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Abstract. Recently it was shown that the ratio between the normwise Toeplitz structured condition num-

ber of a linear system and the general unstructured condition number has a finite lower bound. However,

the bound was not explicit, and nothing was known about the quality of the bound. In this note we derive

an explicit lower bound only depending on the dimension n, and we show that this bound is almost sharp

for all n.
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1. Notation and problem formulation

For a system of linear equations Ax = b with A ∈ IRn×n, x, b ∈ IRn, the condition number characterizes the
sensitivity of the solution x with respect to infinitely small perturbations of the matrix A. For ε > 0, denote

Mε := Mε(A) := {∆A ∈ IRn×n : ‖∆A‖ ≤ ε‖A‖}, (1.1)

where throughout the paper ‖ · ‖ denotes the spectral norm for matrices and for vectors. Denote by Pε :=
Pε(A, x) the set of all vectors ∆x ∈ IRn for which there exists ∆A ∈ Mε with (A + ∆A)(x + ∆x) = Ax.
Then the (unstructured) normwise condition number is defined by

κ(A, x) := lim
ε→0

sup
∆x∈Pε

‖∆x‖
ε‖x‖ . (1.2)

It is well known that κ(A, x) = ‖A−1‖ ‖A‖, such that the (unstructured) condition number does not depend
on x.

If the matrix A has some structure, it seems reasonable to restrict the set Mε to matrices with similar
structure. For a = (a−(n−1), . . . , a−1, a0, a1, . . . , an−1), the n× n Toeplitz matrix Tn(a) is of the form

T := Tn(a) :=




a0 a1 . . . an−1

a−1 a0
. . .

...
...

. . . . . . a1

a−(n−1) . . . a−1 a0



∈ IRn×n. (1.3)

For given (nonsingular) Toeplitz matrix T , restricting Mε to Toeplitz matrices changes (1.2) into the Toeplitz
condition number κToep(T, x) [10], [13], [2, Section 13.3]. Since the set of perturbations ∆A is restricted,
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it follows κToep(T, x) ≤ κ(T, x) = ‖T−1‖ ‖T‖. Note that in contrast to the general condition number, the
Toeplitz condition number depends on x. However, there exists always a worst case x such that both condition
numbers coincide [13, Theorem 4.1]:

sup
x6=0

{
κToep(T, x)

}
= ‖T−1‖ ‖T‖ .

In [13, Theorem 10.2] it was shown that κToep(T, x) ≥ 2−1/2
√

κ(T, x) (see also [2, Theorem 13.14]), hence
the ratio κToep/κ is bounded below by [2‖T−1‖ ‖T‖]−1/2. The question arises, how small can the Toeplitz
condition number actually be compared to the general condition number?

In a recent survey paper on Toeplitz and Hankel matrices [4], Böttcher and Rost note “One expects that
κToep(T, x) is in general significantly smaller than κ(T, x), but, curiously up to now no convincing example in
this direction is known.” Furthermore, Böttcher and Rost continue to note that, as proved in [3] (submitted
in 2002 but appeared in 2005), it seems rather hopeless to find examples numerically (see also [2, Theorem
13.20]):

Theorem 1.1 (Böttcher, Grudsky, 2002). Let x0, x1, . . . , xn−1 ∈ C be independent random variables whose
real and imaginary parts are subject to the standard normal distribution and put x = (xj)n−1

j=0 . There are
universal constants δ ∈ (0,∞) and n0 ∈ IN such that

Probability

(
κToep(Tn(a), x)

κ(Tn(a), x)
≥ δ

n3/2

)
>

99
100

for all finitely supported sequences a and all n ≥ n0.

Notice that generically κ(Tn(a), x) remains bounded or increases exponentially fast as n goes to infinity.
Since in the case of exponential growth the factor δ/n3/2 is harmless, it follows that with high probability
that κToep(Tn(a), x) increases exponentially fast together with κ(Tn(a), x).

In [13] the first author showed a lower bound on the ratio κToep/κ which surprisingly depends only on the
solution x, not on A (see also [2, Theorem 13.16]). However, despite some examples of small dimension
(inspired by Heinig [9]) no general examples could be derived.

In this note we

1. derive a general lower bound on κToep(T, x)/κ(T, x) only depending on the dimension n, and
2. show that this lower bound is almost sharp for all n.

The solution of both problems is based on the minimization of the smallest singular value of a class of
Toeplitz matrices (2.2) and its surprising connection to a lower bound on the coefficients of the product of
two polynomials. We will prove in Corollary 2.11 that

2n

∆n−1
≥ inf{κToep(A, x)

κ(A, x)
: A ∈ IRn×n Toeplitz, 0 6= x ∈ IRn} >

√
2

n∆n−1
,

where ∆ = 3.209912 . . ..

We denote by σmin(A) the smallest singular value of the matrix A, and by J the permutation matrix (“flip
matrix”) mapping (1, . . . , n) into (n, . . . , 1).
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2. Main results

Let a linear system Ax = b with Toeplitz matrix A be given. The defining equation (A+∆A)(x+∆x) = Ax

with ‖∆A‖ ≤ ε‖A‖ implies
∆x = −A−1∆Ax +O(ε). (2.1)

For Toeplitz perturbations, we have ∆A = T (∆a) with ∆a ∈ IR2n−1 according to (1.3), and using ideas from
[10] a computation shows [13]

∆Ax = JΨx∆a with Ψx :=




x1 x2 . . . xn

x1 x2 . . . xn

. . .

x1 x2 . . . xn


 ∈ IRn×(2n−1). (2.2)

In [13, Lemma 6.3] it was shown that the spectral matrix norm of ∆A and Euclidean norm of ∆a are related
by

1√
n
‖∆A‖ ≤ ‖∆a‖ ≤

√
2‖∆A‖. (2.3)

Combining this with the definition of κToep(A, x) and (2.1) yields [13, Theorem 6.5]

κToep(A, x) = γ
‖A−1JΨx‖ ‖A‖

‖x‖ with
1√
n
≤ γ ≤

√
2, (2.4)

so that ‖A−1JΨx‖ ≥ ‖A−1‖σmin(Ψx) implies [13, Corollary 6.6]

κToep(A, x)
κ(A, x)

≥ 1√
n

‖A−1JΨx‖
‖A−1‖ ‖x‖ ≥

1√
n

σmin(Ψx)
‖x‖ . (2.5)

Surprisingly, this lower bound depends only on the solution x. That means, a given solution x implies a lower
bound for κToep(A, x)/κ(A, x) for any Toeplitz matrix A.

