Abstract Perturbed Krylov Methods Just another point of view?

Jens-Peter M. Zemke

Arbeitsbereich Mathematik 4-13
Technische Universität Hamburg-Harburg

08.03.2005 / ICS of CAS / Prague

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure
(2) The results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure
(2) The results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3) ... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

abstraction

Merriam-Webster Online: abstraction (noun)

abstraction

Merriam-Webster Online: abstraction (noun)
(1) a : the act or process of abstracting : the state of being abstracted b : an abstract idea or term

abstraction

Merriam-Webster Online: abstraction (noun)
(1) a : the act or process of abstracting : the state of being abstracted b : an abstract idea or term
(2) absence of mind or preoccupation

abstraction

Merriam-Webster Online: abstraction (noun)
(1) a : the act or process of abstracting : the state of being abstracted b : an abstract idea or term
(2) absence of mind or preoccupation
(3) abstract quality or character

abstraction

Merriam-Webster Online: abstraction (noun)
(1) a : the act or process of abstracting : the state of being abstracted b : an abstract idea or term
(2) absence of mind or preoccupation
(3) abstract quality or character
(9) a : an abstract composition or creation in art b : abstractionism

abstraction

Merriam-Webster Online: abstraction (noun)
(1) a : the act or process of abstracting : the state of being abstracted b : an abstract idea or term
(2) absence of mind or preoccupation
(3) abstract quality or character
(9) a : an abstract composition or creation in art b : abstractionism

We aim at 1 a (possibly 3 and 4 a), not 2 .

abstract

Selected definitions for "abstract"

abstract

Selected definitions for "abstract"
Merriam-Webster Online: abstract (verb)
(2) to consider apart from application to or association with a particular instance

abstract

Selected definitions for "abstract"
Merriam-Webster Online: abstract (verb)
(2) to consider apart from application to or association with a particular instance

Merriam-Webster Online: abstract (adjective)
(1) a : disassociated from any specific instance
(2) expressing a quality apart from an object
(3) a : dealing with a subject in its abstract aspects

perturbed KrYLov methods

We consider perturbed KryLov subspace methods that can be written in the form

$$
\begin{align*}
& A Q_{k}=Q_{k+1} \underline{C}_{k}-F_{k}, \tag{1a}\\
& \tag{1b}\\
& \quad Q_{k+1} \underline{C}_{k}=Q_{k} C_{k}+M_{k}, \tag{1c}\\
& \\
& \quad M_{k}=q_{k+1} C_{k+1, k} e_{k}^{T} .
\end{align*}
$$

perturbed KRYLOV methods

We consider perturbed KryLov subspace methods that can be written in the form

$$
\begin{align*}
A Q_{k}= & Q_{k+1} \underline{C}_{k}-F_{k}, \tag{1a}\\
& Q_{k+1} \underline{C}_{k}=Q_{k} C_{k}+M_{k}, \tag{1b}\\
& \quad M_{k}=q_{k+1} C_{k+1, k} e_{k}^{T} . \tag{1c}
\end{align*}
$$

We refer to the set of equations (1) as a perturbed Krycov decomposition.

the main actors

In the perturbed Krysov decomposition:

- $A \in \mathbb{C}^{n \times n}$ is the system matrix from

$$
A x=b \quad \text { or } \quad A v=v \lambda
$$

the main actors

In the perturbed Krysov decomposition:

- $A \in \mathbb{C}^{n \times n}$ is the system matrix from

$$
A x=b \quad \text { or } \quad A v=v \lambda
$$

- $Q_{k} \in \mathbb{C}^{n \times k}$ captures the "basis" vectors constructed

the main actors

In the perturbed Krysov decomposition:

- $A \in \mathbb{C}^{n \times n}$ is the system matrix from

$$
A x=b \quad \text { or } \quad A v=v \lambda
$$

- $Q_{k} \in \mathbb{C}^{n \times k}$ captures the "basis" vectors constructed
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced upper Hessenberg

the main actors

In the perturbed Krycov decomposition:

- $A \in \mathbb{C}^{n \times n}$ is the system matrix from

$$
A x=b \quad \text { or } \quad A v=v \lambda
$$

- $Q_{k} \in \mathbb{C}^{n \times k}$ captures the "basis" vectors constructed
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced upper HeSSENBERG
- $\underline{C}_{k} \in \mathbb{C}^{(k+1) \times k}$ is extended upper HESSENBERG

the main actors

In the perturbed KrYLov decomposition:

- $A \in \mathbb{C}^{n \times n}$ is the system matrix from

$$
A x=b \quad \text { or } \quad A v=v \lambda
$$

- $Q_{k} \in \mathbb{C}^{n \times k}$ captures the "basis" vectors constructed
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced upper Hessenberg
- $\underline{C}_{k} \in \mathbb{C}^{(k+1) \times k}$ is extended upper Hessenberg
- $F_{k} \in \mathbb{C}^{n \times k}$ is zero or captures perturbations (due to finite precision, inexact methods, both, ...)

