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The Menagerie of Krylov Methods

o Lanczos based methods (short–term methods)
o Arnoldi based methods (long–term methods)

o eigensolvers Av = vλ

o linear system solvers: Ax = b

o (quasi-) orthogonal residual approaches: (Q)OR
o (quasi-) minimal residual approaches: (Q)MR

Extensions:
o Lanczos based methods:

o look-ahead
o product-type (LTPMs)
o applied to normal equations (CGN)

o Arnoldi based methods:
o restart (thin/thick, explicit/implicit)
o truncation (standard/optimal)
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In the following: K ∈ {R,C}

A ∈ Kn×n system matrix (usually large, sparse)
Q ∈ Kn×n basis matrix used for Krylov subspace
Q̂ ∈ Kn×n adjoint basis to Q
I ∈ Kn×n identity matrix, columns ej
T ∈ Kn×n tridiagonal matrix
H ∈ Kn×n Hessenberg matrix
C ∈ Kn×n computed (condensed) matrix

First step: iterative transformation to

o tridiagonal form (Lanczos)

Q̂HAQ = T, Q̂HQ = I

o Hessenberg form (Arnoldi)

QHAQ = H, QHQ = I

(as attempt to be close to Jordan/Schur normal form)
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A Unified Matrix Description of Krylov Methods

Introduce computed (condensed) matrix C = T,H

Q−1AQ = C ⇒ AQ = QC

Iteration implied by unreduced Hessenberg structure:

AQk = Qk+1Ck, Qk = [q1, . . . , qk], Ck ∈ K(k+1)×k

Stewart: ’Krylov Decomposition’

Iteration spans Krylov subspace (q = q1):

span{Qk} = Kk = span{q,Aq, . . . , Ak−1q}

Purely algebraic (rational) approach: only polynomials involved

FPKM Jens Zemke – 4 –



Definition: A Krylov method is an iterative method that returns ap-

proximations to the desired quantity from a nested sequence of Krylov

subspaces.

Lemma: Any possible Krylov method can be expressed in terms of a

Krylov decomposition.

Proof:

The natural basis of a Krylov space is given by the Krylov matrix

Kk = [q,Aq, . . . , Ak−1q]

Any other basis Qk can be expressed as

Kk = QkBk, Bk ∈ Kk×k, Bk regular

When the sequence of bases is such that first columns remain unaltered:

Bk = Rk

with Rk upper triangular, sequence of submatrices (GR decomposition).

FPKM Jens Zemke – 5 –



Proof cont’d:

Let q = q1 be the starting vector of the Krylov subspace.

[q,AKk] = Kk+1

⇒ [q,AQk] = Qk+1Bk+1

(
1 0

0 B−1
k

)
(1)

Observation:

o GR decomposition whenever basis unaltered

o QR decomposition when method based on Arnoldi

Equation (1) gives the Krylov decomposition

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k

Here Ck is defined by ( ?
0

Ck
)

= Bk+1

(
1 0

0 B−1
k

)
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Remark: Previously computed basis vectors unaltered:
o Krylov decomposition is GR decomposition
o computed matrix Ck is (unreduced) Hessenberg
o set {Ck}k is sequence of nested submatrices

Characterisation of Krylov methods as

AQk = Qk+1Ck = QkCk + qk+1ck+1,ke
T
k

= QkCk +Mk

has impacts.

Lemma: A representation of the basis vectors qj is given by k∏
j=1

cj+1,j

 qk+1 = χCk(A) q.

Proof: Some commutative algebra on the ’Sylvester equation’ form

(Ik ⊗A− CTk ⊗ In)vec(Qk) = vec(Mk).
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Perturbed Krylov Decompositions

A Krylov decomposition analogue holds true in finite precision:

AQk = Qk+1Ck − Fk = QkCk + qk+1ck+1,ke
T
k − Fk

= QkCk +Mk − Fk

We have to investigate the impacts of the method on
o the structure of the basis Qk (local orthogonality/duality)
o the structure of the computed Ck, Ck
o the size/structure of the error term −Fk

Convergence theory:
o is usually based on inductively proven properties:

orthogonality, bi-orthogonality, A-conjugacy, . . .
What can be said about these properties?

’Standard’ error analysis:
o splits into forward and backward error analysis.

