 = f (yν) for ν = 1, 2 . (8)

If y1 , y2, the assertion follows. If y1 = y2, then (5) implies f (x̂) = 0, so that x̂ is a double root of f . The
theorem is proved. �

Theorem 1 proves existence of at least 2 roots of f in Y . In the next section we show how to verify existence
of exactly k roots of a function in a disc Y .
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3. Inclusion of exactly k roots
Let again a function f : D0 → C analytic in the open disc D0 be given. Now we suppose some x̃ ∈ D0 be given
such that x̃ is a numerically k-fold zero, i.e.

f (ν)(x̃) ≈ 0 for 0 ≤ ν < k . (9)

Note that this is not a mathematical assumption to be verified. As in the previous section we will give a
sufficient criterion for a certain disc D near x̃ to contain exactly k roots of f . If the derivatives are too large in
absolute value, then it is less likely that the criterion is satisfied. All assertions are true for any x̃ ∈ D0.

As before the analytic function admits for z, z̃ ∈ D0 the Taylor expansion (3). Now let X ⊂ D0 denote a real
interval or complex closed disc near x̃ such that f (k−1)(x̂) = 0 for some x̂ ∈ X. The assumptions imply that
likely there is a simple root x̂ of f (k−1) near x̃, and the corresponding X can be computed as before by Algorithm
verifynlss in INTLAB ([8].

Now we aim to prove that some closed disc Y ⊂ D0 with X ⊆ Y contains exactly k roots of f .
We expand f with respect to x̂ and split the series into

f (y) = q(y) + g(y)(y − x̂)k and g(y) = ck + e(y) (10)

with

q(y) =
k−2∑
ν=0

cν(y − x̂)ν and e(y) =
∞∑
ν=k+1

cν(y − x̂)ν−k . (11)

Note that g is holomorphic in D0, and that ck−1 = 0 by assumption. The minimum of |g(y)| on Y can be
estimated by the maximum of the remainder term |e(y)|. This is possible by the following version of a complex
Mean Value Theorem due to Darboux1.

Theorem 2 Let holomorphic f : D0 → C in the open disc D0 be given and a, b ∈ D0. Then for 1 ≤ p ≤ k + 1
there exists 0 ≤ Θ ≤ 1 and ω ∈ C, |ω| ≤ 1 such that for h := b − a and ξ := a + Θ(b − a)

f (b) =
k∑
ν=0

hν

ν!
f (ν)(a) + ω

hk+1

k!
(1 − Θ)k−p+1

p
f (k+1)(ξ) . (12)

The following proof is due to F. Bünger [1]. For a = b the assertion is trivial, so henceforth we assume a , b.
We first set ℓ := |b − a| and define a function g : [0, ℓ]→ a∪ b by g(t) := a + t b−a

ℓ
. Then |g′(t)| = |b−a|

ℓ
≡ 1. For

F(x) :=
k∑
ν=0

(b − x)ν

ν!
f (ν)(x)

we obtain

F′(x) = f ′(x) +
k∑
ν=1

− (b − x)ν−1

(ν − 1)!
f (ν)(x) +

(b − x)ν

ν!
f (ν+1)(x)

=
(b − x)k

k!
f (k+1)(x) .

With this we obtain for 1 ≤ p ≤ k + 1

|F(b) − F(a)| = |F(g(ℓ)) − F(g(0))| = |
∫ ℓ

0
(F ◦ g)′(t)dt|

≤
∫ ℓ

0
|F′(g(t))||g′(t)|dt =

∫ ℓ
0
| |b − g(t)|k

k!
|| f (k+1)(g(t))|dt

=

∫ ℓ
0

(ℓ − t)k

k!p(ℓ − t)p−1 | f
(k+1)(g(t))|p(ℓ − t)p−1dt

1Thanks to Prashant Batra for pointing to [2] and this theorem

3

Nonlinear Theory sand Its Applications, IEICE, Vol. 1, No. 1, 1–8 c⃝IEICE 2009



≤ (ℓ − t∗)k−p+1

k!p
| f (k+1)(g(t∗))|

∫ ℓ
0

(−(ℓ − t)p)′

=
(ℓ − t∗)k−p+1ℓp

k!p
| f (k+1)(g(t∗))|

for some t∗ ∈ [0, ℓ], where we used |g′(t)| ≡ 1 and |b − g(t)| = ℓ − t. The last expression is equal to

