Finite Precision Krylov Methods in a Nutshell
Jens-Peter M. Zemke


Talk at the Conference
Computational Linear Algebra with Applications MILOVY 2002, August 8, 2002, Milovy, Czech Republic

## Table Of Contents

The Menagerie of Krylov Methods ..... 2
A Unified Matrix Description of Krylov Methods ..... 3
Perturbed Krylov Decompositions ..... 4
A Short Excursion on Matrix Structure ..... 7
Error Analysis Revisited ..... 14
Open Questions ..... 20
Pictures ..... 21

## The Menagerie of Krylov Methods

o Lanczos based methods (short-term methods)
o Arnoldi based methods (long-term methods)
o eigensolvers: $A v=v \lambda$
o linear system solvers: $A x=b$
o (quasi-) orthogonal residual approaches: (Q)OR
o (quasi-) minimal residual approaches: (Q)MR

## Extensions:

o Lanczos based methods:
o look-ahead
o product-type (LTPMs)
o applied to normal equations (CGN)
o Arnoldi based methods:
o restart (thin/thick, explicit/implicit)
o truncation (standard/optimal)

## A Unified Matrix Description of Krylov Methods

Krylov methods as projection onto 'simpler' matrices:

- $Q^{H} Q=I, Q^{H} A Q=H$ Hessenberg (Arnoldi),
- $\widehat{Q}^{H} Q=I, \widehat{Q}^{H} A Q=T$ tridiagonal (Lanczos)

Introduce computed (condensed) matrix $C=T, H$

$$
Q^{-1} A Q=C \quad \Rightarrow \quad A Q=Q C
$$

Iteration implied by unreduced Hessenberg structure:

$$
A Q_{k}=Q_{k+1} \underline{C}_{k}, \quad Q_{k}=\left[q_{1}, \ldots, q_{k}\right], \quad \underline{C}_{k} \in \mathbb{K}^{(k+1) \times k}
$$

Stewart: 'Krylov Decomposition'
Iteration spans Krylov subspace ( $q=q_{1}$ ):

$$
\operatorname{span}\left\{Q_{k}\right\}=\mathcal{K}_{k}=\operatorname{span}\left\{q, A q, \ldots, A^{k-1} q\right\}
$$

## Perturbed Krylov Decompositions

A Krylov decomposition analogue holds true in finite precision:

$$
\begin{aligned}
A Q_{k}=Q_{k+1} \underline{C}_{k}-F_{k} & =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T}-F_{k} \\
& =Q_{k} C_{k}+M_{k}-F_{k}
\end{aligned}
$$

We have to investigate the impacts of the method on
o the structure of the basis $Q_{k}$ (local orthogonality/duality)
o the structure of the computed $C_{k}, \underline{C}_{k}$
o the size/structure of the error term $-F_{k}$
Convergence theory:
o is usually based on inductively proven properties: orthogonality, bi-orthogonality, $A$-conjugacy, ...
What can be said about these properties?
'Standard' error analysis:
o splits into forward and backward error analysis. Does this type of analysis apply to Krylov methods?

All methods fit pictorially into:


This is a perturbed Krylov decomposition, as subspace equation.

Examination of the methods can be grouped according to
o methods directly based on the Krylov decomposition
o methods based on a split Krylov decomposition
o LTPMs

The matrix $C_{k}$ plays a crucial role:

- $C_{k}$ is Hessenberg or even tridiagonal (basics), o $C_{k}$ may be blocked or banded (block Krylov methods), - $C_{k}$ may have humps, spikes, ... (more sophisticated)

The error analysis and convergence theory splits further up:
o knowledge on Hessenberg (tridiagonal) matrices
o knowledge on orthogonality, duality, conjugacy, ...

We start with results on Hessenberg matrices.

## A Short Excursion on Matrix Structure

Eigendecomposition of $A$ :

$$
A V=V J_{\Lambda}
$$

Left eigenmatrices:

$$
\begin{array}{lll}
\widehat{V} \equiv V^{-H} & \Rightarrow & \widehat{V}^{H} A=J_{\Lambda} \widehat{V}^{H} \\
\widetilde{V} \equiv V^{-T} & \Rightarrow & \widetilde{V}^{T} A=J_{\Lambda} \widetilde{V}^{T}
\end{array}
$$

The adjoint of $\lambda I-A$ fulfils

$$
\operatorname{adj}(\lambda I-A)(\lambda I-A)=\operatorname{det}(\lambda I-A) I \equiv \chi_{A}(\lambda) I .
$$

Suppose that $\lambda$ is not contained in the spectrum of $A$.