We will show that the lower bound in (2.5) is achievable up to a small factor. For this we first construct for
given x a Toeplitz matrix A with ratio κToep/κ near σmin(Ψx)/‖x‖.
Let fixed but arbitrary x ∈ IRn be given. For simplicity assume ‖x‖ = 1. First we will show that for δ > 0
there exists a Toeplitz matrix A with ‖A−1JΨx‖ < ‖A−1‖σmin(Ψx) + δ.

Denote by y ∈ IRn, ‖y‖ = 1, a left singular vector of Ψx to σmin(Ψx), so that ‖yT Ψx‖ = σmin(Ψx). By
ΨxΨT

x = JΨxΨT
x JT we may assume either y = Jy or y = −Jy. Define by

L(p1, . . . , pn) :=




p1

p2
. . .

...
. . . . . .

pn . . . p2 p1



∈ IRn×n,

a lower triangular Toeplitz matrix depending on p ∈ IRn. Define

B := L(y1, y2, . . . , yn) and C := L(0, yn, yn−1, . . . , y2)

and
Rε := (B + εI)(B + εI)T − CCT . (2.6)

If Rε is invertible, then the Gohberg-Semencul formula ([8], see also [4, Th. 3.3]) implies that Aε := R−1
ε is

a (symmetric) Toeplitz matrix. Furthermore, a direct computation using y = ±Jy yields

R0 = yyT (2.7)
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which implies det(R0) = 0 for n ≥ 2. The determinant of Rε is a monic polynomial of degree 2n in ε, thus
Rε is nonsingular for all 0 6= ε < ε0 for small enough ε0. Hence there is a constant α, independent of ε, with

‖RεΨx‖ ≤ ‖yyT Ψx‖+ αε = σmin(Ψx) + αε,

the latter equality because σ2
min(Ψx) is the only nonzero eigenvalue of yyT Ψx(yyT Ψx)T . Since Aε = R−1

ε is
a Toeplitz matrix and y = ±Jy, (2.4) implies the following result, which is trivially also true for n = 1.

Theorem 2.1. Let 0 6= x ∈ IRn be given. Then for all δ > 0 there exists a Toeplitz matrix A ∈ IRn×n with

‖A−1‖σmin(Ψx) ≤ ‖A−1JΨx‖ < ‖A−1‖σmin(Ψx) + δ

and

κToep(A, x) = γ · κ(A, x)
σmin(Ψx)
‖x‖ + δ′ for

1√
n
≤ γ ≤

√
2 and 0 ≤ δ′ <

√
2δ.

For x 6= 0, the matrix Ψx has full rank because otherwise each n × n submatrix of Ψx would be singular,
taking the leftmost submatrix in Ψx would imply x1 = 0, the second leftmost would imply x2 = 0 and so
forth. Thus

µn := min
0 6=x∈IR

σmin(Ψx)
‖x‖ = min

‖x‖=1
σmin(Ψx) > 0 (2.8)

for all n, and Theorem 2.1 yields

Corollary 2.2. For all n,

√
2µn ≥ inf{κToep(A, x)

κ(A, x)
: A ∈ IRn×n Toeplitz, 0 6= x ∈ IRn} ≥ 1√

n
µn.

In the remaining of the paper we will estimate µn to characterize the infimum of κToep/κ. The matrix Ψx

is also known as “polynomial matrix” 1. Identifying a vector x = (x1, . . . , xn) ∈ IRn with the polynomial

x(t) :=
n−1∑
ν=0

xn−νtν ∈ IR[t], a little computation yields

z = yT Ψx ⇔ z(t) = y(t)x(t), (2.9)

and therefore

yT Ψx = xT Ψy. (2.10)

This, of course, can also be verified by direct computation. We define the norm ‖x(t)‖ of a polynomial by
the norm ‖x‖ of its coefficient vector. Since ‖yT Ψx‖ = σmin(Ψx), we can characterize µn by

µn = min{‖PQ‖ : P,Q ∈ IR[t], deg(P ) = deg(Q) = n− 1, ‖P‖ = ‖Q‖ = 1}. (2.11)

To give lower and upper bounds for µn, we first describe some related results for polynomials. The supremum
norm ‖P‖E of a complex univariate polynomial P on a compact set E ⊂ C is defined as

‖P‖E := sup
z∈E

|P (z)|. (2.12)

In [11] Kneser gave the exact lower bound for the supremum norm on the interval [−1, 1] of the product of
two polynomials.

1Many thanks to Ludwig Elsner, Bielefeld, for pointing to this connection.
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Theorem 2.3 (Kneser, 1934). Suppose that PQ = R, where P , Q and R are complex polynomials of degree
m, n−m and n, respectively. Then for all m and n

‖P‖[−1,1]‖Q‖[−1,1] ≤ Km,n‖R‖[−1,1],

where

Km,n := 2n−1
m∏

k=1

(
1 + cos

(2k − 1)π
2n

) n−m∏

k=1

(
1 + cos

(2k − 1)π
2n

)
.

This bound is exactly attained by the Chebyshev polynomial of degree n.

To estimate µn, we need similar results for the unit disk D. Boyd’s result in [5, 6] gives a sharp inequality
for this case. To describe Boyd’s results, we define the Mahler measure. For a complex polynomial F in k

variables the Mahler measure of F is defined as

M(F ) := exp
(∫ 1

0

· · ·
∫ 1

0

log |F (e2π
√−1t1 , . . . , e2π

√−1tk)|dt1 · · · dtk

)
.

Theorem 2.4 (Boyd, 1992/94). Let R be a polynomial of degree n with complex coefficients and suppose that
PQ = R. Then for the norm ‖ · ‖D as in (2.12) on the unit disc D

‖P‖D‖Q‖D ≤ δn‖R‖D,

where δ = M(1 + x + y − xy) = 1.7916228 . . .. The constant is best possible.

