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The Menagerie of Krylov Methods

o Lanczos based methods (short–term methods)
o Arnoldi based methods (long–term methods)

o eigensolvers: Av = vλ

o linear system solvers: Ax = b

o (quasi-) orthogonal residual approaches: (Q)OR
o (quasi-) minimal residual approaches: (Q)MR

Extensions:
o Lanczos based methods:

o look-ahead
o product-type (LTPMs)
o applied to normal equations (CGN)

o Arnoldi based methods:
o restart (thin/thick, explicit/implicit)
o truncation (standard/optimal)
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A Unified Matrix Description of Krylov Methods

Krylov methods as projection onto ’simpler’ matrices:
o QHQ = I, QHAQ = H Hessenberg (Arnoldi),
o Q̂HQ = I, Q̂HAQ = T tridiagonal (Lanczos)

Introduce computed (condensed) matrix C = T,H

Q−1AQ = C ⇒ AQ = QC

Iteration implied by unreduced Hessenberg structure:

AQk = Qk+1Ck, Qk = [q1, . . . , qk], Ck ∈ K(k+1)×k

Stewart: ’Krylov Decomposition’

Iteration spans Krylov subspace (q = q1):

span{Qk} = Kk = span{q,Aq, . . . , Ak−1q}
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Perturbed Krylov Decompositions

A Krylov decomposition analogue holds true in finite precision:

AQk = Qk+1Ck − Fk = QkCk + qk+1ck+1,ke
T
k − Fk

= QkCk +Mk − Fk

We have to investigate the impacts of the method on
o the structure of the basis Qk (local orthogonality/duality)
o the structure of the computed Ck, Ck
o the size/structure of the error term −Fk

Convergence theory:
o is usually based on inductively proven properties:

orthogonality, bi-orthogonality, A-conjugacy, . . .
What can be said about these properties?

’Standard’ error analysis:
o splits into forward and backward error analysis.

Does this analysis apply to Krylov methods?
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All methods fit pictorially into:

A Qk − Qk

Ck

= 0 − Fk .

This is a perturbed Krylov decomposition, as subspace equation.
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Examination of the methods has to be done according to

o methods directly based on the Krylov decomposition

o methods based on a split Krylov decomposition

o LTPMs

The matrix Ck plays a crucial role:

o Ck is Hessenberg or even tridiagonal (basics),

o Ck may be blocked or banded (block Krylov methods),

o Ck may have humps, spikes, . . . (more sophisticated)

The error analysis and convergence theory splits further up:

o knowledge on Hessenberg (tridiagonal) matrices

o knowledge on orthogonality, duality, conjugacy, . . .

We start with results on Hessenberg matrices.
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A Short Excursion on Matrix Structure

JΛ Jordan matrix of A
V right eigenvector-matrix, AV = V JΛ
V̂ ≡ V −H left eigenvector-matrix, V̂ HA = JΛV̂

H

V̌ ≡ V −T alternate eigenvector-matrix, V̌ TA = JΛV̌
T

χA(λ) ≡ det(λI −A) characteristic polynomial of A
R(λ) ≡ (λI −A)−1 resolvent
Ck(A) kth compound matrix of A
adj (A) classical adjoint, adjugate of A
Aij A with row i and column j deleted
S, Si sign matrices

The adjoint of λI −A fulfils

adj (λI −A)(λI −A) = det(λI −A)I.

Suppose that λ is not contained in the spectrum of A.
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We form the resolvent of λ and obtain

adj (λI −A) = det (λI −A)R(λ)

= V
(
χA (λ) J−1

λ−Λ

)
V̂ H .

The shifted and inverted Jordan matrix looks like

J−1
λ−λi = SiEiSi ≡ Si



(λ− λi)−1 (λ− λi)−2 . . . (λ− λi)−k

(λ− λi)−1

. . . ...

(λ− λi)−1

Si,

The multiplication with the characteristic polynomial allows to cancel the

terms with negative exponent.

The resulting expression is a source of eigenvalue – eigenvector relations.
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We express the adjugate with the aid of compound matrices,

adjA ≡ SCn−1(AT )S.

Then we have equality

P ≡ Cn−1(λI −AT ) = (SV S)G (SV̂ HS)

≡ (SV S)χA (λ)E (SV̂ HS).

The elements of the compound matrix P are polynomials in λ of the form

pij = pij (λ;A) ≡ detLji, where L ≡ λI −A.

The elements of G are obviously given by rational functions in λ, since

G = χA (λ) · (⊕iEi) .

