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PERRON-FROBENIUS THEORY FOR COMPLEX MATRICES

SIEGFRIED M. RUMP ∗

Abstract. The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not

necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real

matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we

introduce the sign-complex spectral radius. Again, this quantity extends many properties of the Perron root of nonnegative

matrices to general complex matrices. Various characterizations will be given, and many open problems remain.

1. Introduction. The key to the generalizations of Perron-Frobenius Theory to general real and to
complex matrices is the following nonlinear eigenvalue problem:

max{|λ| : |Ax| = |λx|, x 6= 0}.(1)

Throughout the paper we use the notation that absolute value and comparison of vectors and matrices is
always to be understood componentwise. For example, for C ∈ Mn(C) and

A ∈ Mn(IR), |C| ≤ A :⇔ |Cij | ≤ Aij for all i, j.

For nonnegative matrices, we can in (1) clearly omit the absolute values and obtain the well known Perron
root (ρ denotes the spectral radius):

A ∈ Mn(IR), A ≥ 0 : ρ(A) = max{|λ| : |Ax| = |λx|, λ ∈ C, 0 6= x ∈ Cn}
= max{0 ≤ λ ∈ IR : Ax = λx, 0 ≤ x ∈ IRn, x 6= 0}.(2)

For the extension to general real matrices, we purposely restrict attention to real eigenvalues (and
eigenvectors), that is we consider the quantity

A ∈ Mn(IR) : max{|λ| : |Ax| = |λx|, λ ∈ IR, 0 6= x ∈ IRn}.(3)

This quantity was introduced and investigated as the sign-real spectral radius ρS
0 (A) in [20]. Over there we

used another equivalent definition.

For general complex matrices we consider the quantity

A ∈ Mn(C) : max{|λ| : |Ax| = |λx|, λ ∈ C, 0 6= x ∈ Cn}.(4)

This was introduced and investigated in our talk in Oberwolfach as the sign-complex spectral radius ρT(A).

In the following we will change the notation of the three quantities (2), (3) and (4) into ρIR+ , ρIR and ρC to
underline the similarities and to emphasize the extension of Perron-Frobenius Theory.

A real (complex) diagonal matrix S with diagonal entries of modulus one is called a real (complex)
signature matrix, respectively. Real (complex) signature matrices are the set of diagonal orthogonal

(unitary) matrices, which are in the real case the 2n matrices with diagonal entries ±1. In our entrywise
notation of absolute value, real and complex signature matrices S are characterized by |S| = I, I denoting

the identity matrix.

For a real or complex vector x, that is x ∈ IKn for IK ∈ {IR, C}, there is always a signature matrix
S ∈ Mn(IK) with Sx = |x|. If all entries of x are nonzero, S is unique. Hence, for our nonlinear eigenvalue

problem (1) there are signature matrices S1 and S2 with S1Ax = |Ax| and S2λx = |λx|, such that

|Ax| = |λx| is equivalent to S1Ax = S2λx.(5)
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Note this is true in the real and in the complex case. Therefore the quantity in (3) is for A ∈ Mn(IR) and
S = ST

2 S1 the same as

max{|λ| : SAx = λx, λ ∈ IR, 0 6= x ∈ IRn, S ∈ Mn(IR), |S| = I},

and the quantity in (4) is for A ∈ Mn(C) and S := S∗2S1 the same as

max{|λ| : SAx = λx, λ ∈ C, 0 6= x ∈ Cn, S ∈ Mn(C), |S| = I}.

The difference is just the space of the involved quantities λ, x and S. And this unified view also extends to
the third quantity, the Perron root (2), because there is exactly one nonnegative real signature matrix,
namely the identity matrix, and the Perron vector and the Perron root are known to be nonnegative.

This leads us to the following unified definition of the three quantities (2), (3) and (4).

Definition 1.1. For IK ∈ {IR+, IR, C} and A ∈ Mn(IK),

ρIK(A) := max{|λ| : SAx = λx, λ ∈ IK, 0 6= x ∈ IKn, S ∈ Mn(IK), |S| = I},

where IR+ := {x ∈ IR : x ≥ 0} denotes the set of nonnegative (real) numbers.

For A ∈ Mn(IR), an argument shows that the set on the right hand side is always nonempty (cf., for
example, [20, Lemma 2.2]). Note that ρIK is only defined for A ∈ Mn(IK). Especially, for nonnegative

matrices all three quantities are defined - and are all equal to the Perron root, that is

ρIR+(A) = ρIR(A) = ρC(A) = ρ(A) for nonnegative A.(6)

In previous notation, ρIR(A) = ρS
0 (A) for real A and ρC(A) = ρT(A) for complex A, where ρIR+(A) = ρ(A)

for nonnegative A is the Perron root, equal to the (usual) spectral radius. We note that the index zero in
ρS
0 referred to Rohn’s definition of the real spectral radius of a real matrix [18], which is

ρ0(A) := max{|λ| : λ real eigenvalue of A}, and ρ0(A) := 0 if the spectrum of A is purely complex. It
easily follows that

ρIR(A) = max{ρ0(SA) : |S| = I},

the definition of ρS
0 (A) in [20].

Since ρIR[= ρS
0 ] has been called the sign-real spectral radius, we call ρC the sign-complex spectral radius.

We may use a second signature matrix in Definition 1.1 to restrict x and λ to the nonnegative orthant. For
S1Ax = |Ax| and S2x = |x|,

|Ax| = |λx| is equivalent to S1AS∗2 |x| = |λ| |x|,

so that for IK ∈ {IR+, IR,C} and A ∈ Mn(IK),

ρIK(A) = max{0 ≤ λ ∈ IR : S1AS2x = λx, 0 ≤ x ∈ IRn, S1, S2 ∈ Mn(IK), |S1| = |S2| = I}.(7)

The difference in the three definitions is now just the space of the signature matrices S1 and S2.

Following, certain properties of the sign-complex spectral radius will be proved. In order to show the
similarities between the three quantities ρIK(A), IK ∈ {IR+, IR,C}, namely

the Perron root ρIR+(A) = ρ(A) for nonnegative matrices,
the sign-real spectral radius ρIR(A) for general real matrices, and
the sign-complex spectral radius ρC(A) for general complex matrices,

(8)

many of the following theorems will be formulated for all three quantities (8). Frequently, the property is
identical for all ρIK and A ∈ Mn(IK), underlining the unifying aspects.
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Most of such properties of the Perron root are well known, and most properties of the sign-real spectral
radius have been shown in [20], for some of them we give simpler proofs. We choose to repeat some of those

known results to collect and emphasize the similarities.

The outline of the paper is as follows. In Section 2 we list several basic properties and characterizations of
the three quantities (8). Following, certain lower and upper bounds depending on minors and cycle

products are given. This proves relations to the componentwise distance to the nearest singular matrix,
elaborated in Section 4. We show relations to the structured singular value, and in Section 6 we explore
ratios between the three quantities (8). In the concluding remarks in Section 7 we mention several open

problems.