Does this analysis apply to Krylov methods?
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A (sligthly) different introduction to (well-known) Krylov methods:

Eigenproblem solvers:

o compute the Krylov decomposition:

AQk = QkCk +Mk

o solve a small structured eigenvalue problem:

CkSk = SkJ(Θk)

o prolong the eigenvectors:

Yk = QkSk

o use Ritz pair as approximate eigenpair:

AYk − YkJ(Θk) = MkSk = qk+1ck+1,ke
T
k Sk

In these methods the Krylov decomposition is used explicitly.
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Examples of Krylov method eigenproblem solvers are the methods of
Lanczos and Arnoldi. We are only interested in the decompositional part.

Arnoldi’s method uses an orthonormal basis:
CGS-Arnoldi, MGS-Arnoldi, Householder-Arnoldi, Givens-Arnoldi, . . .

MGS-Arnoldi proceeds as follows (k ≡ {1, . . . , k}):

A and r0 given
for k ∈ N do – outer loop

hk,k−1 ← ‖rk−1‖ – compute last moment
qk ← rk−1/hk,k−1 – normalisation
rk ← Aqk – expand Krylov subspace
for j ∈ k do – inner loop

hjk ← 〈qj, rk〉 – compute moments
rk ← rk − qjhjk – purge residual vector

end for
end for

In all variants Ck = Hk is (unreduced) Hessenberg, Fk is small (≈ ‖A‖ε)
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Lanczos’ method uses two bi-orthogonal bases:

Symmetric Lanczos, Symplectic Lanczos, Day’s Variant, . . .

Let Â ≡ AH and T̂k ≡ THk . Then the bases fulfil

AQk = Qk+1T k = QkTk + rk+1e
T
k = QkTk + qk+1βke

T
k

ÂQ̂k = Q̂k+1T̂ k = Q̂kT̂k + r̂k+1e
T
k = Q̂kT̂k + q̂k+1γke

T
k

Here

Tk =


α1 γ1

β1 α2
. . .

. . . . . . γk−1

βk−1 αk

 .

Unique algorithm: any choice of βk, γk such that

βkγk = 〈r̂k, rk〉
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Unified pseudo-code for several Lanczos-algorithms:

A, r0 and r̂0 given
for k ∈ N do – outer loop

βk−1γk−1 ← 〈r̂k−1, rk−1〉 – compute last moments
qk ← rk−1/βk−1 – right normalisation
q̂k ← r̂k−1/γk−1 – left normalisation
rk ← Aqk – expand right Krylov subspace
r̂k ← Âq̂k – expand left Krylov subspace
αk ← 〈q̂k, rk〉 = 〈r̂k, qk〉 – compute middle moment
rk ← rk − αkqk − γk−1qk−1 – purge right residual vector
r̂k ← r̂k − αkq̂k − βk−1q̂k−1 – purge left residual vector

end for

Remark: A = AH, r0 = r̂0 and γk = βk ⇒ Lanczos = Arnoldi (CG)

In most variants Ck = Tk is tridiagonal, Fk, F̂k are small compared to A

and the length of the columns of Qk, Q̂k
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The Krylov method linear system solvers can be distinguished into OR and

MR methods. OR methods are more close to the eigenproblem methods.

(Q)OR linear system solvers, direct approach:

o compute the Krylov decomposition:

AQk = QkCk +Mk, q1 = b/‖b‖

o solve a small structured linear system:

Ckzk = ‖b‖e1

o prolong the solution:

xk = Qkzk

o use this as approximate solution:

Axk −Qk‖b‖e1 = Axk − b = Mkzk = qk+1ck+1,ke
T
k zk

In these methods the Krylov decomposition is used explicitly.
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The MR methods use the larger (non-square) matrix Ck.

(Q)MR linear system solvers, direct approach:
o compute the Krylov decomposition:

AQk = Qk+1Ck, q1 = b/‖b‖
o solve a small structured minimal residual linear system:

zk = arg min
z
‖Ckz − ‖b‖e1‖

o prolong the solution:

xk = Qkzk

o use this as approximate solution:

‖Axk − b‖ = ‖Qk+1(Ckzk − ‖b‖e1)‖

In these methods the Krylov decomposition is used explicitly.