As written in section 3 of [5], the constant δ can be expressed in terms of Clausen’s integral

Cl2(θ) = −
∫ θ

0

log
(

2 sin
t

2

)
dt =

∞∑

k=1

sin kθ

k2
,

or, in terms of I(θ), where

I(θ) =
∫ θ

0

log
(

2 cos
t

2

)
dt = Cl2(π − θ).

Using Catalan’s constant G = I(π/2) = Cl2(π/2) ≈ 0.9160, we can write δ = e2G/π.

Theorem 2.4 implies a lower bound for µn. To obtain an upper bound for µn, we estimate the supremum
norms of the following polynomials. Define Fn(t) as t2n +(−1)n. Let P̂n(t) be the monic polynomial of degree
n with the zeros of Fn(t) in the right half plane, and Q̂n(t) be the monic polynomial of degree n with the
zeros of Fn(t) in the left half plane. It follows P̂nQ̂n = Fn and Q̂n(t) = (−1)nP̂n(−t).

Lemma 2.5. For the norm ‖ · ‖D as in (2.12) on the unit disc D, the following inequalities hold true.

e
π
8n δn > ‖P̂n‖D = (−1)nP̂n(−1) = ‖Q̂n‖D = Q̂n(1) > δn.

Remark 2.6. When n is even, 2Kn/2,n = Q̂n(1)2, where Kp,q is the constant in Theorem 2.3.

Combining Theorem 2.4 and Lemma 2.5, where the proof of the latter is deferred to the appendix, with
(2.11), we obtain an upper and a lower bound for µn. Before we state our final result, we prove that we may
assume without loss of generality that polynomials P and Q minimizing µn as in (2.11) must both have all
their roots on the unit circle. This is also useful to identify such polynomials P and Q numerically for small
n. In fact, the following Theorem 2.7 shows more, namely that for fixed (normed) Q there is a (normed)
polynomial P with only roots on the unit circle and minimizing ‖PQ‖.
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Theorem 2.7. For two nonzero real univariate polynomials P and Q with ‖P‖ = ‖Q‖ = 1, there exists a real
univariate polynomial P ′ such that deg(P ′) = deg(P ), ‖P ′‖ = 1, all zeros of P ′ lie on the unit circle and
‖P ′Q‖ ≤ ‖PQ‖.

The proof of Theorem 2.7 is rather involved, and thus deferred to the appendix. An immediate consequence
is the following corollary.

Corollary 2.8.

µn = min{‖PQ‖ : P, Q ∈ IR[t], deg(P ) = deg(Q) = n− 1, ‖P‖ = ‖Q‖ = 1,

and P , Q have all zeros on the unit circle}.

Now we can prove the following upper and lower bounds for µn.

Theorem 2.9. √
2(n + 1)

∆n
> µn+1 ≥ 2√

2n + 1∆n
,

where ∆ := e4G/π for Catalan’s constant G. It is ∆ = δ2, where δ is the constant in Theorem 2.4. Note that
∆ = 3.209912 . . . .

Remark 2.10. Using Proposition 2.12 at the end of this section, we can improve the upper bound to

C
√

n + 1
∆n

,

where C is a constant independent of n.

Proof. Let F be a complex polynomial
∑n

ν=0 aνtν . Then, the following inequalities among norms of F hold.
√

n + 1‖F‖ ≥ |F |1 ≥ ‖F‖D ≥ ‖F‖. (2.13)

Here, |F |1 is defined as
∑n

ν=0 |aν |. Real polynomials P and Q minimizing µn have all their roots on the unit
circle. For this case the right-most inequality in (2.13) improves into

‖F‖D ≥
√

2‖F‖ (2.14)

which follows from a much more general result2 in [14], see also [15, (7.71)]. From Theorem 2.4, for real
polynomials P and Q of degree n, we have

‖PQ‖D

‖P‖D‖Q‖D
≥ 1

δ2n
=

1
∆n

.

Therefore, for polynomials P and Q with ‖P‖ = ‖Q‖ = 1, the inequalities

‖PQ‖ ≥ 2‖PQ‖D√
2n + 1‖P‖D‖Q‖D

≥ 2√
2n + 1∆n

follow from (2.13) and (2.14). This proves the lower bound for µn+1.

Let P̂n and Q̂n be as in Lemma 2.5. An upper bound for ‖P̂nQ̂n‖/(‖P̂n‖‖Q̂n‖) is an upper bound for µn+1.
Since ‖P̂nQ̂n‖ =

√
2, the inequalities

‖P̂nQ̂n‖
‖P̂n‖‖Q̂n‖

≤
√

2

(‖P̂n‖D/
√

n + 1)(‖Q̂n‖D/
√

n + 1)
<

√
2(n + 1)

∆n

follow from (2.13) and Lemma 2.5.

2Thanks to P. Batra, Hamburg, for pointing to this reference.
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Inserting this into Corollary 2.2 characterizes the asymptotic behavior of the worst ratio between the un-
structured and structured condition number for Toeplitz matrices.

Corollary 2.11. For all n,

2n

∆n−1
> inf{κToep(A, x)

κ(A, x)
: A ∈ IRn×n Toeplitz, 0 6= x ∈ IRn} >

√
2

n∆n−1
, (2.15)

where ∆ = 3.209912 . . . is the constant in Theorem 2.9.

We can improve the upper bound using the following Proposition, the proof of which is given in the Appendix.

Proposition 2.12.

lim
n→∞

||P̂n||n1/4

||P̂n||D
= lim

n→∞
||Q̂n||n1/4

||Q̂n||D
=

1√
2
.

By similar arguments of the proof for Theorem 2.9, we obtain the following improved upper bound.

Corollary 2.13. There exists a constant C > 0 such that for all n,

C
√

n

∆n−1
> inf{κToep(A, x)

κ(A, x)
: A ∈ IRn×n Toeplitz, 0 6= x ∈ IRn},

where ∆ = 3.209912 . . . is the constant in Theorem 2.9.