2. Properties and characterizations. We start with some basic observations concerning the
sign-complex spectral radius. Throughout the paper quantities S, S1, S2 etc. are reserved for signature

matrices.

Lemma 2.1. Let IK ∈ {IR+, IR, C}, A ∈ Mn(IK), and let signature matrices S1, S2 ∈ Mn(IK), a
permutation matrix P , and a nonsingular diagonal matrix D ∈ Mn(IK) be given. Then

ρIK(A) = ρIK(S1AS2) = ρIK(A∗) = ρIK(PT AP ) = ρIK(D−1AD),
ρIK(AD) = ρIK(DA),
ρIK(αA) = |α|ρIK(A) for α ∈ IK.

For the Kronecker product ⊗ and B ∈ Mn(IK) we have ρIK(A)ρIK(B) ≤ ρIK(A⊗B). If the permutational
similarity transformation putting |A| into its irreducible normal form [9, Section 8.3] is applied to A, and

A(ν,ν) are the diagonal blocks, then

ρIK(A) = max
ν

ρIK(A(ν,ν)).

Especially, for lower or upper triangular A,

ρIK(A) = max
i
|Aii|.

Furthermore, ρ(A) = ρIR+(A) = ρIR(A) = ρC(A) for 0 ≤ A ∈ Mn(IR).

Proof. The key is the maximization over all signature matrices in Mn(IK) in Definition 1.1 or, equivalently,
in (7). Then observe S∗ = S−1, so the eigenvalues of S1AS2, S2S1A and S2

∗A∗S1
∗ are the same, and so are

the eigenvalues of SPT AP and PSPT A, where PSPT is again a signature matrix. Furthermore, signature
matrices and diagonal matrices commute. The eigenvalues of (S1A)⊗ (S2B) = (S1 ⊗ S2)(A⊗B) are the

products of the eigenvalues of S1A and S2B, and the rest follows easily.

We mention that it was shown in [28] that F (A) = PT D−1SA(T )DP are the only linear invertible
operators preserving the sign-real spectral radius ρIR. For a real matrix A, the three quantities (8) are

always related by

ρIR(A) ≤ ρC(A) ≤ ρ(|A|) and ρ(A) ≤ ρC(A) for A ∈ Mn(IR).(9)

Note that ρ(A) ≤ ρIR(A) need not be true because ρIR(A) maximizes only real eigenvalues of SA, |S| = I.
An example is the matrix defined in (29) for n ≥ 3. The ratio between the quantities and ρ(|A|) is finite;
we come to that in Section 6. There is no immediate relation between ρIK(AB) and ρIK(BA). Consider

A =

(
1 −1
1 −1

)
, B =

(
1 1
1 1

)
with AB = (0), and BA = 2A,

such that ρIK(AB) = ρ(|AB|) = 0 and ρIK(BA) = ρ(|BA|) = 4 for IK ∈ {IR,C}. Possible relations between
ρC(A ◦A), ρC(A2) and ρC(A)2 will be investigated in Section 6. Moreover, all three quantities (8) depend
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continuously on the matrix components, a property which is not so obvious for the sign-real spectral radius
[20, Corollary 2.5].

For a first unified characterization of the three quantities (8) we prove the subsequent Theorem 2.4. For
the proof we use the following result by Doyle, for which he gave a surprisingly simple proof [5, Lemma 1].

Lemma 2.2. (Doyle) For a multivariate polynomial P ∈ C[z1, . . . , zn] define

α := min{‖z‖∞ : P (z) = 0}.

Then there exists some u ∈ Cn with P (u) = 0 and |ui| = α for 1 ≤ i ≤ n.

We first show how every nontrivial vector implies a lower bound for our three quantities (8).

Lemma 2.3. For IK ∈ {IR+, IR,C}, A ∈ Mn(IK) and x ∈ IKn the following is true:

|Ax| ≥ |rx| → ρIK(A) ≥ |r|.(10)

Proof. For IK = IR+ this is a well known fact from Perron-Frobenius Theory [2], where, of course, the
absolute values may be omitted. For IK = IR it was proved in [20, Theorem 3.1]. Let IK = C. The

assumption implies S1Ax ≥ S2rx for some |S1| = |S2| = I and therefore existence of D ∈ Mn(C), |D| ≤ I

with DAx = rx. Regarding det(rI −DA) as a complex polynomial in the n unknowns Dνν , Lemma 2.2
implies existence of diagonal D̃ ∈ Mn(C) with |D̃νν | = α ≤ 1 for all ν and det(rI − D̃A) = 0. If α = 0 then

r = 0 and (10) is true. Suppose α 6= 0. Then det(α−1rI − α−1D̃A) = 0 with |α−1D̃| = I, a signature
matrix. Hence Definition 1.1 implies ρC(A) ≥ |α−1r| ≥ |r|.

Now we can give one of the nice similarities between the three quantities (8) in discussion by extending
(10) to a characterization of ρIK .

Theorem 2.4. For IK ∈ {IR+, IR,C} and A ∈ Mn(IK) there holds

ρIK(A) = max
0 6=x∈IKn

min
xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣.(11)

Proof. Lemma 2.3 implies that the quantity on the right of (11) is a lower bound for ρIK(A). And by
Definition 1.1 there exists a signature matrix S ∈ Mn(IK) with SAx = λx, 0 6= x ∈ IKn and |λ| = ρIK(A),

henceforth | (Ax)i

xi
| = ρIK(A) for all i with xi 6= 0. This proves the theorem.

To our knowledge, the result for IK = C was first proved, in a different context, by Doyle [5]. Later it was
communicated to the author by Bryan Cain [1] with a different proof.

In a certain sense, Theorem 2.4 reveals a philosophy behind our generalization of Perron-Frobenius Theory
to general real and complex matrices. In the classical theory, the nonnegative orthant is the generic one.
Accordingly, the Perron vector is nonnegative, or in Theorem 2.4 for IK = IR+, the maximization is over

nonnegative vectors.

For the sign-real and sign-complex spectral radius we only know that there exists an orthant with a desired
property. This can be illustrated by rewriting Theorem 2.4 into

ρIK(A) = max
|S|=I

S∈Mn(IK)

max
0≤x∈IRn

min
xi 6=0

∣∣∣∣
(ASx)i

xi

∣∣∣∣.

That means, in a certain sense, maximization is performed over all individual orthants. For IK = IR+ the
first max, of course, is superfluous: the ”orthant” is known in advance. For IK = IR one can calculate
ρIR(A) by maximizing over the finitely many orthants. For IK = C computation of ρC is a continuous

maximization problem.
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Another example in this spirit is the following. In classical Perron-Frobenius Theory it is well known that
increasing an individual component of a nonnegative matrix cannot decrease the spectral radius. Increasing
means moving towards +∞, in the direction of the generic nonnegative orthant. For the sign-real spectral

radius the same is true in one direction, towards +∞ or towards −∞, except that we do not know the
direction in advance. And the same is true in the complex case as stated in the following theorem.