When the basis Qk+1 is orthonormal, the computed solution is the minimal
residual solution in the Krylov subspace.
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The solution of the small system is often based on decompositions.

Examples include:
(Q)OR: FOM, SymmLQ, SymmBK, QOR
(Q)MR: GMRES, MinRes, QMR

Krylov decompositions are quite similar to Richardson iteration:

xk+1 = (I −A)xk + r0 ⇔ Axk − r0 = xk − xk+1

AXk −R0 = Xk+1Bk ⇔ −Rk = Xk+1Bk

The column sums of Bk are zero. Similarly, for the Chebychev polynomial
acceleration on the interval (−1,1), we obtain the recurrence

−RkDk = Xk+1T k,

where T k is a tridiagonal matrix with zero column sums.

Inspired by Richardson, Chebychev, or more general, polynomial acceler-
ation, we seek Ck with zero column sums. This will enable us to discard
the step of the solution of the small linear system.
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Let a generic Krylov decomposition (cm+1,m = 0)

AQm = QmCm

be given. Suppose Cm non-singular unreduced Hessenberg. The system

yTCm = eTm has a unique solution y. Of course yTCm−1 = 0.

When y(k) = 0, Ck−1 is singular, since then Cm−1 with kth row deleted

must be singular and is given by(
Ck−1 ?

0 R

)

Remark: When Ck is singular and Qk is orthonormal, zero is in the field

of values of A,

0 = zHCkz = zHQHk AQkz = yHAy.
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When all y(k) are non-zero, we can scale Cm by D = diag(y):

C
(0)
m = DCmD

−1.

Suppose further that q1 = b. Then the (Q)OR solution is given by

C
(0)
k zk = e1.

Observation: The scaling implies that

eTC
(0)
m−1 = 0, ⇔ eTC

(0)
k = −c(0)

k+1,ke
T
k (2)

holds true, with e = (1, . . . ,1)T of appropriate length.

This, in turn, implies that the residuals satisfy

−rk = Axk − b = qk+1c
(0)
k+1,ke

T
k zk = −qk+1e

TC
(0)
k (C(0)

k )−1e1 = −qk+1
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We re-write the decomposition as

ARk = Rk+1C
(0)
k (3)

When we apply A−1 to this equation, we obtain by equation (2)

Rk = A−1Rk+1C
(0)
k

= [x− x0, . . . , x− xk]C(0)
k

= (xeT −Xk+1)C(0)
k

Rk = −Xk+1C
(0)
k (4)

Equations (3) and (4) define the class of methods known as Orthores.

Examples include:

(Q)OR: Orthores (Arnoldi), CG-Ores (Lanczos), Biores (Lanczos)

(Q)MR: CR-Ores (Lanczos), QMR
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Many methods derived thus far can be handled using the following lemma:

Lemma: The error in methods that are based on the direct computation

of the Krylov decomposition fulfils

|Fk| ≤ γn|A||Qk|+ γk+1|Qk+1||Ck|

Here γn is given by nε/(1− nε) where ε denotes the machine precision, in

IEEE arithmetic double precision given by ε = 2−53 ≈ 1.11 · 10−16.

This class of methods includes Orthores methods, CGS-Arnoldi and MGS-

Arnoldi based methods (FOM, GMRES) and many Lanczos variants.

This a posteriori result is similar to the well-known result on LR decom-

position (Higham 1996, Accuracy and Stability of Numerical Algorithms).

The proof, like the proof for the LR decomposition, is based on Lemma

8.4 in Higham’s textbook.
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Orthores yet another way: equation (2) re-written
1 0

1 1
... ... . . .

1 1 · · · 1

C(0)
k = DkM

H
k

where MH
k upper triangular, unit diagonal and

Dk = −diag(c(0)
2,1, . . . , c

(0)
k+1,k)

Observe 
1 0

1 1
... ... . . .

1 1 · · · 1

 = L−1
k =


1 0

−1 .. .
. . . 1

0 −1 1


−1

.

Orthores computes (implicitly) an LDMT decomposition

C
(0)
k = LkDkM

H
k
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We insert this decomposition into the Krylov decomposition and re-write

it:

ARm = RmLmDmM
H
m

ARmM
−H
m D−1

m = RmLm

The columns of the basis

Pm = RmM
−H
m ⇒ Rk = PkM

H
k (5)

are termed direction vectors.