3. Approximation of µn

Next we show how to approximate Ψx ∈ IRn×(2n−1) minimizing σmin(Ψx). Using Ψx, a Toeplitz matrix
with small ratio κToep/κ can be constructed following the discussion preceding Theorem 2.1. For given unit

vector x ∈ IRn and x(t) :=
n−1∑
ν=0

xn−νtν define Ψx as in (2.2), and let y ∈ IRn be a unit left singular vector to

σmin(Ψx) of Ψx. With y(t) :=
n−1∑
ν=0

yn−νtν as in the discussion following Corollary 2.2 we have

‖x‖ = ‖y‖ = ‖x(t)‖ = ‖y(t)‖ = 1 and ‖x(t)y(t)‖ = ‖yT Ψx‖ = σmin(Ψx).

For fixed x(t), the polynomial y(t) minimizes ‖x(t)y(t)‖ subject to ‖y(t)‖ = 1. Now (2.10) implies ‖xT Ψy‖ =
σmin(Ψx) and therefore σmin(Ψy) ≤ σmin(Ψx). Iterating the process, that is replacing x by y and computing y

as a left singular vector to σmin(Ψx), generates a monotonically decreasing and therefore convergent sequence.
Practical experience suggests that for generic starting vector x this sequence converges mostly to the same
limit, presumably µn. In any case this limit is an upper bound for µn. Table 1 displays this limit for some
values of n.

To ensure that the limit is not a local but the global minimum min
x

σmin(Ψx), a verified global optimization

method was used [12] for computing rigorous lower and upper bounds for µn. Such methods take all pro-
cedural, approximation and rounding errors into account and are, provided the computer system works to
its specifications, rigorous (see, for example, [7]). For given n and using (2.11) this means 2n variables. This
was possible up to n = 5 with reasonable effort. The right-most column in Table 1 displays the computed
bounds for µn. For larger values of n, the number of variables was significantly reduced using Theorem 2.7.
Since minimizers P,Q have only roots on the unit circle it follows P (z) = ±znP (1/z) and similarly for Q,
i.e. the coefficient vectors are (skew-)symmetric to reflection. Using this allows the computation of rigorous
bounds for µn up to n = 8 with moderate effort.3 Computational evidence supports the following conjecture.

3Thanks to Kyoko Makino for performing the verified global optimization using the COSY-package [1].
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n approximate µn rigorous bounds of µn µ̂n = ||P̂nQ̂n||
||P̂n||||Q̂n|| µ̂n/µn

2 0.70710678118655 [ 0.70710678118 , 0.70710678119 ] 0.707107 1.0000
3 0.33333333333333 [ 0.33333333333 , 0.33333333334 ] 0.353553 1.0607
4 0.13201959446019 [ 0.13201959446 , 0.13201959447 ] 0.141421 1.0712
5 0.04836936580270 [ 0.04836936580 , 0.04836936581 ] 0.051777 1.0705
6 0.01702151213258 [ 0.01702151213 , 0.01702151214 ] 0.018183 1.0682
7 0.00584679996238 [ 0.00584679996 , 0.00584679997 ] 0.006234 1.0662
8 0.00197621751074 [ 0.00197621751 , 0.00197621752 ] 0.002104 1.0647

Table 1

Conjecture 3.1. There are polynomials P, Q ∈ IR[t] with degP = degQ = n − 1 and ‖P‖ = ‖Q‖ = 1 with
µn = ‖PQ‖ such that all coefficients of P are positive, Q(t) = P (−t) and all roots of P and Q lie on the
unit circle. The roots aν ± ibν of P have all positive real parts aν , and the roots of Q are −aν ± ibν .

Finally, the values µ̂n = ||P̂nQ̂n||
||P̂n||||Q̂n|| for the polynomials P̂n, Q̂n as in Lemma 2.5 and the ratio µ̂n/µn is

displayed as well. It seems that P̂n, Q̂n are not far from the optimum. This is supported by Proposition 2.12.

4. Appendix

Proof of Lemma 2.5. Since we can write

Q̂n(t) =





(t + 1)

n−1
2∏

k=1

(
t2 + 2t cos

kπ

n
+ 1

)
, if n is odd,

n
2∏

k=1

(
t2 + 2t cos

(2k − 1)π
2n

+ 1
)

, if n is even,

(4.1)

and cos kπ
n , cos (2k−1)π

2n > 0 for the values of k in question, we have ‖Q̂n‖D = Q̂n(1). From the definition of
Q̂n, we have ‖Q̂n‖D = ‖P̂n‖D and Q̂n(1) = (−1)nP̂n(−1).

First we prove the inequalities in Lemma 2.5 when n is odd. From (4.1), we have

Q̂n(1) = 2
n+1

2

n−1
2∏

k=1

(
1 + cos

kπ

n

)
.

Therefore,

log Q̂n(1) =
(n + 1) log 2

2
+

n−1
2∑

k=1

log
(

1 + cos
kπ

n

)
.

Let a and b be real numbers with a < b. For a real function f such that f ′′ ≤ 0 on the interval [a, b], we have

(b− a)f
(

a + b

2

)
≥

∫ b

a

f(x)dx ≥ (b− a)
f(a) + f(b)

2
. (4.2)
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Applying (4.2) to f = log(1 + cos πx) on intervals [0, 1
2n ], [ 2k−1

2n , 2k+1
2n ] (k = 1, 2, . . . , n−1

2 ) for an upper
estimation, and on intervals [ k

n , k+1
n ] (k = 0, 1, . . . , n−3

2 ), [n−1
2n , 1

2 ] for a lower estimation, we have

log Q̂n(1)
n

− (n + 1) log 2
2n

+
1
2n

log
(
1 + cos

π

4n

)
≥

∫ 1
2

0

log(1 + cos πx)dx

≥ log Q̂n(1)
n

− log 2
2

− 1
4n

log
(

1 + cos
(n− 1)π

2n

)
.

Since 1 + cos πx = 2 cos2 πx
2 , it follows

∫ 1
2

0

log(1 + cos πx)dx =
∫ 1

2

0

log
(
2 cos2

πx

2

)
dx =

2
π

∫ π
2

0

log
(

2 cos
t

2

)
dt− log 2

2
= log δ − log 2

2
. (4.3)

From (4.3), we have

log Q̂n(1)
n

− log 2
2n

+
1
2n

log
(
1 + cos

π

4n

)
≥ log δ ≥ log Q̂n(1)

n
− 1

4n
log

(
1 + cos

(n− 1)π
2n

)
.