Theorem 2.5. Let ei denote the i-th column of the identity matrix, and let
IK ∈ {IR+, IR,C} and A ∈ Mn(IK). Then for i, j ∈ {1, . . . , n} the following is true:

(i) For IK = IR+

ρ(A + αeie
T
j ) ≥ ρ(A) for all α ≥ 0.

(ii) For IK = IR, there exists s ∈ {−1,+1} such that
ρIR(A + sαeie

T
j ) ≥ ρIR(A) for all α ≥ 0.

(iii) For IK = C, there exists a half space H in C such that
ρC(A + teie

T
j ) ≥ ρC(A) for all t ∈ H.

Proof. Let |Ax| = |rx| with r = ρIK(A) and some 0 6= x ∈ IKn. Then all three assertions follow by Lemma
2.3 as follows. For IK = IR+ it is x ≥ 0 and α ≥ 0 implies

(A + αeie
T
j )x ≥ Ax = |Ax| = |rx|.

Similarly, |(A + sαeie
T
j )x| ≥ |Ax| for some s ∈ {−1,+1} in case IK = IR, and for IK = C we proceed the

same way.

Upper bounds for ρIK, IK ∈ {IR,C} are generally difficult to compute because they imply lower bounds for
the componentwise distance to the nearest singular matrix of certain matrices. This will be elaborated in
Section 4. Some simple upper bounds on ρIK are the following. For 1 ≤ p ≤ ∞ denote by ‖A‖p the matrix

norm induced by the corresponding vector norm ‖ · ‖p.

Theorem 2.6. For IK ∈ {IR+, IR, C} and A ∈ Mn(IK),

ρIK(A) ≤ ‖A‖p for 1 ≤ p ≤ ∞,

ρIK(A) = ρ(A) = ‖A‖2 if IK = IR and A is symmetric or,
if IK = C and A is normal,

ρIK(A) = 1 if IK = IR and A is orthogonal or,
if IK = C and A is unitary.

ρC(A) = ρIR(A) for A ∈ Mn(IR) and n = 2.

(12)

Proof. By (7), S1AS2x = ρIK(A) · x for some 0 ≤ x ∈ IRn, x 6= 0. Therefore

ρIK(A) ≤ ‖S1AS2‖p ≤ ‖S1‖p‖A‖p‖S2‖p = ‖A‖p.

For normal or unitary A we have

‖A‖2 = ρ(A) ≤ ρC(A) ≤ ‖A‖2.
The same argument can be used for real symmetric matrices because the eigenvalues are real. Real

orthogonal matrices have eigenvalues of absolute value 1. By possibly multiplying the first row by −1 we
can achieve det A = −1. Then the value of the characteristic polynomial at zero is −1, forcing existence of

a positive eigenvalue, which must be 1. For A ∈ Mn(IR) and n = 2 either A is triangular, in which case
Lemma 2.1 implies ρIR(A) = max |Aii| or, there is a signature matrix S and diagonal D such that
B := D−1SAD is symmetric. For the (real) eigenvalue λ of B of largest absolute value it follows

|λ| = ρ(B) = ‖B‖2 = ρIR(B) = ρC(B), and ρIK(B) = ρIK(A) by Lemma 2.1.

The first bound in (12) can be arbitrarily weak, as for

A =

(
0 1
0 0

)
with ρIK(A) = 0 for all IK ∈ {IR+, IR, C}, but ‖A‖2 = 1.
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However, in this case also ρ(|A|) = 0, and in Theorem 6.3 we show that this is due to an underlying general
fact.

Theorem 2.4 has a number of implications, again showing similarities between the three quantities (8) in
discussion. We use the notation A[µ] for the k × k principal submatrix of A with rows and columns out of

the index set µ = (µ1, . . . , µk) ⊆ {1, . . . , n}.
Theorem 2.7. The three quantities in (8) are monotone with respect to principal submatrices, i.e., for

IK ∈ {IR+, IR, C} and A ∈ Mn(IK),

ρIK(A[µ]) ≤ ρIK(A).

Proof. For |A[µ]x| = |rx| with ρIK(A[µ]) = r and x ∈ IKk, k = |µ|, the inequality follows by augmenting x

by zeros and application of (10).

Another characterization of the three quantities (8) is the following.

Theorem 2.8. Let IK ∈ {IR+, IR,C} and A ∈ Mn(IK) and 0 < r ∈ IR. Then the following are equivalent.

(i) ρIK(A) < r.
(ii) det(rI −DA) 6= 0 for every diagonal D ∈ M(IK), |D| ≤ I.

Proof. (i) ⇒ (ii) Suppose det(rI −DA) = 0 for some |D| ≤ I, D ∈ M(IK) and let (rI −DA)x = 0 for
0 6= x ∈ IKn. Then |Ax| ≥ |DAx| = |rx|, and Lemma 2.3 implies ρIK(A) ≥ |r| = r. (ii) ⇒ (i). Suppose

ρIK(A) = r′ ≥ r, then (7) implies S1AS2x = r′x for some S1, S2 ∈ Mn(IK), |S1| = |S2| = I and 0 ≤ x ∈ IRn.
Then det(r′I − S1AS2) = 0 = det(r′I − S2S1A) = det(rI − r/r′ · S2S1A) = det(rI −DA) = 0 with

|D| = |r/r′ · S2S1| ≤ I.

In [20, Theorem 2.3] it was shown for real A that

ρIR(A) < r ⇔ det(rI − SA) > 0 for all |S| = I,

which is a finite characterization. For the next generalization recall that A ∈ Mn(IR) is called P -matrix
(P0-matrix) if all minors of A are positive (nonnegative), and A ∈ Mn(C) is called positive stable if every

eigenvalue of A has positive real part.

Theorem 2.9. Let 0 < r ∈ IR. Then

(i) For 0 ≤ A ∈ Mn(IR): ρ(A) < r ⇔ rI −A is a P -matrix
⇔ rI −A is positive stable.

(ii) For A ∈ Mn(IR): ρIR(A) < r ⇔ rI − SA is a P -matrix for all real |S| = I.
(iii) For A ∈ Mn(C): ρC(A) < r ⇔ rI − SA is positive stable for all complex |S| = I.

Proof. (i) Follows by [10, Theorem 2.5.3] applied to the Z-matrix rI −A.

(ii) was shown in [20, Theorem 2.3].