Equation (5) together with the equations

APkD
−1
k = Rk+1Lk = RkLk − rkeTk (6)

PkD
−1
k = −Xk+1Lk = −XkLk + xke

T
k (7)

forms the class of methods known as Orthomin.
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Orthomin includes:

(Q)OR: CG-Omin, Biomin

(Q)MR: Orthomin, CR-Omin, QMR

Orthomin methods (this includes the usual variant of CG) come in form

of two coupled recurrences. We refer to this computation of

ARk = Rk+1C
(0)
k − Fk

as a split Krylov decomposition.

Lemma: In split Krylov decompositions the error term fulfils:

−Fk = AF
(1)
k + F

(2)
k L−1

k C
(0)
k .

The error terms come from the coupled recurrences,

APkD
−1
k = Rk+1Lk + F

(1)
k , Rk = PkM

H
k + F

(2)
k .

We mention Orthodir, a class of methods based on a different scaling.
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A large class of methods is based on a transformation of a Lanczos variant

to not use the transpose AT or Hermitian AH. This class is known as

Lanczos-type product methods, LTPMs and results (implicitly) in Krylov

decompositions.

We just remark:

o Ck is Hessenberg and depends on O(k) values

o not every basis vector must be a (quasi-) residual

o Orthores, Orthomin and Orthodir variants exist

o Fk depends on complicated expressions

Examples include:

CGS, CGS2, shifted CGS,

BiCGSTAB, BICG×MR2, BiCGSTAB2, BiCGstab(`),

TFQMR, QMRCGSTAB, . . .
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All methods fit pictorially into:

A Qk − Qk

Ck

= 0 − Fk .

This is a perturbed Krylov decomposition, as subspace equation.
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Examination of the methods has to be done according to

o methods directly based on the Krylov decomposition

o methods based on a split Krylov decomposition

o LTPMs

The matrix Ck plays a crucial role:

o Ck is Hessenberg or even tridiagonal (basics),

o Ck may be blocked or banded (block Krylov methods),

o Ck may have humps, spikes, . . . (more sophisticated)

The error analysis and convergence theory splits further up:

o knowledge on Hessenberg (tridiagonal) matrices

o knowledge on orthogonality, duality, conjugacy, . . .

We start with results on Hessenberg matrices.
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A Short Excursion on Matrix Structure

JΛ Jordan matrix of A
V right eigenvector-matrix, AV = V JΛ
V̂ ≡ V −H left eigenvector-matrix, V̂ HA = JΛV̂

H

V̌ ≡ V −T alternate left eigenvector-matrix, ǍTA = JΛV̌
T

χA(λ) ≡ det(λI −A) characteristic polynomial of A
R(λ) ≡ (λI −A)−1 resolvent
Ck(A) kth compound matrix of A
adj (A) classical adjoint, adjugate of A
Aij A with row i and column j deleted
S, Si sign matrices

The adjoint of λI −A fulfils

adj (λI −A)(λI −A) = det(λI −A)I.

Suppose that λ is not contained in the spectrum of A.
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We form the resolvent of λ and obtain

adj (λI −A) = det (λI −A)R(λ)

= V
(
χA (λ) J−1

λ−Λ

)
V̂ H .

The shifted and inverted Jordan matrix looks like

J−1
λ−λi = SiEiSi ≡ Si



(λ− λi)−1 (λ− λi)−2 . . . (λ− λi)−k

(λ− λi)−1

. . . ...

(λ− λi)−1

Si,

The multiplication with the characteristic polynomial allows to cancel the

terms with negative exponent.

The resulting expression is a source of eigenvalue – eigenvector relations.
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We express the adjugate with the aid of compound matrices,

adjA ≡ SCn−1(AT )S.

Then we have equality

P ≡ Cn−1(λI −AT ) = (SV S)G (SV̂ HS)

≡ (SV S)χA (λ)E (SV̂ HS).

The elements of the compound matrix P are polynomials in λ of the form

pij = pij (λ;A) ≡ detLji, where L ≡ λI −A.

The elements of G are obviously given by rational functions in λ, since

G = χA (λ) · (⊕iEi) .