Therefore, the following inequalities hold.

n log δ +
1
4

log
(

1 + cos
(n− 1)π

2n

)
≥ log Q̂n(1) ≥ n log δ +

log 2
2

− 1
2

log
(
1 + cos

π

4n

)
. (4.4)

Since

log
(

1 + cos
(n− 1)π

2n

)
= log

(
1 + sin

π

2n

)
< log

(
1 +

π

2n

)
<

π

2n
,

we can estimate the left-hand side of (4.4) by

n log δ +
1
4

log
(

1 + cos
(n− 1)π

2n

)
< n log δ +

π

8n
.

An estimation for the right-hand side of (4.4) is as follows. Since log 2 > log
(
1 + cos π

4n

)
, we have

n log δ +
log 2

2
− 1

2
log

(
1 + cos

π

4n

)
> n log δ,

and therefore
n log δ +

π

8n
> log Q̂n(1) > n log δ

proves Lemma 2.5 for odd n. When n is even, we have

log Q̂n(1) =
n log 2

2
+

n
2∑

k=1

log
(

1 + cos
(2k − 1)π

2n

)
.

Applying (4.2) to f = log(1 + cos πx) on intervals [ k
n , k+1

n ] (k = 0, 1, . . . , n
2 − 1), [n−1

2n , 1
2 ] for an upper

estimation, and on intervals [0, 1
2n ], [ 2k−1

2n , 2k+1
2n ] (k = 1, 2, . . . , n

2 − 1), [n−1
2n , 1

2 ] for a lower estimation, we
have

log Q̂n(1)
n

− log 2
2

≥
∫ 1

2

0

log (1 + cos πx) dx

≥ log Q̂n(1)
n

− log 2
2

− 1
2n

log
(
1 + cos

π

2n

)
+

log 2
2n

− 1
4n

log
(

1 + cos
(n− 1)π

2n

)
.

Therefore, the inequalities

n log δ +
1
2

log
(
1 + cos

π

2n

)
− log 2

2
+

1
4

log
(

1 + cos
(n− 1)π

2n

)
≥ log Q̂n(1) ≥ n log δ

hold, and from similar arguments for odd n, the inequalities

n log δ +
π

8n
> log Q̂n(1) > n log δ
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prove Lemma 2.5 for even n. ¥

To prove Theorem 2.7, we need the following lemmas, corollaries and algorithm.

Lemma 4.1. Let F and G be nonzero complex univariate polynomials, and ζ be a fixed complex number on
the unit circle. Define ν : IR → IR by

ν(r) :=
‖(t− rζ)F‖
‖(t− rζ)G‖ .

Then, the following statements hold.

1. ν(r) has a minimum at either r = 1 or −1.
2. If ν(1) is not a minimum, then ν(r) > ν(0) for any r > 0.

Proof. Since ν(r) is nonnegative, it is sufficient to prove that N(r) = ν(r)2 has the above properties. For
P (t) =

∑n
k=0 aktk, we have

‖(t− rζ)P‖2 = ‖P‖2r2 −
(

ζ

n∑

k=1

ak−1ak + ζ

n∑

k=1

ak−1ak

)
r + ‖P‖2. (4.5)

Therefore, we can write

‖(t− rζ)F‖2 = f1r
2 + f2r + f1,

‖(t− rζ)G‖2 = g1r
2 + g2r + g1,

where f1 = ‖F‖2, g1 = ‖G‖2, and f2, g2 are real numbers. Therefore, we have

N ′(r) =
(f1g2 − f2g1)(r2 − 1)

‖(t− rζ)G‖2 .

If f1g2 − f2g1 = 0, then N(r) is constant and the statements are clear.

If f1g2 − f2g1 > 0, then N(r) tends to f1/g1 = N(0), as r tends to ±∞. Furthermore, N(r) is monoton-
ically increasing on (−∞,−1], monotonically decreasing on [−1, 1] and monotonically increasing on [1,∞).
Therefore, N(r) has a minimum at r = 1.

If f1g2 − f2g1 < 0, then similar arguments hold. We have N(r) > N(0) for any r > 0 and N(−1) is a
minimum.

The following corollary immediately follows from Lemma 4.1.

Corollary 4.2. Let F and G be nonzero complex univariate polynomials in t, and α be a nonzero complex
number. Put ζ = α/|α|. (That is, |ζ| = 1.) Then, the following inequality holds.

‖(t− α)F‖
‖(t− α)G‖ ≥ min

{‖(t− ζ)F‖
‖(t− ζ)G‖ ,

‖tF‖
‖tG‖

}
.

When polynomials F and G are real, the following lemma holds.

Lemma 4.3. Let F and G be nonzero real univariate polynomials in t, and r be a fixed nonzero real number.
Define ν : C→ IR by

ν(ζ) :=
‖(t− rζ)F‖
‖(t− rζ)G‖ .

We consider ν(ζ) a function on the unit circle in C. Then, ν(ζ) has a minimum at ζ = −1 or 1.
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Proof. Since ν(ζ) is nonnegative, it is sufficient to prove that N(ζ) = ν(ζ)2 has a minimum at ζ = −1 or 1.
From Equation (4.5) and considering F , G ∈ IR[t], we have

‖(t− rζ)F‖2 = f1(ζ + ζ) + f2,

‖(t− rζ)G‖2 = g1(ζ + ζ) + g2,

where f2 = (r2 + 1)‖F‖2, g2 = (r2 + 1)‖G‖2 and f1, g1 ∈ IR. Put s = ζ + ζ (∈ IR). We can write N(ζ) as
Ñ(s), which is a function of s (−2 ≤ s ≤ 2). Then we have

Ñ ′(s) =
f1g2 − f2g1

(g1s + g2)2
,

That is, Ñ ′(s) is monotonic on [−2, 2]. Therefore, it has a minimum at s = −2 or 2, which corresponds to
ζ = −1 or 1, respectively.

Combining Lemmas 4.1 and 4.3, we can easily see that the following corollary holds.

Corollary 4.4. Let F and G be nonzero real univariate polynomials, and α be a complex number. Then, the
following inequality holds.