(iii) Suppose ρC(A) < r and rI − SA not positive stable for some |S| = I. By r > 0 and continuity there
exists 0 < α ≤ 1 with rI − αSA having a purely imaginary eigenvalue iy. Then

det((r − iy)I − αSA) = 0 = det(α−1(r − iy)I − SA). By Definition 1.1,
ρC(A) = ρC(SA) ≥ |α−1(r − iy)| ≥ |r − iy| ≥ r, a contradiction. If, on the other hand, rI − SA is positive

stable for all |S| = I, so is (r + α)I − SA for all α ≥ 0. Therefore,
det((r + α)I − S1AS2) = det((r + α)I − S2S1A) 6= 0 for all |S1| = |S2| = I and all α ≥ 0, and (7) finishes

the proof.

Theorem 2.9 displays a difference in our three quantities (8). For nonnegative A, the structural properties
are strong enough for the above relation to class P (and therefore to class M) and to positive stability.
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This is no longer true for general real matrices. For

A =




1 0.25 0
0 1 0.25

−0.25 0 1




all minors of B := 1.1I −A are positive implying ρIR(A) < 1.1, but B is neither inverse positive nor
positive stable. In the next section we give another characterization involving P -matrices.

3. Bounds using determinants and cycles. For a lower and upper bound for the three quantities
(8) based on determinants we use the following definition.

Definition 3.1. For real or complex A,

δ(A) := max
µ
| detA[µ]|1/|µ|,

where the maximum is taken over all nonempty µ ⊆ {1, . . . , n}.
With this we have the following two-sided bounds.

Theorem 3.2. Define ϕn := (21/n − 1)−1. Then for IK ∈ {IR+, IR, C} and A ∈ Mn(IK) we have

δ(A) ≤ ρIK(A) ≤ ϕn · δ(A).

The left and right bounds are sharp in the sense that equality can be achieved for all n. It is ϕn < 1.45n.

Proof. For IK = IR this was shown in [20, Theorem 4.2], and for nonnegative A, ρ(A) = ρIR(A). For
IK = C, µ ⊆ {1, . . . , n} and λi(A) denoting the eigenvalues of A,

ρC(A) ≥ ρC(A[µ]) ≥ ρ(A[µ]) = max |λi(A[µ])| ≥ |∏ λi(A[µ])|1/|µ| = | detA[µ]|1/|µ| proves the left
inequality. For the right inequality,

det(zI −A) = zn +
∑

|µ|=k≥1

(−1)k detA[µ]zn−k =: zn + R(z)(13)

(cf. [12, 2.15]). There are
(
n
k

)
minors det A[µ] of size |µ| = k, so that abbreviating t := δ(A) implies

|R(z)| ≤
∑

|µ|=k≥1

| detA[µ]||z|n−k ≤
n∑

k=1

(
n

k

)
tk|z|n−k = (|z|+ t)n − |z|n.(14)

For |z| > ϕnt it follows t < (21/n − 1)|z| and therefore (|z|+ t)n < 2|z|n. Combining this with (13) and (14)
yields

| det(zI −A)| ≥ |z|n − |R(z)| ≥ 2|z|n − (|z|+ t)n > 2|z|n − 2|z|n = 0.

This implies det(zI −A) 6= 0 for all |z| > ϕnt and therefore ρ(A) ≤ ϕnt = ϕnδ(A). Finally, δ(A) = δ(SA)
finishes the proof of the inequalities. The left inequalities are equalities for the identity matrix. Finally, in

[20, p.28] it was shown that for the circulant

A = circ(1, a, a2, . . . , an−1), a := 21/n,(15)

a positive matrix, | detA[µ]| = 1 for all µ. Therefore, (6) implies

ρIK(A) = ρ(A) =
n−1∑
i=0

ai = (an − 1)/(a− 1) = ϕn showing the right inequality to be sharp for A as in (15)

and all n. Finally, 21/n − 1 = e(ln 2)/n − 1 > (ln 2)/n > (1.45n)−1 finishes the proof.

Next we can characterize the case that one of the three quantities (8) is zero. Recall a cycle
(ω1, . . . , ωk), k ≥ 1, of a matrix A is a subset of {1, . . . , n}. A cycle is called nonzero if the product

Aω1ω2Aω2ω3 · · ·Aωkω1 is nonzero. Note that every Aii 6= 0 defines a nonzero cycle {i} of length one. A full
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cycle is a cycle of length n of mutually different ωi, i.e. a permutation of (1, . . . , n). A matrix is acyclic iff
it is permutationally similar to a strictly upper triangular matrix. Remarkably, the case ρIK(A) = 0

depends only on this graph theoretical property of A.

Theorem 3.3. For IK ∈ {IR+, IR, C} and A ∈ Mn(IK) the following are equivalent:

i) ρIK(A) = 0.
ii) A is acyclic.
iii) All minors of A are zero.

Proof. The equivalence of i) and iii) follows by Theorem 3.2. If A has no cycles, then obviously all minors
are zero, so it remains to show iii) ⇒ ii). Suppose A is not acyclic and let µ := (ω1, . . . , ωk) be a nonzero

cycle of minimal length. This is a full cycle of A[µ]. Another nonzero full cycle of A[µ] implies by [7,
Lemma 2.1] a common nonzero subcycle, contradicting the minimality of the length of µ. Hence A[µ] has

only one nonzero cycle at all, and this implies det A[µ] 6= 0.

The NP -hardness to compute ρIR [20, Corollary 2.9] is reflected in the exponential number of minors in the
definition of δ. Another result in this spirit relates ρIR to P -matrices.

Theorem 3.4. For A ∈ M(IR) and 0 < r ∈ IR not an eigenvalue of A the following is true:

ρIR(A) < r ⇔ (rI −A)−1(rI + A) is a P -matrix.

This was proved in [20, Theorem 2.13]. Note that in contrast to Theorem 2.9 (ii) there is no signature
matrix involved in the characterization of ρIR in Theorem 3.4. It also gives another proof of NP -hardness
to compute ρIR by using an inverse Cayley transform and because checking P -property is NP -hard [3]. We

will use Theorem 3.4 to identify the sign-real spectral radius for certain matrices in order to establish
bounds for the ratio ρC/ρIR in Section 6. Concerning the sign-complex spectral radius, it is well known that

ρ(A) < r ⇔ (rI −A)−1(rI + A) is positive stable

because the Cayley transform maps eigenvalues from the (open) unit disc to the (open) right half plane.
What is an equivalent condition for ρC(A) < r related to the Cayley transform (rI −A)−1(rI + A)? We

have reasons to conjecture the following.

Conjecture 3.5. For r > 0,

ρC(A) < r ⇔ (rI −A)−1(rI + A) is (positive) D-stable.