ℓk+1(1 − Θ)k−p+1

k!p
| f (k+1)(a + Θ(b − a))| ,

so that there exists complex ω with |ω| ≤ 1 and

f (b) − f (a) −
k∑
ν=1

(b − a)ν

ν!
f (ν)(a) = F(b) − F(a)

= −ω (b − a)k+1

k!
(1 − Θ)k−p+1

p
| f (k+1)(a + Θ(b − a))| �

Using interval arithmetic we can evaluate an inclusion of ck =
1
k! f (k)(x̂). In fact in the new version of INTLAB

[8] there will be a Taylor toolbox which allows easy and fast computation of Taylor coefficients, approximately
as well an inclusion for some real or complex interval argument.

Using Theorem 2 we can estimate the remainder term e(y) as well. Note that there is some freedom to choose
p. The choice p = k + 1 gives the traditionally looking expansion

f (b) =
k∑
ν=0

hν

ν!
f (ν)(a) + ω

hk+1

(k + 1)!
f (k+1)(ξ) ,

so that we obtain
|e(y)| ≤ |b − a|

(k + 1)!
max
z∈∂Y
| f (k+1)(z)| ∀ y ∈ Y . (13)

For p = k we may split the interval for Θ and obtain |e(y)| ≤ max(β1, β2) with

β1 :=
|b − a|

k!
max
|y−x̂|≤ r

2

| f (k+1)(y)| (14)

and
β2 :=

|b − a|
2k!

max
|y−x̂|≤r

| f (k+1)(y)| , (15)

where r := maxy∈Y |y − x̂|. By the definition (10) this gives a computable lower bound for |g(y)|.
Let a polynomial P(z) ∈ C[z] with P(z) =

∑n
ν=0 pνzν be given with pn , 0. The Cauchy polynomial C(P)

with respect to P is defined by C(P) := |pnxn| −∑n−1
ν=0 |pν|xν ∈ R[x]. By Descartes’ rule of sign C(P) has exactly

one non-negative root, called the Cauchy-bound C(P). It is well known that the Cauchy bound is an upper
bound for the absolute value of all (real and complex) roots of P:

P(z) = 0 ⇒ |z| ≤ C(P) . (16)

In fact is the best upper bound taking only the absolute values |pν| into account. Note that the leading coefficient
pn must be nonzero.

The Cauchy-bound can be defined for interval polynomials as well. For P(z) ∈ IK[z] with P(z) =
∑n
ν=0 pνz

ν

and pν ∈ IK define

C(P) := mig(pn)xn −
n−1∑
ν=0

mag(pν)xν ∈ R[x] , (17)

where mig(pn) := min{|π| : π ∈ pn} and mag(pν) := max{|π| : π ∈ pν}. Then the unique non-negative root C(P)
of C(P) is a root bound for all polynomials P ∈ P:

P ∈ P and P(z) = 0 ⇒ |z| ≤ C(P) . (18)
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The Cauchy-bound for real or complex interval polynomials is easily bounded from above by applying few
Newton iterations on C(P) starting at some other traditional root bound. Note that the iteration converges
quickly to C(P).

With these definitions we can state our main result.

Theorem 3 Let holomorphic f : D0 → C in the open disc D0 and fixed k ∈ N be given, and closed discs
X, Y ⊂ D0 with X ⊆ Y . Assume there exists x̂ ∈ X with f (k−1)(x̂) = 0. Define g(y) as in (10), and let G ∈ IC be
a complex interval with g(y) ∈ G for all y ∈ Y . Assume 0 < G, and define the interval polynomial

P(z) := q(z) +G · (z − x̂)k ∈ IC[z] . (19)

Denote the closed complex disc with center m and radius r by D(m; r). Assume that the Cauchy-bound C(P)
for P satisfies

D(x̂ ; C(P)) ⊂ int(Y) . (20)

Then, counting multiplicities, there are exactly k roots of the function f in D(x̂ ; C(P)).

Proof. Define the parameterized set of polynomials

Py(z) := q(z) + g(y)(z − x̂)k ∈ C[z] . (21)

Note that only the leading term depends on the parameter y. By definition (10) we have f (y) = Py(y). Moreover,
Py ∈ P for all y ∈ Y , so that g(y) , 0 and (18) imply that Py(z) = 0 is only possible for z ∈ D(x̂ ; C(P)). Thus
(20) implies for all y ∈ Y that Py(z) , 0 for all z ∈ ∂Y .