Many terms cancel, the elements of G are polynomials. We divide by the
maximal factor and compute the limes λ→ λi.
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The choice of eigenvectors is based on the non-zero positions i, j in the

matrix (the sign matrices are left out):

V V̂ H

vi (i, j)

v̂Hj

Amongst others, the well-known result on eigenvalue – eigenvector rela-

tions by Thompson and McEnteggert is included. This is one of the basic

results used in Paige’s analysis of the finite precision symmetric Lanczos

method.

We consider here only the special case of non-derogatory eigenvalues.
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Theorem: Let A ∈ Kn×n. Let λl = λl+1 = . . . = λl+k be a geometrically

simple eigenvalue of A. Let k+1 be the algebraic multiplicity of λ. Let v̂Hl
and vl+k be the corresponding left and right eigenvectors with appropriate

normalization.

Then

vjlv̌i,l+k = (−1)(j+i+k) pji(λl;A)∏
λs 6=λl (λl − λs)

holds true.

The minus one stems from the sign matrices, the polynomial from the

definition of the adjoint as matrix of cofactors and the denominator by

division with the maximal factor.

This setting matches every eigenvalue of non-derogatory A.
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Unreduced Hessenberg matrices are non-derogatory matrices. This is

easily seen by a simple rank argument. In the following let H = Hm be

unreduced Hessenberg of size m×m,

rank(H − θI) ≥ m− 1.

Many polynomials can be evaluated in case of Hessenberg matrices:

Theorem: The polynomial pji, i ≤ j has degree (i− 1) + (m− j) and can

be evaluated as follows:

pji(θ;H) =

∣∣∣∣∣∣∣
θI −H1:i−1 ?

Ri+1:j−1

0 θI −Hj+1:m

∣∣∣∣∣∣∣
= (−1)i+j χH1:i−1

(θ)
∏

diag(Hi:j,−1)χHj+1:m
(θ).
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Denote by H(m) the set of unreduced Hessenberg matrices of size m×m.

The general result on eigenvalue – eigenvector relations can be simplified

to read:

Theorem: Let H ∈ H(m). Let i ≤ j. Let θ be an eigenvalue of H with

multiplicity k + 1. Let s be the unique left eigenvector and ŝH be the

unique right eigenvector to eigenvalue θ.

Then

(−1)k š(i)s(j) =

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=i

hl+1,l (8)

holds true.

Remark: We ignored the implicit scaling in the eigenvectors imposed by

the choice of eigenvector-matrices, i.e. by ŠTS = I.
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Among these relations of special interest is the case of index pairs (i,m),

(1,m) and (1,m), (1, j):

(−1)k š(i)s(m) =

χH1:i−1

χ
(k+1)
H1:m

(θ)

m−1∏
l=i

hl+1,l,

(−1)k š(1)s(m) =

 1

χ
(k+1)
H1:m

(θ)

 m−1∏
l=1

hl+1,l,

(−1)k š(1) s(j) =

χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=1

hl+1,l.

These relations are used to derive relations between eigenvalues and one

eigenvector.

They are also of interest for the understanding of the convergence of

Krylov methods, at least in context of Krylov eigensolvers.
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Theorem: Let H ∈ H(m). Let θ be an eigenvalue of H. Then ŝ = š

defined by non-zero š(1) and the relations

š(i)

š(1)
=

χHi−1
(θ)∏i−1

l=1 hl+1,l
∀ i ∈ m,

is (up to scaling) the unique left eigenvector of H to eigenvalue θ.

Theorem: Let H ∈ H(m). Let θ be an eigenvalue of H. Then s defined

by non-zero s(m) and the relations

s(j)

s(m)
=

χHj+1:m
(θ)∏m

l=j+1 hl,l−1
∀ j ∈ m,

is (up to scaling) the unique right eigenvector of H to eigenvalue θ.

Since the polynomials remain unchanged, merely the eigenvalue moves,

this helps to explain convergence behaviour (even in finite precision).
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The derivation of the theorems proves that the last component of s and

the first component of ŝH are both non-zero.

Alternate (direct) proof by contradiction: s right eigenvector with last

component zero,

Hs = sθ, em ⊥ s.