Recall a matrix is called D-stable if DA is positive stable for all positive diagonal D [10, 2.5.7 f.]. If true,
this would be a characterization of D-stability, apparently still an open problem. We mention that for

nonsingular real diagonal D,

‖D−1AD‖2 < r ⇔ D2C∗ + CD2 positive definite,(16)

where C := (rI −A)−1(rI + A). By Theorem 2.6, the left hand side of (16) implies ρC(A) < r, where the
right hand side implies C to be D-stable. Is there a finite characterization of ρC(A) < r?

For strictly upper triangular, i.e. acyclic A, Theorem 3.3 implies ρIK(A) = 0, but ‖A‖2 6= 0 for A 6= 0. One
may ask whether existence of a nonzero cycle already implies that the ratio ‖A‖2/ρIK(A) becomes finite.
By the proof of Theorem 3.3 existence of a nonzero cycle implies at least one minor to be nonzero so that
ρIK(A) is nonzero. Indeed, every nonzero cycle establishes an easy-to-compute and very useful lower bound

on ρIR(A) [21, Theorem 4.4].
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This result extends to ρC(A). The proof carries almost identically over from the real case [21, Theorem 4.4]
to the complex case, so we omit the proof. Again, the result displays a similarity between our three

quantities (8).

Theorem 3.6. For a matrix A and a cycle ω = (ω1, . . . , ωk) ⊆ {1, . . . , n}, k ≥ 1, define the geometric
mean of the cycle product by

|
∏

Aω|1/|ω| := |Aω1ω2 · . . . ·Aωk−1ωk
·Aωkω1 |1/k,

and the maximum of those by

ζ(A) := max
ω
|
∏

Aω|1/|ω|.(17)

Then for IK ∈ {IR+, IR, C} and A ∈ Mn(IK),

(3 + 2
√

2)−1 · ζ(A) ≤ ρIK(A) ≤ n · ζ(A).(18)

For A = I, ζ(A) = 1 = ρIK(A), and for A = (1), ρIK(A) = n = n · ζ(A).

For cycles of length 1 or 2 Theorem 3.6 implies

ρIK(A) ≥
√
|AijAji| for all 1 ≤ i, j ≤ n.

This includes ρIK(A) ≥ |Aii| for all i, which also follows by Theorem 2.7.

Recently, we used Theorem 3.6 to solve an open problem posed in [14], see [22].

When adapting the proof of Theorem 3.6 from the real case [21, Theorem 4.4] to the complex case IK = C
there is much freedom left. However, we did not manage to utilize this freedom to improve the constant
(3 + 2

√
2) in Theorem 3.6 for IK = C. We conjecture that in this case the constant can be replaced by 1.

Note that for IK = IR the constant 3 + 2
√

2 cannot be replaced by a constant greater than 1/2 [?].

4. Relations to the componentwise distance to singularity. The original motivation to
introduce and investigate the sign-real spectral radius was the solution of an open problem posed in [4]
concerning the componentwise condition number and distance to singularity of a real matrix, cf. [21].

Much of these results carry over to the complex case and give additional insight.

For a nonnegative weight matrix E and real matrix A ∈ Mn(IR), the real componentwise distance to the
nearest singular matrix is defined by

dIR
E (A) := min{0 ≤ α ∈ IR : ∃ Ẽ ∈ M(IR), |Ẽ| ≤ αE and det(A + Ẽ) = 0}.(19)

If no such α exists, we define the minimum to be +∞. Correspondingly, for a complex matrix A ∈ Mn(C)
the complex componentwise distance to the nearest singular matrix is defined by

dC
E(A) := min{0 ≤ α ∈ IR : ∃ Ẽ ∈ M(C), |Ẽ| ≤ αE and det(A + Ẽ) = 0}.(20)

For the special choice E = I, i.e. only diagonal componentwise perturbations, there is a simple one-to-one
correspondence to the three quantities (8). Part (ii) for IK = IR was first proved in [20, Lemma 2.11].

Theorem 4.1. The following is true.

(i) dIK
I (A−1) = ρ(A)−1 for nonsingular 0 ≤ A ∈ M(IR) and IK ∈ {IR,C}.

(ii) dIK
I (A−1) = ρIK(A)−1 for nonsingular A ∈ M(IK) and IK ∈ {IR, C}.
Proof. Part (i) follows by (6): ρ(A) = ρIR(A) = ρC(A) for A ≥ 0.

(ii) For IK ∈ {IR, C} and r ≥ 0 we have

dIK
I (A−1) > r ⇔ ∀ D ∈ M(IK), |D| ≤ rI : det(A−1 + D) 6= 0.

9



Now det(A) 6= 0 implies dIK
I (A−1) > 0, and by r−1(A−1 + D) = (r−1I + r−1DA)A−1 it follows

dIK
I (A−1) > r ⇔ ∀ D̃ ∈ M(IK), |D̃| ≤ I : det(r−1I + D̃A) 6= 0.

Now Theorem 2.8 yields

dIK
I (A−1) > r ⇔ ρIK(A) < r−1.

For r := dIK
I (A−1), det(A−1 + D) = 0 with |D| = rI implies det(r−1I + r−1DA) = 0, and therefore

ρIK(A) = r−1.

As a corollary we note that ρIK(A) depends continuously on the entries of A. This is at least not obvious
for IK = IR.

Lower bounds for ρIK are obtained for every nontrivial vector by Lemma 2.3, while Theorem 4.1 implies
that computation of upper bounds for IK ∈ {IR, C} is, in general, difficult. This is because singularity of
some A−1 + D, |D| ≤ r−1I implies dIK

I (A−1) ≤ r−1 and therefore ρIK(A) ≥ r, while for an upper bound
r ≥ ρIK(A), nonsingularity of every A−1 + D, |D| ≤ r−1I has to be verified.

For general nonnegative weight matrix E and complex nonsingular A, we have A + Ẽ = A(I + A−1Ẽ), such
that −1 is in the spectrum of A−1Ẽ. A simple computation using definition (19) and (20) yields

dIK
E (A) = [max{|λ| : λ ∈ IK eigenvalue of A−1Ẽ, |Ẽ| ≤ E}]−1 for IK ∈ {IR, C} and A ∈ Mn(IK).(21)

Note that for IK = IR the maximum is taken only over real eigenvalues. Moreover, Ẽ is freely varying over
all {Ẽ : |Ẽ| ≤ E} = {ẼS : |Ẽ| ≤ E, |S| = I}, so that (21) implies

dIK
E (A) = {max

| eE|≤E
ρIK(A−1Ẽ}−1 for IK ∈ {IR,C} and A ∈ Mn(IK).

Still the maximum is taken over all matrices Ẽ with |Ẽ| ≤ E. This can be improved. For this we need a
generalization of the Oettli-Prager Theorem [15] to the complex case.

Lemma 4.2. Let IK ∈ {IR, C}, A ∈ Mn(IK), 0 ≤ E ∈ Mn(IR), b ∈ IKn, 0 ≤ δ ∈ IRn, and define

∑
:= {x ∈ IKn : (A + Ẽ)x = b + δ̃, |Ẽ| ≤ E, |δ̃| ≤ δ}.