We form the resolvent $R(\lambda)=(\lambda I-A)^{-1}$ of $\lambda$ and obtain

$$
\operatorname{adj}(\lambda I-A)=\chi_{A}(\lambda) R(\lambda)=\chi_{A}(\lambda) V J_{\lambda-\Lambda}^{-1} \hat{V}^{H} .
$$

One shifted and inverted Jordan block:

$$
J_{\lambda-\lambda_{i}}^{-1}=S_{i} E_{i} S_{i} \equiv S_{i}\left(\begin{array}{cccc}
\left(\lambda-\lambda_{i}\right)^{-1} & \left(\lambda-\lambda_{i}\right)^{-2} & \ldots & \left(\lambda-\lambda_{i}\right)^{-k} \\
& \left(\lambda-\lambda_{i}\right)^{-1} & & \\
& & \ddots & \vdots \\
& & & \left(\lambda-\lambda_{i}\right)^{-1}
\end{array}\right) S_{i},
$$

Observation: Terms with negative exponent cancel with factors in the characteristic polynomial $\chi_{A}(\lambda)$.

The resulting expression is a source of eigenvalue - eigenvector relations.

We express the adjugate with the aid of compound matrices,

$$
\operatorname{adj} A \equiv S C_{n-1}\left(A^{T}\right) S
$$

Then we have equality

$$
P \equiv \mathcal{C}_{n-1}\left(\lambda I-A^{T}\right)=(S V S) G\left(S \widehat{V}^{H} S\right) \equiv(S V S) \chi_{A}(\lambda) E\left(S \widehat{V}^{H} S\right)
$$

The compound matrix $P$ is composed of polynomials in $\lambda$ :

$$
p_{i j}=p_{i j}(\lambda ; A) \equiv \operatorname{det} L_{j i}, \quad \text { where } \quad L \equiv \lambda I-A .
$$

$G$ is composed of rational functions in $\lambda$ :

$$
G=\chi_{A}(\lambda) \cdot\left(\oplus_{i} E_{i}\right) .
$$

Since many terms cancel, the elements of $G$ are polynomials.
We divide by maximal factor $\left(\lambda-\lambda_{i}\right)^{\ell}$ and compute the limes $\lambda \rightarrow \lambda_{i}$.

Observation: Only few elements of lim $G$ are non-zero. Choice of eigenvectors based on non-zero positions $i, j$ :


We consider here only the special case of non-derogatory eigenvalues.

We arrive at equations involving the elements of $P, \lim G$ and products of components of left and right eigenvectors.

Theorem: Let $A \in \mathbb{K}^{n \times n}$. Let $\lambda_{l}=\lambda_{l+1}=\ldots=\lambda_{l+k}$ be a geometrically simple eigenvalue of $A$. Let $k+1$ be the algebraic multiplicity of $\lambda$. Let $\widehat{v}_{l+k}^{H}$ and $v_{l}$ be the corresponding left and right eigenvectors with appropriate normalization.

Then

$$
v_{j l} \breve{v}_{i, l+k}=(-1)^{(j+i+k)} \frac{p_{j i}\left(\lambda_{l} ; A\right)}{\prod_{\lambda_{s} \neq \lambda_{l}}\left(\lambda_{l}-\lambda_{s}\right)}
$$

holds true.

The sign matrices bear the blame for the minus one, $P$ for the numerator and $\lim G$ for the denominator.

This setting matches every eigenvalue of non-derogatory $A$.

Unreduced Hessenberg matrices are non-derogatory matrices. This is easily seen by a simple rank argument. In the following let $H=H_{m}$ be unreduced Hessenberg of size $m \times m$,

$$
\operatorname{rank}(H-\theta I) \geq m-1
$$

Many polynomials can be evaluated in case of Hessenberg matrices:
Theorem: The polynomial $p_{j i}, i \leq j$ has degree $(i-1)+(m-j)$ and can be evaluated as follows:

$$
\begin{aligned}
p_{j i}(\theta ; H) & =\left|\begin{array}{ccc}
\theta I-H_{1: i-1} & & \star \\
0 & R_{i+1: j-1} & \\
& & \theta I-H_{j+1: m}
\end{array}\right| \\
& =(-1)^{i+j} \chi_{H_{1: i-1}}(\theta) \prod \operatorname{diag}\left(H_{i: j},-1\right) \chi_{H_{j+1: m}}(\theta)
\end{aligned}
$$

Denote by $\mathcal{H}(m)$ the set of unreduced Hessenberg matrices of size $m \times m$. The general result on eigenvalue - eigenvector relations can be simplified to read:

Theorem: Let $H \in \mathcal{H}(m)$. Let $i \leq j$. Let $\theta$ be an eigenvalue of $H$ with multiplicity $k+1$. Let $s$ be the unique left eigenvector and $\hat{s}^{H}$ be the unique right eigenvector to eigenvalue $\theta$.