Last row of H orthogonal to s. H is unreduced upper Hessenberg. This

implies em−1 ⊥ s. By induction all components are zero. The proof for

the left eigenvector is analogous.

These results are of interest in the understanding of the convergence.

Next we focus (shortly) on results important for backward error analysis.
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We can prove the following residual bounds:

Theorem: Let H ∈ H(m). Split H = H1:m into

H1:m =

(
H1:k ?

hk+1,ke1e
T
k Hk+1:m

)
≡
(
H1:k ?

M Hk+1:m

)
.

Consider the prolonged right eigenvectors of the leading part H1:k as

approximate right eigenvectors of H. The residual is given by(
H1:k ?

M Hk+1:m

)(
S1:k

0

)
−

(
S1:k

0

)
J1:k

= hk+1,kek+1e
T
k S1:k.

The prolonged left eigenvectors of the trailing part Hk+1:m have the

residual (
0

Ŝk+1:m

)H (
H1:k ?

M Hk+1:m

)
− Jk+1:m

(
0

Ŝk+1:m

)H
= hk+1,kŜ

H
k+1:me1e

T
k .
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Error Analysis Revisited

Error analysis often is based on loss of orthogonality (bi-orthogonality).

We introduce the matrix Wk = Q̂Hk Qk.

Theorem: In a long-term recurrence the loss of orthogonality fulfils

Wk+1Ck = Q̂Hk+1AQk + Q̂Hk+1Fk.

In two coupled short-term recurrences the loss of orthogonality addition-

ally fulfils

ĈHk Wk+1 = Q̂Hk AQk+1 + F̂Hk Qk+1.

This implies the fundamental relation

ĈHk Wk+1,k −Wk,k+1Ck = F̂Hk Qk − Q̂
H
k Fk.
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We transform these equations to a form, such that we can see the error

sources more clearly.

Theorem: In case of a long-term recurrence the relation

(Wk+1 − Ik+1)Ck =
(
Q̂Hk+1AQk − Ck

)
+ Q̂Hk+1Fk

holds true.

In case of two coupled short-term recurrences the relation

ĈHk (Wk+1,k − Ik+1,k)− (Wk,k+1 − Ik,k+1)Ck = Ck − ĈHk + F̂Hk Qk − Q̂
H
k Fk

holds true.

In infinite precision Wk = Ik, Q̂Hk AQk = Ck, ĈHk = Ck and Fk = 0.

The Hessenberg structure enables an iteration of the loss of orthogonality

similar to the basis vector iteration.
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We re-order the matrix equations of the last slide. The newest quantity

is brought to the left.

Theorem: The matrix expression of the loss of bi-orthogonality is given

by

Q̂Hk Mk = Q̂Hk AQk − Q̂
H
k QkCk + Q̂Hk Fk

= (Q̂Hk AQk − Ck)− (Wk − Ik)Ck + Q̂Hk Fk.

In two-sided methods the loss of bi-orthogonality fulfils

Q̂Hk Mk − M̂H
k Qk =

(
ĈHk − Ck

)
+ ĈHk (Wk − Ik)− (Wk − Ik)Ck
−

(
Q̂Hk Fk − F̂

H
k Qk

)
.

We state this as a recurrence on vectors as a corollary.
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Corollary: The loss of bi-orthogonality is governed by the vector recur-

rence

Q̂Hk qk+1 =
(
Q̂Hk Aqk − Q̂

H
k Qkck + Q̂Hk fk

)
c−1
k+1,k

=
(
(Q̂Hk Aqk − ck)− (Wk − Ik)ck + Q̂Hk fk

)
c−1
k+1,k.

This is a recurrence on the columns of the matrix Wm − Im.

In two-sided methods the loss of bi-orthogonality fulfils the vector recur-

rence

Q̂Hk qk+1 =
(
ĈHk Q̂

H
k qk − Q̂

H
k Qkck + Q̂Hk fk − F̂

H
k qk + M̂H

k qk
)
c−1
k+1,k.

This is a recurrence on the columns of the matrix Wm− Im. Analogously

we obtain a recurrence on the rows of Wm − Im.
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There are two well-known ways to proceed:
o additive splitting of Wk
o multiplicative splitting of Wk

We use the equation

(Wk+1 − Ik+1)Ck = Q̂Hk+1AQk − Ck + Q̂Hk Fk (9)

(CTk ⊗ Ik+1)vec(Wk+1 − Ik+1) = vec(Q̂Hk+1AQk − Ck) + vec(Q̂Hk Fk).