Many terms cancel, the elements of G are polynomials. We divide by the
maximal factor and compute the limes λ→ λi.
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The choice of eigenvectors is based on the non-zero positions i, j in the

matrix (the sign matrices are left out):

V V̂ H

vi (i, j)

v̂Hj

Amongst others, the well-known result on eigenvalue – eigenvector rela-

tions by Thompson and McEnteggert is included. This is one of the basic

results used in Paige’s analysis of the finite precision symmetric Lanczos

method.

We consider here only the special case of non-derogatory eigenvalues.
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Theorem: Let A ∈ Kn×n. Let λl = λl+1 = . . . = λl+k be a geometrically

simple eigenvalue of A. Let k+1 be the algebraic multiplicity of λ. Let v̂Hl
and vl+k be the corresponding left and right eigenvectors with appropriate

normalization.

Then

vjlv̌i,l+k = (−1)(j+i+k) pji(λl;A)∏
λs 6=λl (λl − λs)

holds true.

The minus one stems from the sign matrices, the polynomial from the

definition of the adjoint as matrix of cofactors and the denominator by

division with the maximal factor.

This setting matches every eigenvalue of non-derogatory A.
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Unreduced Hessenberg matrices are non-derogatory matrices. This is

easily seen by a simple rank argument. In the following let H = Hm be

unreduced Hessenberg of size m×m,

rank(H − θI) ≥ m− 1.

Many polynomials can be evaluated in case of Hessenberg matrices:

Theorem: The polynomial pji, i ≤ j has degree (i− 1) + (m− j) and can

be evaluated as follows:

pji(θ;H) =

∣∣∣∣∣∣∣
θI −H1:i−1 ?

Ri+1:j−1

0 θI −Hj+1:m

∣∣∣∣∣∣∣
= (−1)i+j χH1:i−1

(θ)
∏

diag(Hi:j,−1)χHj+1:m
(θ).
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Denote by H(m) the set of unreduced Hessenberg matrices of size m×m.

The general result on eigenvalue – eigenvector relations can be simplified

to read:

Theorem: Let H ∈ H(m). Let i ≤ j. Let θ be an eigenvalue of H with

multiplicity k + 1. Let s be the unique left eigenvector and ŝH be the

unique right eigenvector to eigenvalue θ.

Then

(−1)k š(i)s(j) =

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=i

hl+1,l (1)

holds true.

Remark: We ignored the implicit scaling in the eigenvectors imposed by

the choice of eigenvector-matrices, i.e. by ŠTS = I.
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Among these relations of special interest is the case of index pairs (i,m),

(1,m) and (1,m), (1, j):

(−1)k š(i)s(m) =

χH1:i−1

χ
(k+1)
H1:m

(θ)

m−1∏
l=i

hl+1,l,

(−1)k š(1)s(m) =

 1

χ
(k+1)
H1:m

(θ)

 m−1∏
l=1

hl+1,l,

(−1)k š(1) s(j) =

χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=1

hl+1,l.

These relations are used to derive relations between eigenvalues and one

eigenvector.

They are also of interest for the understanding of the convergence of

Krylov methods, at least in context of Krylov eigensolvers.
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Theorem: Let H ∈ H(m). Let θ be an eigenvalue of H. Then ŝ = š

defined by non-zero š(1) and the relations

š(i)

š(1)
=

χHi−1
(θ)∏i−1

l=1 hl+1,l
∀ i ∈ m,

is (up to scaling) the unique left eigenvector of H to eigenvalue θ.

Theorem: Let H ∈ H(m). Let θ be an eigenvalue of H. Then s defined

by non-zero s(m) and the relations

s(j)

s(m)
=

χHj+1:m
(θ)∏m

l=j+1 hl,l−1
∀ j ∈ m,

is (up to scaling) the unique right eigenvector of H to eigenvalue θ.

Since the polynomials remain unchanged, merely the eigenvalue moves,

this helps to explain convergence behaviour (even in finite precision).
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Error Analysis Revisited

For simplicity we assume that the perturbed Krylov decomposition

Mk = AQk −QkCk + Fk

is diagonalisable, i.e. that A and Ck are diagonalisable.

Theorem: The recurrence of the basis vectors in eigenparts is given by

v̂Hi qk+1 =

(
λi − θj

)
v̂Hi yj + v̂Hi Fksj

ck+1,kskj
∀ i, j(, k).