Then

∑
= {x ∈ IKn : |Ax− b| ≤ E|x|+ δ}.

Proof. If (A + Ẽ)x = b + δ̃, then |Ax− b| = | − Ẽx + δ̃| ≤ E|x|+ δ. Conversely, suppose
|Ax− b| ≤ E|x|+ δ. Then there are signature matrices S1, S2 ∈ Mn(IK) and real diagonal D with

0 ≤ D ≤ I with S1(Ax− b) = DES2x + Dδ. With Ẽ := −S∗1DES2 and δ̃ := S∗1Dδ it follows
(A + Ẽ)x = b + δ̃ and |Ẽ| ≤ E, |δ̃| ≤ δ.

This theorem is well known for real matrices [25, Theorem III.2.17] to people working in self-validating
methods because it characterizes the solution set of an interval linear system. For [A] := {Ã : |A− Ã| ≤ E}

forms an interval matrix and [b] := {b̃ : |b− b̃| ≤ δ} forms an interval vector, it follows

∑
= {x : Ãx = b̃, Ã ∈ [A], b̃ ∈ [b]}.

With Lemma 4.2 we obtain a better characterization of dIK
E (A). For IK = IR, this characterization of dIR

E is
known [18, Theorem 5.1, (C3)]. For IK = C, the definition (20) and Lemma 4.2 imply

r := dC
E(A) = min{0 < α ∈ IR : (A + Ẽ)z = 0, 0 6= z ∈ Cn, |Ẽ| ≤ αE}

= min{0 < α ∈ IR : |Az| ≤ αE|z|, 0 6= z ∈ Cn}.(22)
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Then there are S1, S2 ∈ Mn(C), |S1| = |S2| = I, real diagonal D with 0 ≤ D ≤ I and real 0 ≤ x ∈ IRn with

S1AS2x = rDEx.(23)

We show that we may replace D in (23) by complex diagonal D̃ with |D̃| = βI for some 0 ≤ β ∈ IR. Define
the complex polynomial P (u) := det(S1AS2 − r diag(u)E) ∈ C[u1, . . . , un]. By (23), P (D11, . . . , Dnn) = 0.
For β := min{‖u‖∞ : P (u) = 0}, Lemma 2.2 implies existence of some v ∈ Cn with P (v) = 0 and |vi| = β

for all i. Then diag(v) = βS3 for a signature matrix S3 ∈ Mn(C), |S3| = I. Furthermore, P (v) = 0 implies
existence of 0 6= z̃ ∈ Cn with

S1AS2z̃ = rβS3Ez̃.

Setting z := S2z̃ we have |Az| = rβE|z|, and the minimality of r as defined in (22) implies β = 1.
Therefore,

dC
E(A) = min{α : |Az| = αE|z|, 0 6= z ∈ Cn}

= min{α : S1AS2z = αEz, 0 6= z ∈ Cn, |S1| = |S2| = I}
= min{α : det(α−1I − S∗2A−1S∗1E) = 0, |S1| = |S2| = I}
= {max

|S|=I
ρC(A−1SE)}−1

(24)

for complex signature matrices S, S1, S2 ∈ Mn(C). Combining our knowledge on the sign-real spectral
radius with [18, Theorem 5.1, (C3)] proves (24) to be true also in the real case.

Theorem 4.3. Let IK ∈ {IR, C}, nonsingular A ∈ M(IK) and 0 ≤ E ∈ M(IR) be given. Then

dIK
E (A) = {max

|S|=I
ρIK(A−1SE)}−1.(25)

By Definition 1.1 it follows that for the characterization of dIK
E (A) only knowledge on the spectrum of a

certain set of matrices A−1Ẽ, |Ẽ| = E, is necessary, namely A−1S1ES2. In the real case, this set is finite.
Is there a finite characterization on dC

E(A)?

Clearly, Theorem 4.1, (ii) is a consequence of Theorem 4.3 for E = I. However, the arguments for E = I

may give additional insight into the matter.

Finally, we mention another explicit formula for dIK
E expressed by ρIK.

Theorem 4.4. Let 0 ≤ E ∈ M(IR). Then

(i) dIK
E (A) =

[
ρ

(
0 E

A−1 0

)]−2

for nonsingular A ∈ M(IR), A−1 ≥ 0, IK ∈ {IR,C}.

(ii) dIK
E (A) =

[
ρIK

(
0 E

A−1 0

)]−2

for nonsingular A ∈ M(IK), IK ∈ {IR, C}.

Proof. (i) is consequence of (6). (ii) follows by the fact that ±
√

λ are the eigenvalues of

(
0 A

B 0

)
for λ

an eigenvalue of AB, by Theorem 4.3.

We note that part (i) remains true for rank(sign(A−1)) = 1 when replacing A−1 by |A−1| in the formula.
This is true, for example, for checkerboard sign distribution of A−1.

For the special case E = (1), i.e. Eij = 1 for all i, j, that is for absolute perturbations, we can derive an
explicit formula for dIK

(1)(A). Let e denote a column of (1), the matrix of all 1′s, so that (1) = eeT . Then
Theorem 4.3 and Lemma 2.1 imply

dC
(1)(A)−1 = max

u,v∈Cn

|u|=|v|=e

ρ(A−1uv∗) = max
u,v∈Cn

|u|=|v|=e

|v∗A−1u|

= max
‖u‖∞=1

‖A−1u‖1 = ‖A−1‖∞,1.

11



For real A ∈ M(IR) and IK = IR, the same is true [19]: dIR
(1)(A)−1 = ‖A−1‖∞,1. In this case the vector u,

‖u‖∞ = 1, maximizing ‖A−1u‖1 is obviously a real vector with components ±1 and the eigenvalue of
maximum absolute value of A−1uvT , which is |vT A−1u|, is real (note that in Definition 1.1 of ρIR the

maximum is taken over real eigenvalues). Therefore, the real and complex distance to singularity of a real
matrix subject to absolute perturbations is the same:

dC
(1)(A) = dIR

(1)(A) for A ∈ Mn(IR).(26)

Of course, (26) need not to be true for other weight matrices than E = (1).

Following Poljak and Rohn [17] the computation of dIR
(1)(A) is NP-hard. We note that this is true for a very

specific subclass of real matrices, namely symmetric, strongly diagonally dominant inverse M -matrices. By
Theorem 4.4 and (26),

dIR
(1)(A) = ρIR

(
0 (1)

A−1 0

)−2

= ρC

(
0 (1)

A−1 0

)−2

for every real matrix A. This proves the following.

Theorem 4.5. The computation of ρC(A) is NP-hard.