‖(t− α)F‖
‖(t− α)G‖ ≥ min

{‖(t− 1)F‖
‖(t− 1)G‖ ,

‖(t + 1)F‖
‖(t + 1)G‖

}
.

Finally, we describe the following algorithm.

Algorithm 4.5. Given a real polynomial P (t) = (t − α)(t − α)P0(t), where α ∈ C, 6∈ IR, this algorithm
constructs F ∈ IR[t] satisfying the following conditions.

1. The degree of F is two.
2. Both zeros of F lie on the unit circle.
3. F satisfies the following inequality.

‖PQ‖
‖P‖ ≥ ‖FP0Q‖

‖FP0‖ .

Step 1.: Put ζ = α/|α|.
If

‖(t− α)(t− α)P0Q‖
‖(t− α)(t− α)P0‖ ≥ ‖(t− ζ)(t− α)P0Q‖

‖(t− ζ)(t− α)P0‖ ,

then go to Step 2.
Otherwise, go to Step 3.

Step 2.:

Step 2.1.: If
‖(t− ζ)(t− α)P0Q‖
‖(t− ζ)(t− α)P0‖ ≥ ‖(t− ζ)(t− ζ)P0Q‖

‖(t− ζ)(t− ζ)P0‖
,

then terminate with the output (t− ζ)(t− ζ).
Otherwise, go to Step 2.2.

Step 2.2.: If
‖t(t− ζ)P0Q‖
‖t(t− ζ)P0‖ ≥ ‖t(t− 1)P0Q‖

‖t(t− 1)P0‖ ,

then put b1 = 1. Otherwise put b1 = −1.
If

‖t(t− b1)P0Q‖
‖t(t− b1)P0‖ ≥ ‖(t− 1)(t− b1)P0Q‖

‖(t− 1)(t− b1)P0‖ ,
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then put b2 = 1. Otherwise put b2 = −1.
Terminate with the output (t− b1)(t− b2).

Step 3.: If
‖t(t− α)P0Q‖
‖t(t− α)P0‖ ≥ ‖t(t− 1)P0Q‖

‖t(t− 1)P0‖ ,

then put b3 = 1. Otherwise, put b3 = −1.
If

‖t(t− b3)P0Q‖
‖t(t− b3)P0‖ ≥ ‖(t− 1)(t− b3)P0Q‖

‖(t− 1)(t− b3)P0‖ ,

then put b4 = 1. Otherwise put b4 = −1.
Terminate with the output (t− b3)(t− b4).

The validity of the algorithm is as follows. In Step 2.1, if the inequality does not hold, then we have

‖(t− ζ)(t− α)P0Q‖
‖(t− ζ)(t− α)P0‖ ≥ ‖t(t− ζ)P0Q‖

‖t(t− ζ)P0‖
from Corollary 4.2.

In Step 2.2, the following inequalities hold from Corollary 4.4.

‖t(t− ζ)P0Q‖
‖t(t− ζ)P0‖ ≥ ‖t(t− b1)P0Q‖

‖t(t− b1)P0‖ ≥ ‖(t− b1)(t− b2)P0Q‖
‖(t− b1)(t− b2)P0‖ .

In Step 3, the inequality
‖(t− α)(t− α)P0Q‖
‖(t− α)(t− α)P0‖ ≥ ‖t(t− α)P0Q‖

‖t(t− α)P0‖
holds from Corollary 4.2. Furthermore, the inequalities

‖t(t− α)P0Q‖
‖t(t− α)P0‖ ≥ ‖t(t− b3)P0Q‖

‖t(t− b3)P0‖ ≥ ‖(t− b3)(t− b4)P0Q‖
‖(t− b3)(t− b4)P0‖

hold from Corollary 4.4.

Proof of Theorem 2.7. It is sufficient to show that the following two statements hold.

1. Given P = (t − a)P0, where a ∈ IR, we can construct a real polynomial R = (t − b)P0 (b = 1 or −1)
satisfying the following inequality.

‖PQ‖
‖P‖ ≥ ‖RQ‖

‖R‖ .

2. Given P = (t− α)(t− α)P0, where α ∈ C, 6∈ IR, we can construct a real polynomial R = FP0 with the
inequality

‖PQ‖
‖P‖ ≥ ‖RQ‖

‖R‖ ,

where F is a univariate real polynomial of degree two with both zeros on the unit circle.

The first statement and the second statement follow from Corollary 4.4 and Algorithm 4.5, respectively. ¥

To prove Proposition 2.12, we need some lemmas.

Lemma 4.6. Let P (t) be a real univariate polynomial of degree n. For an integer m > n, the equality

‖P‖2 =
1
m

m∑

k=1

|P (ωζk)|2

holds, where ω ∈ C lies on the unit circle and ζ is a primitive m-th root of unity.
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Lemma 4.7. For arbitrary ε > 0, there exists θ > 0 such that the inequality

1− 2(1− ε)x ≥ 1− sin x

1 + sin x

holds for θ ≥ x ≥ 0.

Proof. Since
1− sin x

1 + sin x
= 1− 2 sinx

1 + sin x
,

the inequality is equivalent to
sin x

1 + sin x
≥ (1− ε)x. (4.6)

As x tends to 0,
sin x

x
→ 1,

1
1 + sin x

→ 1,

hold. Therefore, for given ε > 0, there exists θ > 0 such that the inequality (4.6) holds for θ ≥ x ≥ 0.

Lemma 4.8. For arbitrary ε > 0, there exists θ > 0 such that the inequalities

exp(−x) ≥ 1− x ≥ exp(−(1 + ε)x)

hold for θ ≥ x ≥ 0.

Lemma 4.9 (Jordan’s Inequality). For π/2 ≥ x ≥ 0,

x ≥ sin x ≥ 2x

π
.

Proof of Proposition 2.12. First we prove the proposition when n is odd. It is sufficient to show that for any
ε > 0, there exists an integer N such that the inequalities

1
2
√

1− ε
+

1
2
√

n
−
√

n

2
exp

(
−bn

2/3c2
n

)
>
‖Q̂n‖2

√
n

‖Q̂n‖2D
>

1
2
√

1 + ε
− 1√

n
−
√

n exp
(−(1 + ε)πn1/3

)

2(1 + ε)π
(4.7)

hold for any odd integer n ≥ N .