Then

$$
\begin{equation*}
(-1)^{k} \check{s}(i) s(j)=\left[\frac{\chi_{H_{1: i-1}} \chi_{H_{j+1: m}}}{\chi_{H_{1: m}}^{(k+1)}}(\theta)\right] \prod_{l=i}^{j-1} h_{l+1, l} \tag{1}
\end{equation*}
$$

holds true.

Remark: We ignored the implicit scaling in the eigenvectors imposed by the choice of eigenvector-matrices, i.e. by $\breve{S}^{T} S=I$.

## Error Analysis Revisited

For simplicity we assume that the perturbed Krylov decomposition

$$
M_{k}=A Q_{k}-Q_{k} C_{k}+F_{k}
$$

is diagonalisable, i.e. that $A$ and $C_{k}$ are diagonalisable. Let $y_{j} \equiv Q_{k} s_{j}$.

Theorem: The recurrence of the basis vectors in eigenparts is given by

$$
\widehat{v}_{i}^{H} q_{k+1}=\frac{\left(\lambda_{i}-\theta_{j}\right) \widehat{v}_{i}^{H} y_{j}+\widehat{v}_{i}^{H} F_{k} s_{j}}{c_{k+1, k} s_{k j}} \quad \forall i, j(, k)
$$

This local error amplification formula consists of four ingredients:
o the left eigenpart of $q_{k+1}: \widehat{v}_{i}^{H} q_{k+1}$,
o a measure of convergence: $\left(\lambda_{i}-\theta_{j}\right) \widehat{v}_{i}^{H} y_{j}$,
o an error term: $\widehat{v}_{i}^{H} F_{k} s_{j}$,
o an amplification factor: $c_{k+1, k} s_{k j}$.

The formula depends on the Ritz pair of the actual step. Using the eigenvector basis we can get rid of the Ritz vector:

$$
I=S S^{-1}=S \check{S}^{T} \quad \Rightarrow \quad e_{l}=S \check{S}^{T} e_{l} \equiv \sum_{j=1}^{k} \check{s}_{l j} s_{j}
$$

Theorem: The recurrence between vectors $q_{l}$ and $q_{k+1}$ is given by

$$
\left[\sum_{j=1}^{k} \frac{c_{k+1, k} \check{s}_{l j} s_{k j}}{\lambda_{i}-\theta_{j}}\right] \widehat{v}_{i}^{H} q_{k+1}=\widehat{v}_{i}^{H} q_{l}+\widehat{v}_{i}^{H} F_{k}\left[\sum_{j=1}^{k}\left(\frac{\check{s}_{l j}}{\lambda_{i}-\theta_{j}}\right) s_{j}\right] .
$$

For $l=1$ we obtain a formula that reveals how the errors affect the recurrence from the beginning:

$$
\left[\sum_{j=1}^{k} \frac{c_{k+1, k} \check{s}_{1 j} s_{k j}}{\lambda_{i}-\theta_{j}}\right] \widehat{v}_{i}^{H} q_{k+1}=\widehat{v}_{i}^{H} q_{1}+\widehat{v}_{i}^{H} F_{k}\left[\sum_{j=1}^{k}\left(\frac{\check{s}_{1 j}}{\lambda_{i}-\theta_{j}}\right) s_{j}\right] .
$$

Interpretation: The size of the deviation depends on the size of the first component of the left eigenvector $\hat{s}_{j}$ of $C_{k}$ and the shape and size of the right eigenvector $s_{j}$.

Next step: Application of the eigenvector - eigenvalue relation (1), (set $k=1, i=1, m=k, j=k)$ :

$$
(-1)^{k} \check{s}(i) s(j)=\left[\frac{\chi_{C_{1: i-1}} \chi_{C_{j+1: m}}}{\chi_{C_{1: m}}^{(k+1)}}(\theta)\right] \prod_{l=i}^{j-1} c_{l+1, l}
$$

Theorem: The recurrence between basis vectors $q_{1}$ and $q_{k+1}$ can be described by

$$
\left[\sum_{j=1}^{k} \frac{\prod_{p=1}^{k} c_{p+1, p}}{\prod_{s \neq j}\left(\theta_{s}-\theta_{j}\right)\left(\lambda_{i}-\theta_{j}\right)}\right] \widehat{v}_{i}^{H} q_{k+1}=\widehat{v}_{i}^{H} q_{1}+\widehat{v}_{i}^{H} F_{k}\left[\sum_{j=1}^{k}\left(\frac{\check{s}_{1 j}}{\lambda_{i}-\theta_{j}}\right) s_{j}\right]
$$