Originally, the sign-real spectral radius was introduced [20] to solve a conjecture by Demmel [4]: For
A ∈ Mn(IR), there are finite constants γn such that

1
ρ(|A−1| |A|) ≤ dIR

|A|(A) ≤ γn

ρ(|A−1| |A|) .(27)

The quantity in the denominator is the optimal componentwise (Bauer-Skeel) condition number achievable
by diagonal scaling [4], [24]. Condition (27) means that the componentwise distance to the nearest singular

matrix for relative perturbations is inverse proportional to the (componentwise) condition number. We
solved this in the affirmative for general weight matrices E ≥ 0 instead of |A| (part (ii) in the following

theorem). The same is true in the complex case, and again the formulations are very similar for the three
quantities (8). Note that for normwise perturbations, it is well known that the (normwise) distance to the
nearest singular matrix is equal to the reciprocal of the (normwise) condition number [8, Theorem 6.5].

Theorem 4.6. For 0 ≤ E ∈ Mn(IR) the following is true (0−1 is interpreted as ∞).

(i)
1

ρ(|A−1|E)
= dIR

E (A) = dC
E(A) for nonsingular A ∈ M(IR), A−1 ≥ 0.

(ii)
1

ρ(|A−1|E)
≤ dIK

E (A) ≤ (3 + 2
√

2)n
ρ(|A−1|E)

for IK ∈ {IR, C} and nonsingular A ∈ Mn(IK).

For every n, there exists a matrix A ∈ Mn(IK) with dIK
|A|(A) =

n

ρ(|A−1| |A|) .

Proof. Part (i) follows by (6) and Theorem 4.3 and the well known fact from Perron-Frobenius Theory that
|A| ≤ B implies %(A) ≤ %(B), for part (ii) and IK = IR see [21, Proposition 5.1]. The proof of part (ii) for
IK = C is almost identical to the real case and therefore omitted. For the last part we can use the same

example as in the real case [21, (25)], namely the symmetric tridiagonal matrix

A =




1 1
1 0 1

1 0
. . .

. . . . . . 0 1
1 s



∈ Mn(IR) ⊆ Mn(C) with s := (−1)n+1.

A computation yields |A−1| |A| = (1) ∈ Mn(IR) and therefore ρ(|A−1| |A|) = n. The determinant of A is
equal to the sum of two full cycles, both being equal to 1. No componentwise relative perturbation less

than 100 %, real or complex, can move the determinant into zero, hence dC
|A|(A) = dIR

|A|(A) = 1.
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The upper bound in (ii) relies on the lower bound (18) in Theorem 3.6. If the conjecture following
Theorem 3.6 is true, then the constant 3 + 2

√
2 in (ii) of the preceeding Theorem 4.6 can be replaced by 1

for IK = C, implying two-sided sharp inequalities in this case.

5. Relations to the structured singular value. In [5] the structured singular value, also known as
the µ-number, was introduced to analyze feedback systems with structured uncertainties. For an overview

see [16]. The definition of the µ-number relies on a fixed block structure ∆ ⊆ Mn(C) with

∆ := {diag[δ1Ir1 , . . . , δSIrS
, ∆S+1, . . . , ∆S+F ] : δi ∈ C,∆S+j ∈ Mmj

(C)}

For consistency,
∑

ri +
∑

mj = n. For such a block structure, the µ-number is defined by [16]

µ∆(A) := [min{‖∆‖2 : ∆ ∈ ∆, det(I −A∆) = 0}]−1

There are two differences to the reciprocal of the componentwise (complex) distance to singularity dC
E .

First, the µ-number refers to blockwise perturbations and second, the distance measure is, with respect to
these blocks, normwise. Nevertheless, the µ-number establishes a certain link between normwise and

componentwise distance to singularity. For S = 0, F = 1, the µ-number is the reciprocal of the traditional
normwise distance to singularity, i.e. ‖A−1‖−1

2 . For S = n, F = 0, the µ-number is the reciprocal of dC
I

because for 1× 1 matrices, the spectral norm and modulus coincide. This is also true for arbitrary S, F and
ri = mj = 1 for all i, j. In this case, µ∆(A) = ρC(A) by Theorem 4.1, and all results on the µ-number are
valid for the sign-complex spectral radius. This includes some results in Section 2, especially Theorem 2.4

for IK = C.

With Theorem 4.1 we found arguments why computation of upper bounds for ρIK, IK ∈ {IR, C}, is
generally difficult. For the µ-number, substantial work has been done to investigate the upper bound

ρC(A) ≤ inf
D∈M(IR+)
D diagonal

‖D−1AD‖2.(28)

The validity of (28) follows by Theorem 2.6 and Lemma 2.1. The right hand side is numerically convenient
to compute because ‖e−DAeD‖2 is convex in the Dii for diagonal D [23]. Convex optimization problems
can be solved efficiently. For an excellent treatment see [27]. Over there, sharpness of the bound is also

characterized, see also [16].

Estimation (28) is generally referred to as ”the upper bound” for the µ-number. It proved to be of good
quality in practice, frequently being equal to the left hand side. However, at least asymptotically, the ratio

between the upper bound and the µ-number is not finite [26]. Using Theorem 3.6 we obtain an upper
bound for the ratio to ρC as follows. It is well known [6] that

inf{max
i,j

|D−1AD|ij : D nonsingular diagonal} = max{|
∏

Aω|1/|ω| : ω ⊆ {1, . . . , n}} = ζ(A).

Therefore,

inf
D
‖D−1AD‖2 ≤ n · ζ(A)

and by Theorem 3.6,

ρC(A) ≤ inf
D
‖D−1AD‖2 ≤ (3 + 2

√
2)n · ρC(A).

But earlier, the better factor
√

n− 1 for n ≥ 4 was found ([13], [11]). It is conjectured that the true ratio is
O(log n).
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6. Relations between ρIR(A), ρC(A) and ρ(|A|). We start with a class of matrices which proved
useful to construct certain examples - and counterexamples. The sign-real and sign-complex spectral radius

can be calculated explicitly for those matrices.

Theorem 6.1. Define

A =




0
+1

. . .

-1
0



∈ Mn(IR) for n ≥ 2,(29)

a skew-symmetric matrix with Aij = sign(j − i), that is all components equal to +1 above and equal to −1
below the zero diagonal. Then for all n ≥ 2 it holds

ρIR(A) = 1 and ρC(A) =
sin π/n

1− cos π/n
.

Remark. For the real case this was shown in [20, Lemma 5.6]. Here we give a simpler proof. Note that
ρIR(A) ≥ 1 is easy to see, but ρIR(A) = 1 means that no matrix SA, |S| = I, has a real eigenvalue greater

than one in absolute value.

Proof. A direct computation shows

P = (I −A)−1(I + A) =




0 1
−1 0 0

−1
. . .
. . .