This local error amplification formula consists of:

o the left eigenpart of qk+1: v̂Hi qk+1,

o a measure of convergence:
(
λi − θj

)
v̂Hi yj,

o an error term: v̂Hi Fksj,

o an amplification factor: ck+1,kskj.
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A ∈ R100×100 normal, eigenvalues equidistant in [0,1].
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Step number of floating point Arnoldi

Floating point Arnoldi. Example (4a) − normal matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to

largest eigenvalue.
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A ∈ R100×100 non-normal, eigenvalues equidistant in [0,1].
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Step number of floating point Arnoldi

Floating point Arnoldi. Example (4b) − non−normal matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of CGS-Arnoldi, MGS-Arnoldi, DO-Arnoldi, convergence to

largest eigenvalue.

HE2R → EA(FPKM) Jens Zemke – 18 –



A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point symmetric Lanczos

Floating point symmetric Lanczos. Example (5a) − non−negative matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of symmetric Lanczos, convergence to eigenvalue of largest

modulus.
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A = AT ∈ R100×100, random entries in [0,1]. Perron root well separated.
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Step number of floating point symmetric Lanczos

Floating point symmetric Lanczos. Example (5b) − non−negative matrix

real convergence   
estimated residual 
actual eigenpart   
1 | sqrt(eps) | eps

Behaviour of symmetric Lanczos, convergence to eigenvalue of largest

and second largest modulus.
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The formula depends on the Ritz pair of the actual step. Using the

eigenvector basis we can get rid of the Ritz vector :

I = SS−1 = SŠT ⇒ el = SŠTel ≡
k∑

j=1

šljsj.

Theorem: The recurrence between vectors ql and qk+1 is given by k∑
j=1

ck+1,kskjšlj

λi − θj

 v̂Hi qk+1 = v̂Hi ql + v̂Hi Fk

 k∑
j=1

(
šlj

λi − θj

)
sj

 .

For l = 1 we obtain a formula that reveals how the errors affect the

recurrence from the beginning: k∑
j=1

ck+1,kskjš1j

λi − θj

 v̂Hi qk+1 = v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Interpretation: The size of the deviation depends on the size of the first

component of the left eigenvector ŝj of Ck and the shape and size of the

right eigenvector sj.

Next step: Application of the eigenvector – eigenvalue relation

(−1)k š(i)s(j) =

χH1:i−1
χHj+1:m

χ
(k+1)
H1:m

(θ)

 j−1∏
l=i

hl+1,l.

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by k∑
j=1

∏k
p=1 cp+1,p∏

s 6=j

(
θs − θj

) (
λi − θj

)
 v̂Hi qk+1 = v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj
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A result from polynomial interpolation (Lagrange):

k∑
j=1

1∏
l 6=j

(
θj − θl

) (
λi − θj

) =
1

χCk (λi)

k∑
j=1

∏
l 6=j (λi − θl)∏
l 6=j

(
θj − θl

)
=

1

χCk (λi)

The following theorem holds true:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂Hi qk+1 =
χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 + v̂Hi Fk

 k∑
j=1

(
š1j

λi − θj

)
sj

 .
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Similarly we can get rid of the eigenvectors sj in the error term:

eTl

 k∑
j=1

(
š1j

λi − θj

)
sj

 =
k∑

j=1

(
š1jslj

λi − θj

)
=

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk(λi)

This results in the following theorem:

Theorem: The recurrence between basis vectors q1 and qk+1 can be

described by

v̂Hi qk+1 =
χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 + v̂Hi

k∑
l=1

∏l
p=1 cp+1,pχCl+1:k

(λi)

χCk(λi)
fl


=

χCk (λi)∏k
p=1 cp+1,p

v̂Hi q1 +
k∑
l=1

 χCl+1:k
(λi)∏k

p=l+1 cp+1,p
v̂Hi fl

 .
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Multiplication by the right eigenvectors vi and summation gives the fa-

miliar result

Theorem: The recurrence of the basis vectors of a finite precision Krylov

method can be described by

qk+1 =
χCk(A)∏k
p=1 cp+1,p

q1 +
k∑
l=1

 χCl+1:k
(A)∏k

p=l+1 cp+1,p
fl

 .

This result holds true even for non-diagonalisable matrices A,Ck.

The method can be interpreted as an additive mixture of several instances

of the same method with several starting vectors.

A severe deviation occurs when one of the characteristic polynomials

χCl+1:k
(A) becomes large compared to χCk(A).
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Open Questions

o Can Krylov methods be forward or backward stable?

o If so, which can?

o Are there any matrices A for which Krylov methods are stable?

o Does the stability depend on the starting vector?

o Are there any a priori results on

– the behaviour to be expected and

– the rate of convergence?

HE2R → EA(FPKM) Jens Zemke – 26 –