When Q̂k = Qk (Arnoldi, symmetric Lanczos):
o control on the accuracy of computed moments cij 6= 0, i ≤ j
o control on the accuracy of the normalisation

Additive split on vec(Wk+1 − Ik+1) ⇒ measure local orthogonality.

As example consider Arnoldi:

number of unknowns: 1 + 2 + · · ·+ k + (k + 1)
’small’ equations from (9): 1 + 2 + · · ·+ k
equations from normalisation: k + 1

FPKM Jens Zemke – 41 –



For short-term methods (Lanczos) we use the additive splitting of

Wk = Lk +Dk +Rk

into diagonal and strictly lower and upper part.

This splitting is inserted into

Q̂Hk Mk − M̂H
k Qk =

(
ĈHk − Ck

)
+ ĈHk (Wk − Ik)− (Wk − Ik)Ck
−

(
Q̂Hk Fk − F̂

H
k Qk

)
,

to obtain expressions on the loss of (bi-) orthogonality, based on the

computed Ritz pairs. Here ĈHk = Ck, i.e. Ck = Tk is tridiagonal.

Local orthogonality is important for this type of analysis.

The analysis was first carried out by Paige for the symmetric Lanczos

method and by Bai for the non-symmetric Lanczos method.
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The multiplicative splitting approach does not distinguish between long-

term and short-term. The drawback is the strong assumption on Wk:

Suppose that Wk can be triangular decomposed, Wk = R̂Hk Rk. Then

Q̂Hk AQk −WkCk = Q̂Hk Mk − Q̂Hk Fk
R̂−Hk Q̂Hk AQkR

−1
k −RkCkR−1

k = R̂−Hk Q̂Hk MkR
−1
k − R̂−Hk Q̂Hk FkR

−1
k

Define C sim
k ≡ RkCkR−1

k .

Remark: C sim
k in all cases is Hessenberg, even for tridiagonal Ck.

Define the exact oblique projection

(C exact
k , Ik) ≡ (P̂Hk APk, P̂

H
k Pk) ≡ (R̂−Hk Q̂Hk AQkR

−1
k , R̂−Hk WkR

−1
k ).

This proves that C sim
k is a perturbation of C exact

k .
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Theorem: The matrix Ck is similar to C sim
k , which is an additive pertur-

bation of C exact
k , an exact oblique projection of A:

C exact
k − C sim

k = ck+1,kR̂
−H
k Q̂Hk qk+1e

T
kR
−1
k − R̂−Hk Q̂Hk FkR

−1
k

=
ck+1,k

rkk

 r1,k+1
...

rk,k+1

 eTk − P̂Hk FkR−1
k .

The deviation can be bounded normwise by

‖C exact
k − C sim

k ‖2 ≤ ‖R̂−1
k ‖2‖R

−1
k ‖2(‖ck+1,kQ̂

H
k qk+1‖2 − ‖Q̂Hk Fk‖2)

To obtain useful bounds we have to measure the growth factor of the

LR decomposition and the vector recurrence of the loss of orthogonality.

This type of analysis was carried out by Simon (symmetric Lanczos) and

Day (non-symmetric Lanczos). The analysis results in

semi-orthogonalisation and semi-duality techniques.
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The error analysis applies to all methods. No real backward results are

contained. The only backward result is the backward error analysis by

Greenbaum. Nevertheless, in her analysis is a substantiable gap between

proven and observed behaviour.

The re-orthogonalisation techniques are not easily adoptable to linear

system solvers.

The error analysis thus far was only considered with Wk, the matrix of

the loss of orthogonality. Part of the analysis is based on eigenvalues and

eigenvectors.

The (Q)MR methods would better be analysed in terms of the SVD. We

mention the analysis of GMRES by Rozložńık.
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It is possible to analyse the recurrence of the basis vectors qj instead of
the loss of orthogonality.

For simplicity we assume that the perturbed Krylov decomposition

Mk = AQk −QkCk + Fk

is diagonalisable, i.e. that A and Ck are diagonalisable.