A result from polynomial interpolation theory (Lagrange):

$$
\begin{aligned}
\sum_{j=1}^{k} \frac{1}{\Pi_{l \neq j}\left(\theta_{j}-\theta_{l}\right)\left(\lambda_{i}-\theta_{j}\right)} & =\frac{1}{\chi_{C_{k}}\left(\lambda_{i}\right)} \sum_{j=1}^{k} \frac{\prod_{l \neq j}\left(\lambda_{i}-\theta_{l}\right)}{\prod_{l \neq j}\left(\theta_{j}-\theta_{l}\right)} \\
& =\frac{1}{\chi_{C_{k}}\left(\lambda_{i}\right)}
\end{aligned}
$$

The following theorem holds true:

Theorem: The recurrence between basis vectors $q_{1}$ and $q_{k+1}$ can be described by

$$
\widehat{v}_{i}^{H} q_{k+1}=\frac{\chi_{C_{k}}\left(\lambda_{i}\right)}{\prod_{p=1}^{k} c_{p+1, p}}\left(\hat{v}_{i}^{H} q_{1}+\widehat{v}_{i}^{H} F_{k}\left[\sum_{j=1}^{k}\left(\frac{\check{s}_{1 j}}{\lambda_{i}-\theta_{j}}\right) s_{j}\right]\right) .
$$

Similarly we can get rid of the eigenvectors $s_{j}$ in the error term:

$$
e_{l}^{T}\left[\sum_{j=1}^{k}\left(\frac{\check{s}_{1 j}}{\lambda_{i}-\theta_{j}}\right) s_{j}\right]=\sum_{j=1}^{k}\left(\frac{\check{s}_{1 j} s_{l j}}{\lambda_{i}-\theta_{j}}\right)=\frac{\prod_{p=1}^{l} c_{p+1, p} \chi_{C_{l+1: k}}\left(\lambda_{i}\right)}{\chi_{C_{k}}\left(\lambda_{i}\right)}
$$

This results in the following theorem:

Theorem: The recurrence between basis vectors $q_{1}$ and $q_{k+1}$ can be described by

$$
\begin{aligned}
\widehat{v}_{i}^{H} q_{k+1} & =\frac{\chi_{C_{k}}\left(\lambda_{i}\right)}{\prod_{p=1}^{k} c_{p+1, p}}\left(\widehat{v}_{i}^{H} q_{1}+\widehat{v}_{i}^{H} \sum_{l=1}^{k} \frac{\prod_{p=1}^{l} c_{p+1, p} \chi_{C_{l+1: k}}\left(\lambda_{i}\right)}{\chi_{C_{k}}\left(\lambda_{i}\right)} f_{l}\right) \\
& =\frac{\chi_{C_{k}}\left(\lambda_{i}\right)}{\prod_{p=1}^{k} c_{p+1, p}} \widehat{v}_{i}^{H} q_{1}+\sum_{l=1}^{k}\left(\frac{\chi_{C_{l+1: k}}\left(\lambda_{i}\right)}{\prod_{p=l+1}^{k} c_{p+1, p}} \widehat{v}_{i}^{H} f_{l}\right) .
\end{aligned}
$$

Multiplication by the right eigenvectors $v_{i}$ and summation gives the familiar result:

Theorem: The recurrence of the basis vectors of a finite precision Krylov method can be described by

$$
q_{k+1}=\frac{\chi_{C_{k}}(A)}{\prod_{p=1}^{k} c_{p+1, p}} q_{1}+\sum_{l=1}^{k}\left(\frac{\chi_{C_{l+1: k}}(A)}{\prod_{p=l+1}^{k} c_{p+1, p}} f_{l}\right) .
$$

This result holds true even for non-diagonalisable matrices $A, C_{k}$.

The method can be interpreted as an additive mixture of several instances of the same method with several starting vectors.

A severe deviation occurs when one of the characteristic polynomials $\chi_{C_{l+1: k}}(A)$ becomes large compared to $\chi_{C_{k}}(A)$.

## Open Questions

o Can Krylov methods be forward or backward stable?
o If so, which can?
o Are there any sets of matrices $A$ for which Krylov methods are stable?
o Does the stability depend on the starting vector?
o Are there any a priori results on

- the behaviour to be expected and
- the rate of convergence?


## $A \in \mathbb{R}^{100 \times 100}$ normal, eigenvalues equidistant in $[0,1]$.



Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to eigenvalue of largest modulus.
$A \in \mathbb{R}^{100 \times 100}$ non-normal, eigenvalues equidistant in $[0,1]$.


Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to eigenvalue of largest modulus.
$A=A^{T} \in \mathbb{R}^{100 \times 100}$, random entries in $[0,1]$. Perron root well separated.


Behaviour of symmetric Lanczos, convergence to eigenvalue of largest modulus.

$$
A=A^{T} \in \mathbb{R}^{100 \times 100} \text {, random entries in }[0,1] \text {. Perron root well separated. }
$$



Behaviour of symmetric Lanczos, convergence to eigenvalue of largest and second largest modulus.