Let ζ be exp(π
√−1/n). Then we have

‖Q̂n‖2 =
1
2n

2n∑

k=1

|Q̂(ζk)|2 =
Q̂n(1)2

2n
+

1
n

(n−1)/2∑

k=1

|Q̂n(ζk)|2.

The relation between |Q̂n(ζk)|2 and |Q̂n(ζk−1)|2 is as follows.

|Q̂n(ζk)|2 = |Q̂n(ζk−1)|2
∣∣∣ζk−1 + ζ−

n+1
2

∣∣∣
2

∣∣∣ζk−1 + ζ
n−1

2

∣∣∣
2 = |Q̂n(ζk−1)|2

∣∣∣1 + ζ−
n−1

2 −k
∣∣∣
2

∣∣∣1 + ζ
n+1

2 −k
∣∣∣
2 .

Since the equalities

|1 + ζj |2 = (1 + ζj)(1 + ζ−j) = 2
(

1 + cos
jπ

n

)
,

hold for j ∈ IN, we have

|Q̂n(ζk)|2 = |Q̂n(ζk−1)|2
1 + cos

(
π
2 + (2k−1)π

2n

)

1 + cos
(

π
2 − (2k−1)π

2n

) = |Q̂n(ζk−1)|2 1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

. (4.8)
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First we show the upper bound. Take any ε > 0. Then, there exists an integer L such that the above lemma
holds for θ = L−1/3π. Take any n ≥ L. Since we have

π

L1/3
≥ π

n1/3
≥ (2n2/3 − 1)π

2n
≥ (2k − 1)π

2n

for bn2/3c ≥ k ≥ 1, the following inequalities follow from Lemmas 4.7 and 4.8.

1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

≤ 1− (1− ε)(2k − 1)π
n

≤ exp
(
− (1− ε)(2k − 1)π

n

)
.

Therefore, for bn2/3c ≥ k ≥ 1 we have

|Q̂n(ζk)|2 ≤ |Q̂n(ζk−1)|2 exp
(
− (1− ε)(2k − 1)π

n

)
≤ Q̂n(1)2

k∏

j=1

exp
(
− (1− ε)(2j − 1)π

n

)

= Q̂n(1)2 exp


− (1− ε)π

n

k∑

j=1

(2j − 1)


 = Q̂n(1)2 exp

(
− (1− ε)π

n
k2

)
.

Since the inequality
1− sin (2k−1)π

2n

1 + sin (2k−1)π
2n

≤ 1− sin
(2k − 1)π

2n

holds for (n− 1)/2 ≥ k > bn2/3c, the following inequalities follow from Lemmas 4.8 and 4.9.

1− sin (2k−1)π
2n

1 + sin (2k−1)π
2n

≤ exp
(
− sin

(2k − 1)π
2n

)
≤ exp

(
−2k − 1

n

)
.

Hence, for (n− 1)/2 ≥ k > bn2/3c, we have

|Q̂n(ζk)|2 ≤ |Q̂n(ζk−1)|2 exp
(
−2k − 1

n

)
≤ Q̂n(1)2

k∏

j=1

exp
(
−2j − 1

n

)

= Q̂n(1)2 exp


− 1

n

k∑

j=1

(2j − 1)


 = Q̂n(1)2 exp

(
−k2

n

)
.

Therefore, the following inequality holds.

Q̂n(1)2

2n
+

Q̂n(1)2

n

bn2/3c∑

k=1

exp
(
− (1− ε)π

n
k2

)
+

Q̂n(1)2

n

(n−1)/2∑

k=bn2/3c+1

exp
(
−k2

n

)
≥ ‖Q̂n‖2.

Here,

bn2/3c∑

k=1

exp
(
− (1− ε)π

n
k2

)
<

∫ ∞

0

exp
(
− (1− ε)π

n
x2

)
dx =

1
2

√
n

1− ε

holds since ∫ ∞

0

exp(−cx2)dx =
1√
c

∫ ∞

0

exp(−x2)dx =
1
2

√
π

c

holds for c > 0. Then we have
(n−1)/2∑

k=bn2/3c+1

exp
(
−k2

n

)
<

∫ ∞

bn2/3c
exp

(
−x2

n

)
dx <

∫ ∞

bn2/3c
x exp

(
−x2

n

)
dx

=
[
−n

2
exp

(
−x2

n

)]∞

bn2/3c
= −n

2
exp

(
−bn

2/3c2
n

)
.
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Hence, the following inequality holds.

Q̂(1)2
(

1
2n

+
1

2
√

(1− ε)n
− 1

2
exp

(
−bn

2/3c2
n

))
> ‖Q̂n‖2.

Therefore, we obtain the upper bound. That is, the inequality

1
2
√

n
+

1
2
√

1− ε
−
√

n

2
exp

(
−bn

2/3c2
n

)
>
‖Q̂n‖2

√
n

Q̂n(1)2
(4.9)

holds for n ≥ L.

Next, we show the lower bound. From (4.8) we have

|Q̂n(ζj)|2 > Q̂n(1)2
j∏

k=1

(
1− sin

(2k − 1)π
2n

)2

.

Take any ε > 0. Then, there exists an integer M such that the above lemma holds for θ = M−1/3π. Take
any n ≥ M . Since for bn2/3c ≥ k ≥ 1 we have

π

M1/3
≥ π

n1/3
≥ (2n2/3 − 1)π

2n
≥ (2k − 1)π

2n
,

the following inequalities follow from Lemma 4.8.

1− sin
(2k − 1)π

2n
≥ 1− (2k − 1)π

2n
≥ exp

(−(1 + ε)(2k − 1)π
2n

)
.

Hence, for bn2/3c ≥ k ≥ 1 we have

|Q̂n(ζk)|2 > Q̂n(1)2 exp




k∑

j=1

−(1 + ε)(2k − 1)π
n


 = Q̂n(1)2 exp

(−(1 + ε)πj2

n

)
.

Therefore, the following inequalities hold.

‖Q̂n‖2 >
1
n

bn2/3c∑

k=1

|Q̂n(ζk)|2 >
1
n

bn2/3c∑

k=1

(
Q̂n(1)2 exp

(−(1 + ε)πk2

n

))

=
Q̂n(1)2

n

bn2/3c∑

k=1

exp
(−(1 + ε)πk2

n

)
.

