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The Menagerie of Krylov Methods

o Lanczos based methods (short–term methods)
o Arnoldi based methods (long–term methods)

o eigensolvers: Av = vλ

o linear system solvers: Ax = b

o (quasi-) orthogonal residual approaches: (Q)OR
o (quasi-) minimal residual approaches: (Q)MR

Extensions:
o Lanczos based methods:

o look-ahead
o product-type (LTPMs)
o applied to normal equations (CGN)

o Arnoldi based methods:
o restart (thin/thick, explicit/implicit)
o truncation (standard/optimal)
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A Unified Matrix Description of Krylov Methods

Krylov methods as projection onto ’simpler’ matrices:
o QHQ = I, QHAQ = H Hessenberg (Arnoldi),
o Q̂HQ = I, Q̂HAQ = T tridiagonal (Lanczos)

Introduce computed (condensed) matrix C = T, H

Q−1AQ = C ⇒ AQ = QC

Iteration implied by unreduced Hessenberg structure:

AQk = Qk+1Ck, Qk = [q1, . . . , qk], Ck ∈ K(k+1)×k

Stewart: ’Krylov Decomposition’

Iteration spans Krylov subspace (q = q1):

span{Qk} = Kk = span{q, Aq, . . . , Ak−1q}
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Perturbed Krylov Decompositions

A Krylov decomposition analogue holds true in finite precision:

AQk = Qk+1Ck − Fk = QkCk + qk+1ck+1,keT
k − Fk

= QkCk + Mk − Fk

We have to investigate the impacts of the method on
o the structure of the basis Qk (local orthogonality/duality)
o the structure of the computed Ck, Ck
o the size/structure of the error term −Fk

Convergence theory:
o is usually based on inductively proven properties:

orthogonality, bi-orthogonality, A-conjugacy, . . .
What can be said about these properties?

’Standard’ error analysis:
o splits into forward and backward error analysis.

Does this type of analysis apply to Krylov methods?
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All methods fit pictorially into:

A Qk − Qk

Ck

= 0 − Fk .

This is a perturbed Krylov decomposition, as subspace equation.
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Examination of the methods can be grouped according to

o methods directly based on the Krylov decomposition

o methods based on a split Krylov decomposition

o LTPMs

The matrix Ck plays a crucial role:

o Ck is Hessenberg or even tridiagonal (basics),

o Ck may be blocked or banded (block Krylov methods),

o Ck may have humps, spikes, . . . (more sophisticated)

The error analysis and convergence theory splits further up:

o knowledge on Hessenberg (tridiagonal) matrices

o knowledge on orthogonality, duality, conjugacy, . . .

We start with results on Hessenberg matrices.
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An Excursion on Matrix Structure

Eigendecomposition of A:

AV = V JΛ

Left eigenmatrices:

V̂ ≡ V −H ⇒ V̂ HA = JΛV̂ H

V̌ ≡ V −T ⇒ V̌ TA = JΛV̌ T

The adjoint of λI −A fulfils

adj (λI −A)(λI −A) = det(λI −A)I ≡ χA(λ)I.

Suppose that λ is not contained in the spectrum of A.
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We form the resolvent R(λ) = (λI −A)−1 of λ and obtain

adj (λI −A) = χA(λ)R(λ) = χA(λ) V J−1
λ−ΛV̂ H .

One shifted and inverted Jordan block:

J−1
λ−λi

= SiEiSi ≡ Si



(λ− λi)
−1 (λ− λi)

−2 . . . (λ− λi)
−k

(λ− λi)
−1

. . . ...

(λ− λi)
−1

Si,

Observation: Terms with negative exponent cancel with factors in the

characteristic polynomial χA(λ).

The resulting expression is a source of eigenvalue – eigenvector relations.
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We express the adjugate with the aid of compound matrices,

adjA ≡ SCn−1(A
T )S.

Then we have equality

P ≡ Cn−1(λI −AT ) = (SV S)G (SV̂ HS) ≡ (SV S)χA (λ)E (SV̂ HS).

The compound matrix P is composed of polynomials in λ:

pij = pij (λ;A) ≡ detLji, where L ≡ λI −A.

G is composed of rational functions in λ:

G = χA (λ) · (⊕iEi) .

Since many terms cancel, the elements of G are polynomials.

We divide by maximal factor (λ− λi)
` and compute the limes λ → λi.
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Observation: Only few elements of limG are non-zero. Choice of eigen-

vectors based on non-zero positions i, j:

V V̂ H

vi (i, j)

v̂H
j

We consider here only the special case of non-derogatory eigenvalues.

We arrive at equations involving the elements of P , limG and products

of components of left and right eigenvectors.
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Theorem: Let A ∈ Kn×n. Let λl = λl+1 = . . . = λl+k be a geometrically

simple eigenvalue of A. Let k + 1 be the algebraic multiplicity of λ.

Let v̂H
l+k and vl be the corresponding left and right eigenvectors with

appropriate normalization.

Then

vjlv̌i,l+k = (−1)(j+i+k) pji(λl;A)∏
λs 6=λl

(λl − λs)

holds true.

The sign matrices bear the blame for the minus one, P for the numerator

and limG for the denominator.

This setting matches every eigenvalue of non-derogatory A.
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Unreduced Hessenberg matrices are non-derogatory matrices. This is

easily seen by a simple rank argument. In the following let H = Hm be

unreduced Hessenberg of size m×m,

rank(H − θI) ≥ m− 1.

Many polynomials can be evaluated in case of Hessenberg matrices:

Theorem: The polynomial pji, i ≤ j has degree (i− 1)+(m− j) and can

be evaluated as follows:

pji(θ;H) =

∣∣∣∣∣∣∣
θI −H1:i−1 ?