0
−1 0




for all n ≥ 2,(30)

so that |P | is a permutation matrix. It is det P = 1 for all n, so that this skew-circulant is a P0-matrix for
all n. Now Theorem 3.4 together with a continuity argument shows ρIR(A) = 1.

Next we calculate ρC(A). For A being normal, Theorem 2.6 implies ρC(A) = ρ(A). The characteristic
polynomial of P in (30) is χP (x) = xn + (−1)n, so that the eigenvalues of P are

exp(2kπi/n), k = 1 . . . n for n odd,

exp((2k + 1)πi/n), k = 1 . . . n for n even.

This yields the eigenvalues of A = (P + I)−1(P − I). A little computation for n odd and n even and
Theorem 2.6 shows

ρC(A) = ‖A‖2 = ρ(A) =
sin π/n

1− cos π/n
for all n ≥ 2.

We first consider relations between the Hadamard product ρIK(A ◦A), where (A ◦B)ij := AijBij , and
ρIK(A)2 and ρIK(A2). For IK = IR those three quantities may be in any order: For A as in (29) and n = 3

we have

ρIR(A)2 = 1 < ρIR(A ◦A) = 2 < ρIR(A2) = 3,

and for

A =



−1 1 0
0 1 1
0 −1 −1


(31)
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we have

ρIR(A2) = 1 < ρIR(A ◦A) = 2 < ρIR(A)2 = 4.

In the complex case and again for the matrix defined in (31) the values do not change compared to the real
case, that is

ρC(A2) = 1 < ρC(A ◦A) = 2 < ρC(A)2 = 4,

and three inequalities remain. For A as in (29) and n = 3 we have ρC(A ◦A) = 2 < ρC(A2) = 3. The
inequality ρC(A)2 < ρC(A2) is only possible if the bound (28) is not sharp. This is because for A scaled

such that ρC(A) = ‖A‖2 it is

ρC(A2) ≤ ‖A2‖2 ≤ ‖A‖2 · ‖A‖2 = ρC(A)2,(32)

and in case the infimum in (28) is not a minimum, a continuity argument confirms (32). This implies

ρC(A)2 ≥ ρC(A2) for n ≤ 3,

but for the 4× 4 matrix defined in [16, Section 9.2] it is ρC(A)2 < ρC(A2). This example can be generalized
to n > 4.

The inequality ρC(A)2 < ρC(A ◦A) is also not possible if the upper bound (28) is sharp. This is because
ρC(A) = ‖B‖2 with B = D−1AD for diagonal D implies

ρC(A ◦A) = ρ(S(A ◦A)) = ρ(D−2S(A ◦A)D2) = ρ(S((D−1AD) ◦ (D−1AD)))
≤ ‖S(B ◦B)‖2 = ‖B ◦B‖2 ≤ ‖B‖22 = ρC(A)2,

where the last inequality follows by [10, Theorem 5.5.1]. Hence,

ρC(A ◦A) ≤ ρC(A)2 if (28) is sharp, especially for n ≤ 3.(33)

In the real case A ∈ M(IR), we have A ◦A ≥ 0 and

ρC(A ◦A) = ρ(A ◦A) ≤ ρ(A)2 ≤ ρC(A)2.

Is (33) true for general complex A?

The results can be summarized in the following table.

< ρC(A ◦A) ρC(A)2 ρC(A2)
ρC(A ◦A) (31) (29)
ρC(A)2 ? [16, Sec. 9.2]
ρC(A2) (31) (31)

The references are examples of matrices such that the quantity in the left column is strictly less than the
quantity in the top row. For the ”?” such an example may only exist for n ≥ 4 and if the upper bound (28)

is not sharp.

Finally we give bounds for the ratios between ρIR(A), ρC(A) and ρ(|A|). An upper bound for ρC/ρIR

follows by Theorem 3.2:

ρIR(A) ≤ ρC(A) ≤ ϕn · δ(A) ≤ ϕn · ρIR(A).(34)

For the matrices given in Theorem 6.1 we have

ρC(A) =
sin π/n

1− cosπ/n
ρIR(A).
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The power series expansion

sin x

1− cos x
=

2
x
− 1

6
x + 0(x3)

yields ρC(A)/n = 2/π + 0(n−2). Together with (34) this proves the following.

Theorem 6.2. For A ∈ Mn(IR),

ρIR(A) ≤ ρC(A) ≤ (21/n − 1)−1 · ρIR(A) < 1.45n · ρIR(A).(35)

For all n it is

2
π
· n ≤ sup

A∈Mn(IR)

ρC(A)
ρIR(A)

≤ (21/n − 1)−1 ≤ 1.45n.

Finally, for ζ(A) as defined in (17) we have ζ(A) = ζ(|A|), and by Theorem 3.6

[(3 + 2
√

2)n]−1ρ(|A|) ≤ (3 + 2
√

2)−1ζ(A) ≤ ρIR(A) ≤ ρC(A) ≤ ρ(|A|).

For a Hadamard matrix H with HT H = nI, Theorem 3.2 and Theorem 2.6 imply

|det H|1/n = n1/2 ≤ ρIR(H) ≤ ρC(H) ≤ ‖H‖2 ≤ n1/2.

Hence,

ρ(|H|)/ρIR(H) = ρ(|H|)/ρC(H) = n1/2.

Theorem 6.3. For IK ∈ {IR, C} and A ∈ Mn(IK),

[(3 + 2
√

2)n]−1 · ρ(|A|) ≤ ρIK(A) ≤ ρ(|A|).

At least for values of n where an n× n Hadamard matrix exists it is

n1/2 ≤ sup
A∈Mn(IR)

ρ(|A|)
ρIK(A)

.

7. Conclusion. The nonlinear eigenequation |Ax| = |λx| was shown to create quantities for general
real and complex matrices similar to the Perron root for real nonnegative matrices. We presented a number
of results supporting this unification, but many open problems remain. For A ∈ Mn(IR), C ∈ Mn(C), we

conjecture the following.

For r > 0 : ρC(C) < r ⇔ (rI − C)−1(rI + C) is (positive) D-stable.(36)

ρC(C ◦ C) < ρC(C)2 is not true for n ≥ 4.(37)

n−1ρ(|A|) ≤ ρIR(A).(38)

ρIR(A) ≥ 1
2
|
∏

Aω|1/|ω| for every cycle ω ⊆ {1, . . . , n}.(39)

ρC(C) ≥ |
∏

Cω|1/|ω| for every cycle ω ⊆ {1, . . . , n}.(40)

dIR
E (A) ≤ n

ρ(|A−1|E)
for 0 ≤ E ∈ Mn(IR).(41)

dC
E(C) ≤ n

ρ(|C−1|E)
for 0 ≤ E ∈ Mn(IR).(42)

If true, the inequalities (39), (40), (41) and (42) are best possible. A main open problem for the
computation of ρC(A) is

16



Does there exist a finite characterization of ρC(A)?
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