The following estimation holds.

bn2/3c∑

k=1

exp
(−(1 + ε)πk2

n

)
>

∫ bn2/3c+1

1

exp
(−(1 + ε)πx2

n

)
dx.

For a > 0 and c ≥ 1 we have
∫ a

1

exp(−cx2)dx =
∫ ∞

0

exp(−cx2)dx−
∫ 1

0

exp(−cx2)dx−
∫ ∞

a

exp(−cx2)dx

>

√
π

2
√

c
− 1−

∫ ∞

a

x exp(−cx2)dx

and ∫ ∞

a

x exp(−cx2)dx =
[
−exp(−cx2)

2c

]∞

a

=
exp(−ca2)

2c
.
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Hence, the inequalities

bn2/3c∑

k=1

exp
(−(1 + ε)πk2

n

)
>

√
n

2
√

1 + ε
− 1−

n exp
(
− (1+ε)π

n (bn2/3c+ 1)2
)

2(1 + ε)π

>

√
n

2
√

1 + ε
− 1− n exp

(−(1 + ε)πn1/3
)

2(1 + ε)π

hold. Therefore, we have

‖Q̂n‖2 >
1
n

bn2/3c∑

k=1

|Q̂n(ζk)|2 >
Q̂n(1)2

n

bn2/3c∑

k=1

exp
(−(1 + ε)πj2

n

)

>
Q̂n(1)2

n

∫ bn2/3c+1

1

exp
(−(1 + ε)πx2

n

)
dx

> Q̂n(1)2
(

1
2
√

n(1 + ε)
− 1

n
− exp

(−(1 + ε)πn1/3
)

2(1 + ε)π

)
.

Then, we obtain the lower bound. That is, the inequality

‖Q̂n‖2
√

n

Q̂n(1)2
>

1
2
√

1 + ε
− 1√

n
−
√

n exp
(−(1 + ε)πn1/3

)

2(1 + ε)π
(4.10)

holds for n ≥ M . Combining (4.9) and (4.10), we have the statement (4.7) for N = max{L, M} when n is
odd.

Next we prove the statement when n is even. Let ζ4n be exp(π
√−1/2n). Note that ζ2

4n is a primitive 2n-th
root of unity. Then, we have

‖Q̂n‖2 =
1
2n

2n∑

k=1

|Q̂(ζ2k−1
4n )|2 =

1
n

n/2∑

k=1

|Q̂n(ζ2k−1
4n )|2.

The relation between |Q̂n(ζ2k+1
4n )|2 and |Q̂n(ζ2k−1

4n )|2 is as follows.

|Q̂n(ζ2k+1
4n )|2 = |Q̂n(ζ2k−1

4n )|2 |ζ
2k−1
4n + ζ−n−1

4n |2
|ζ2k−1

4n + ζn−1
4n |2 = |Q̂n(ζ2k−1

4n )|2 |1 + ζ−n−2k
4n |2

|1 + ζn−2k
4n |2 .

Since

|1 + ζj
4n|2 = (1 + ζj

4n)(1 + ζ−j
4n ) = 2

(
1 + cos

jπ

2n

)
,

we have

|Q̂n(ζ2k+1
4n )|2 = |Q̂n(ζ2k−1

4n )|2 1 + cos(π
2 + kπ

n )
1 + cos(π

2 − kπ
n )

= |Q̂n(ζ2k−1
4n )|2 1− sin kπ

n

1 + sin kπ
n

.

From similar arguments for odd n, given ε > 0 there exists an integer N such that the following inequalities
hold for any even integer n ≥ N .

1
2
√

1− ε
−
√

n

2
exp

(
−bn

2/3c2
n

)
>
‖Q̂n‖2

√
n

|Q̂n(ζ4n)|2
>

1
2
√

1 + ε
− 1√

n
−
√

n exp
(−(1 + ε)πn1/3

)

2(1 + ε)π
.

That is, we have

‖Q̂n‖2
√

n

|Q̂n(ζ4n)|2
→ 1

2
(4.11)

as n tends to infinity.
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According to the following Lemma, we have

lim
n→∞

|Q̂n(ζ4n)|2
‖Q̂n‖2D

= 1,

and combining with (4.11), we have the statement. ¥

Lemma 4.10.

lim
n→∞

|Q̂n(ζ4n)|2
‖Q̂n‖2D

= 1.

Proof. Since the following inequalities

Q̂n(1) =
n/2∏

k=−n/2+1

(1 + ζ2k−1
4n ), Q̂n(ζ4n) =

n/2∏

k=−n/2+1

(ζ4n + ζ2k−1
4n )

hold, we have

Q̂n(1)2 =
n/2∏

k=−n/2+1

(1 + ζ2k−1
4n )2 =

n/2∏

k=1

(1 + ζ2k−1
4n )2(1 + ζ−2k+1

4n )2 =
n/2∏

k=1

(
2 + 2 cos

(2k − 1)π
2n

)2

,

|Q̂n(ζ4n)|2 =
n/2∏

k=−n/2+1

|1 + ζ2k−2
4n |2 =

n/2∏

k=1

|1 + ζ2k−2
4n |2 · |1 + ζ−2k

4n |2

=
n/2∏

k=1

(
2 cos

π

2n
+ 2 cos

(2k − 1)π
2n

)2

.

Therefore, the following inequalities hold.

|Q̂n(ζ4n)|2
Q̂n(1)2

=
n/2∏

k=1

(
cos π

2n + cos (2k−1)π
2n

)2

(
1 + cos (2k−1)π

2n

)2 ≥
n/2∏

k=1

(
1− π2

8n2 + cos (2k−1)π
2n

)2

(
1 + cos (2k−1)π

2n

)2

=
n/2∏

k=1


1− π2

8n2
(
1 + cos (2k−1)π

2n

)2




2

>

(
1− π2

8n2

)n

.

That is, we have

1 ≥ |Q̂n(ζ4n)|2
Q̂n(1)2

>

(
1− π2

8n2

)n

.

Therefore, we have

|Q̂n(ζ4n)|2
Q̂n(1)2

→ 1

as n tends to infinity.
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