Ri+1:j−1

0 θI −Hj+1:m

∣∣∣∣∣∣∣
= (−1)i+j χH1:i−1

(θ)
∏

diag(Hi:j,−1)χHj+1:m
(θ).
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Denote by H(m) the set of unreduced Hessenberg matrices of size m×m.

The general result on eigenvalue – eigenvector relations can be simplified

to read:

Theorem: Let H ∈ H(m). Let i ≤ j. Let θ be an eigenvalue of H with

multiplicity k + 1. Let s be the unique left eigenvector and ŝH be the

unique right eigenvector to eigenvalue θ.

Then

(−1)k š(i)s(j) =

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=i

hl+1,l (1)

holds true.

Remark: We ignored the implicit scaling in the eigenvectors imposed by

the choice of eigenvector-matrices, i.e. by ŠTS = I.
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Error Analysis Revisited

For simplicity we assume that the perturbed Krylov decomposition

Mk = AQk −QkCk + Fk

is diagonalisable, i.e. that A and Ck are diagonalisable. Let yj ≡ Qksj.

Theorem: The recurrence of the basis vectors in eigenparts is given by

v̂H
i qk+1 =

(
λi − θj

)
v̂H
i yj + v̂H

i Fksj

ck+1,kskj
∀ i, j(, k).

This local error amplification formula consists of four ingredients:

o the left eigenpart of qk+1: v̂H
i qk+1,

o a measure of convergence: (λi − θj)v̂
H
i yj,

o an error term: v̂H
i Fksj,

o an amplification factor: ck+1,kskj.
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The formula depends on the Ritz pair of the actual step. Using the

eigenvector basis we can get rid of the Ritz vector :

I = SS−1 = SŠT ⇒ el = SŠTel ≡
k∑

j=1

šljsj.

Theorem: The recurrence between vectors ql and qk+1 is given by k∑
j=1

ck+1,kšljskj

λi − θj

 v̂H
i qk+1 = v̂H

i ql + v̂H
i Fk

 k∑
j=1

(
šlj

λi − θj

)
sj

 .

For l = 1 we obtain a formula that reveals how the errors affect the

recurrence from the beginning: k∑
j=1

ck+1,kš1jskj

λi − θj

 v̂H
i qk+1 = v̂H

i q1 + v̂H
i Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Interpretation: The size of the deviation depends on the size of the first

component of the left eigenvector ŝj of Ck and the shape and size of the

right eigenvector sj.

Next step: Application of the eigenvector – eigenvalue relation (1),

(set k = 1, i = 1, m = k, j = k):

(−1)k š(i)s(j) =

χC1:i−1
χCj+1:m

χ
(k+1)
C1:m

(θ)

 j−1∏
l=i

cl+1,l.

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by k∑
j=1

∏k
p=1 cp+1,p∏

s 6=j

(
θs − θj

) (
λi − θj

)
v̂H

i qk+1 = v̂H
i q1 + v̂H

i Fk

 k∑
j=1

(
š1j

λi − θj

)
sj
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A result from polynomial interpolation theory (Lagrange):

k∑
j=1

1∏
l 6=j

(
θj − θl

) (
λi − θj

) =
1

χCk
(λi)

k∑
j=1

∏
l 6=j (λi − θl)∏
l 6=j

(
θj − θl

)
=

1

χCk
(λi)

The following theorem holds true:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂H
i qk+1 =

χCk
(λi)∏k

p=1 cp+1,p

v̂H
i q1 + v̂H

i Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Similarly we can get rid of the eigenvectors sj in the error term:

eT
l

 k∑
j=1

(
š1j

λi − θj

)
sj

 =
k∑

j=1

(
š1jslj

λi − θj

)
=

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk
(λi)

This results in the following theorem:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂H
i qk+1 =

χCk
(λi)∏k

p=1 cp+1,p

v̂H
i q1 + v̂H

i

k∑
l=1

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk
(λi)

fl


=

χCk
(λi)∏k

p=1 cp+1,p
v̂H
i q1 +

k∑
l=1

 χCl+1:k
(λi)∏k

p=l+1 cp+1,p
v̂H
i fl

.
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Multiplication by the right eigenvectors vi and summation gives the fa-

miliar result:

Theorem: The recurrence of the basis vectors of a finite precision Krylov

method can be described by

qk+1 =
χCk

(A)∏k
p=1 cp+1,p

q1 +
k∑

l=1

 χCl+1:k
(A)∏k

p=l+1 cp+1,p
fl

 .

This result holds true even for non-diagonalisable matrices A, Ck.

The method can be interpreted as an additive mixture of several instances

of the same method with several starting vectors.

A severe deviation occurs when one of the characteristic polynomials

χCl+1:k
(A) becomes large compared to χCk

(A).
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Open Questions

o Can Krylov methods be forward or backward stable?

o If so, which can?

o Are there any sets of matrices A for which Krylov methods are stable?

o Does the stability depend on the starting vector?

o Are there any a priori results on

– the behaviour to be expected and

– the rate of convergence?
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A ∈ R100×100 normal, eigenvalues equidistant in [0,1].
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Step number of floating point Arnoldi

Floating point Arnoldi. Example (4a) − normal matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to

eigenvalue of largest modulus.
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A ∈ R100×100 non-normal, eigenvalues equidistant in [0,1].
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Step number of floating point Arnoldi

Floating point Arnoldi. Example (4b) − non−normal matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to

eigenvalue of largest modulus.
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A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point symmetric Lanczos

Floating point symmetric Lanczos. Example (5a) − non−negative matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of symmetric Lanczos, convergence to eigenvalue of largest

modulus.
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A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point symmetric Lanczos

Floating point symmetric Lanczos. Example (5b) − non−negative matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of symmetric Lanczos, convergence to eigenvalue of largest

and second largest modulus.
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