Next define
Py,t(z) := t · q(z) + g(y)(z − x̂)k (22)

and the homotopy function
ht(y) := Py,t(y) = t · q(y) + g(y)(y − x̂)k . (23)

Since q is a polynomial and g is holomorphic, all functions ht are holomorphic as well. The definition of the
Cauchy-bound implies

C(Py,t) ≤ C(Py) ≤ C(P) (24)

for all t ∈ [0, 1] and all y ∈ Y . Thus definition (23) implies that for all t ∈ [0, 1] we have ht(y) , 0 for all
y ∈ ∂Y . We conclude that all holomorphic functions ht must have the same number of roots in Y , in particular
h0 and h1.

For t = 0 we have h0(y) = g(y)(y − x̂)k which has exactly k roots in Y because g(y) , 0 for all y ∈ Y . Hence

h1(y) = q(y) + g(y)(y − x̂)k = Py(y) = f (y)

must have exactly k roots in Y . By (24) for all t ∈ [0, 1] and all y ∈ Y , all roots of Py,t(z) lie in D(x̂ ; C(P)), so
in particular the roots of f . This concludes the proof. �

From a computational point of view the quality of the bound depends directly on the lower bound on |g(Y)|,
so by (10) on the lower bound of ck =

1
k! f (k)(x̂) ∈ 1

k! f (k)(X). The direct computation of 1
k! f (k)(X) by interval

arithmetic can be improved by observing

ck ∈
1
k!

f (k)(x̃) +
1

(k + 1)!
f (k+1)(X) · (X − x̃) (25)

for any x̃ ∈ X. A suitable choice is a point x̃ near the midpoint of X.
It remains the problem to find a suitable inclusion interval Y . Note that necessarily the inclusion interval is

complex: If the assumptions of Theorem 3 are satisfied for some function f , they are by continuity satisfied
for a suitably small perturbation of f as well. But an arbitrary small perturbation of f may move a double real
root into two complex roots.

Since x̂ ∈ X is necessary by assumption, a starting interval may be Y0 := X. However, the sensitivity of a
k-fold root is ε1/k for an ε-perturbation of the coefficients, which is seen as follows.
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For analytic f with k-fold root x̂, define f̃ (x) := f (x) − ϵ for some small ϵ. This represents in some way the
inevitable presence of rounding errors in numerical computations. By continuity, for small enough ϵ there is
small h with f̃ (x̂ + h) = 0, so that

0 = −ϵ + ckhk + O(hk+1). (26)

using the Taylor expansion f (x̂ + h) =
∑

cν f (ν)(x̂)hν. Thus h, the sensitivity of the k-fold root x̂ with respect to
an ϵ-perturbation of the original function, is of the order (ϵ/ck)1/k for small ϵ.

However, the quality of the inclusion X of the simple root of f (k−1) can be expected to be nearly machine
precision.

The polynomial in (19) depends on Y , denote it by PY . The main condition to check is (20). Thus a suitable
candidate for a first inclusion interval is Y1 := D(x̂ ; C(PY0 )). This already defines an iteration scheme, where
Ym+1 ⊂ int(Ym) verifies the conditions of Theorem 3.

However, it is superior for such an interval iteration to slightly “blow-up” the intervals. This process is called
“epsilon-inflation”. The term was coined in [6] and the process was analyzed over there. Thus we define the
iteration as follows:

Y := X
repeat

Z := Y ◦ ϵ
Y := D(x̂ ; C(PZ))

until Y ⊂ int(Z)

(27)

Here Y ◦ ϵ denotes a slight relative and absolute inflation. We use Z := Y · (1 ± 10−15) ± 10−324, where the
constants are adapted to IEEE 754 double precision with relative precision 10−16.

4. Computational Results
In this section we present some computational results. All computations are performed in IEEE 754 double
precision which means a relative precision of ε := 2−53 ≈ 10−16.

First we expand fk(x) := (3x − 2)k sin(x) for different values of k. The function has a k-fold root x̂ = 2
3 . For

example,
f3(x) = −8sin(x) + (36sin(x) + (−54sin(x) + 27sin(x)x)x)x .