Theorem: The recurrence of the basis vectors in eigenparts is given by

v̂Hi qk+1 =

(
λi − θj

)
v̂Hi yj + v̂Hi Fksj

ck+1,kskj
∀ i, j(, k).

This local error amplification formula consists of:

o the left eigenpart of qk+1: v̂Hi qk+1,
o a measure of convergence:

(
λi − θj

)
v̂Hi yj,

o an error term: v̂Hi Fksj,
o an amplification factor: ck+1,kskj.
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A ∈ R100×100 normal, eigenvalues equidistant in [0,1].
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A ∈ R100×100 non-normal, eigenvalues equidistant in [0,1].
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A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point symmetric Lanczos

Floating point symmetric Lanczos. Example (5b) − non−negative matrix

real convergence   
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actual eigenpart   
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Behaviour of symmetric Lanczos, convergence to eigenvalue of largest

and second largest modulus.
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A ∈ R100×100, zero below fourth subdiagonal, randomly chosen between

[0,1] elsewhere. A highly non-normal.
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A ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point nonsymmetric Lanczos

Floating point nonsymmetric Lanczos. Example (6b) − non−negative matrix

real convergence   
estimated residual 
actual eigenpart   
attainable accuracy
1 | sqrt(eps) | eps

Behaviour of non-symmetric Lanczos, convergence to eigenvalue of largest

modulus.
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The formula depends on the Ritz pair of the actual step. Using the

eigenvector basis we can get rid of the Ritz vector :

I = SS−1 = SŠT ⇒ el = SŠTel ≡
k∑

j=1

šljsj.

Theorem: The recurrence between vectors ql and qk+1 is given by k∑
j=1

ck+1,kskjšlj

λi − θj

 v̂Hi qk+1 = v̂Hi ql + v̂Hi Fk

 k∑
j=1

(
šlj

λi − θj

)
sj

 .

For l = 1 we obtain a formula that reveals how the errors affect the

recurrence from the beginning: k∑
j=1

ck+1,kskjš1j

λi − θj

 v̂Hi qk+1 = v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Interpretation: The size of the deviation depends on the size of the first

component of the left eigenvector ŝj of Ck and the shape and size of the

right eigenvector sj.

Next step: Application of the eigenvector – eigenvalue relation

(−1)k š(i)s(j) =

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=i

hl+1,l.

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by k∑
j=1

∏k
p=1 cp+1,p∏

s 6=j

(
θs − θj

) (
λi − θj

)
 v̂Hi qk+1 = v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj
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A result from polynomial interpolation (Lagrange):

k∑
j=1

1∏
l 6=j

(
θj − θl

) (
λi − θj

) =
1

χCk (λi)

k∑
j=1

∏
l 6=j (λi − θl)∏
l 6=j

(
θj − θl

)
=

1

χCk (λi)

Thus the following theorem holds true:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂Hi qk+1 =
χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Similarly we can get rid of the eigenvectors sj in the error term:

eTl

 k∑
j=1

(
š1j

λi − θj

)
sj

 =
k∑

j=1

(
š1jslj

λi − θj

)
=

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk(λi)

This results in the following theorem:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂Hi qk+1 =
χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 + v̂Hi

k∑
l=1

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk(λi)
fl


=

χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 +
k∑
l=1

 χCl+1:k
(λi)∏k

p=l+1 cp+1,p
v̂Hi fl

 .
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Multiplication by the right eigenvectors vi and summation gives the fa-

miliar result

Theorem: The recurrence of the basis vectors of a finite precision Krylov

method can be described by

qk+1 =
χCk(A)∏k
p=1 cp+1,p

q1 +
k∑
l=1

 χCl+1:k
(A)∏k

p=l+1 cp+1,p
fl

 .

This result holds true even for non-diagonalisable matrices A,Ck.

The method can be interpreted as an additive mixture of several instances

of the same method with several starting vectors.

A severe deviation occurs when one of the characteristic polynomials

χCl+1:k
(A) becomes large compared to χCk(A).
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Open Questions

o Can Krylov methods be forward or backward stable?

o If so, which can?

o Are there any matrices A for which Krylov methods are stable?

o Does the stability depend on the starting vector?
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