The expansions are generated by the symbolic toolbox of Matlab [4]. In the following Table I we display the
radius of the inclusion interval as well as the sensitivity ε1/k of the k-fold root 1

3 for different values of k, and
the number of interval iterations in (27). The initial approximation x̃ = 0.66 is first improved by some Newton
steps.

Table I. Radius of inclusion for different multiplicities.

k rad(Y) ε1/k iter
1 4.44 · 10−16 1.11 · 10−16 1
2 2.19 · 10−8 1.05 · 10−8 1
3 9.48 · 10−6 4.81 · 10−6 1
4 1.82 · 10−4 1.03 · 10−4 1
5 1.06 · 10−3 6.44 · 10−4 1

10 4.02 · 10−2 2.54 · 10−2 1
15 1.39 · 10−1 8.64 · 10−2 1
20 2.74 · 10−1 1.59 · 10−1 1

As can be seen the radius of the inclusion interval corresponds nicely to the sensitivity of the root. For a
simple root almost maximum accuracy is achieved. In all examples only one interval iteration (27) is necessary.
Note that the nearest other roots of fk are 0 and π/2.

Next we test the influence of the nearness of another root to a multiple root. Consider f (x) := (3x −
2)3sin(x)(x − 2

3 + e) for different values of e := 10−k. There is a triple root 2
3 and a nearby root 2

3 − e.
An increase of the radius and thus decrease of accuracy can be observed in Table II when another root

approaches the cluster. This effect becomes worse when two clusters are near each other.
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Table II. Radius of inclusion for nearby root.

e rad(Y), k=3 iter rad(Y), k=4 iter
10−2 4.74 · 10−5 1 7.48 · 10−3 1
10−3 1.11 · 10−4 1 7.51 · 10−4 1
10−4 2.08 · 10−4 1 1.86 · 10−4 1
10−5 4.71 · 10−4 1 1.78 · 10−4 1
10−6 9.64 · 10−4 1 1.84 · 10−4 1
10−7 failed 3 1.90 · 10−4 1
10−8 failed 3 1.80 · 10−4 1
10−9 failed 3 1.79 · 10−4 1
10−10 failed 3 1.81 · 10−4 1

However, when the cluster at 2
3 and the extra root 2

3 − e are too close, they may be regarded as one cluster.
As can be seen in Table II, the inclusion of four roots as one cluster is achieved in a wide range.

If the distance is too large, however, the quality of the inclusion must deteriorate. Note that the radius of the
enclosing disc is displayed, so for example the radius 7.48 · 10−3 of the inclusion in the first line for e = 10−2

is not too far from the optimal radius 5 · 10−3.
The final Table III shows the results for f (x) := (3x−2)3sin(x)(x− 2

3 +e)3 for different values of e := k ·10−2,
so that we have two triple roots 2

3 and 2
3 − e.

Table III. Radius of inclusion for nearby cluster.

e rad(Y), k=3 iter rad(Y), k=6 iter
5 · 10−2 2.35 · 10−4 1 4.93 · 10−2 1
4 · 10−2 3.28 · 10−4 1 3.94 · 10−2 1
3 · 10−2 3.97 · 10−4 1 2.95 · 10−2 1
2 · 10−2 6.16 · 10−4 1 1.97 · 10−2 1

10−2 failed 3 9.83 · 10−3 1
9 · 10−3 failed 3 8.85 · 10−3 1
8 · 10−3 failed 3 7.88 · 10−3 1
7 · 10−3 failed 3 6.92 · 10−3 1

As can be seen the inclusion fails when the difference between the two clusters becomes 0.01 or smaller. As
before, inclusions are always possible when regarding the roots as a cluster of 6 roots.

One may ask, why the algorithm fails for the distance 0.01. In Figure 1 we display the function plot near
both triple roots. As can be seen it seems not easy to separate the clusters numerically. In Figure 2 we show the
behavior of the function near the individual triple roots. Here it becomes clear that we basically see roundoff
errors because of the numerical instability. Concerning the lengthy expression

61162984 ∗ sin(x) + (−554658228 ∗ sin(x) + (2095781
742 ∗ sin(x) + (−4223382471 ∗ sin(x) + (4787318700∗
sin(x) + (−2894130000 ∗ sin(x) + 729000000 ∗ sin(x)∗
x) ∗ x) ∗ x) ∗ x) ∗ x) ∗ x

of the function we expect some overestimation due to interval arithmetic. In that sense the achieved results
seem not bad.
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