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$ and $q_{1} \in \mathbb{C}^{n}$

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$ and $q_{1} \in \mathbb{C}^{n}$
- computed: unreduced HESSENBERG $C_{k} \in \mathbb{C}^{k \times k}$

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$ and $q_{1} \in \mathbb{C}^{n}$
- computed: unreduced HESSENBERG $C_{k} \in \mathbb{C}^{k \times k}$
- unknown: properties of the "basis" Q_{k}

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$ and $q_{1} \in \mathbb{C}^{n}$
- computed: unreduced Hessenberg $C_{k} \in \mathbb{C}^{k \times k}$
- unknown: properties of the "basis" Q_{k}
- "measurable": the perturbation terms F_{k}

crucial assumptions

- given: $A \in \mathbb{C}^{n \times n}$ and $q_{1} \in \mathbb{C}^{n}$
- computed: unreduced Hessenberg $C_{k} \in \mathbb{C}^{k \times k}$
- unknown: properties of the "basis" Q_{k}
- "measurable": the perturbation terms F_{k}

We treat the system matrix A, the starting vector q_{1} and the perturbation terms $\left\{f_{l}\right\}_{l=1}^{k}$ as input data and express everything else based on the computed C_{k}.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure
(2) The results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3)
... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

ARNOLDI

In the ARNOLDI method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced Hessenberg

ARNOLDI

In the finite precision ARNOLDI method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has "approximately" orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced Hessenberg
- $F_{k} \in \mathbb{C}^{n \times k}$ is "small"
(ask Miro about the details :-)

ARNOLDI

In the inexact ARNOLDI method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced Hessenberg
- $F_{k} \in \mathbb{C}^{n \times k}$ is "controlled by the user"

ARNOLDI

In the finite precision inexact ARNOLDI method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has "approximately" orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced Hessenberg
- $F_{k} \in \mathbb{C}^{n \times k}$ is "small" plus "controlled by the user"

LANczos

In the LANCZOS method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has bi-orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced tridiagonal

LANczos

In the finite precision LANCZOS method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has "locally" bi-orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced tridiagonal
- $F_{k} \in \mathbb{C}^{n \times k}$ is "small"

The error terms may grow unbounded...

LANczos

In the inexact Lanczos method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has bi-orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced tridiagonal
- $F_{k} \in \mathbb{C}^{n \times k}$ is "controlled by the user"

LANCZOS

In the finite precision inexact LANCZOS method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has "locally" bi-orthonormal columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is unreduced tridiagonal
- $F_{k} \in \mathbb{C}^{n \times k}$ is "small" plus "controlled by the user"

The error terms may grow unbounded...

power method

In the power method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has nearly dependent columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is nilpotent unreduced HESSENBERG

Columns of Q_{k} may be dependent from the beginning.

power method

In the finite precision power method:

- $A \in \mathbb{C}^{n \times n}$ is a general matrix
- $Q_{k} \in \mathbb{C}^{n \times k}$ has nearly dependent columns
- $C_{k} \in \mathbb{C}^{k \times k}$ is nilpotent unreduced HESSENBERG
- $F_{k} \in \mathbb{C}^{n \times k}$ is "small" compared to Q_{k}

Columns of Q_{k} may be dependent from the beginning.

a rather silly method

Consider any $v \neq 0$ such that $A v=v \lambda$ with $\lambda \neq 0$

- $A \in \mathbb{C}^{n \times n}$ is a general matrix not identical zero

a rather silly method

Consider any $v \neq 0$ such that $A v=v \lambda$ with $\lambda \neq 0$

- $A \in \mathbb{C}^{n \times n}$ is a general matrix not identical zero
- $Q_{k} \equiv[v, \ldots, v] \in \mathbb{C}^{n \times k}$

a rather silly method

Consider any $v \neq 0$ such that $A v=v \lambda$ with $\lambda \neq 0$

- $A \in \mathbb{C}^{n \times n}$ is a general matrix not identical zero
- $Q_{k} \equiv[v, \ldots, v] \in \mathbb{C}^{n \times k}$
- $C_{k} \in \mathbb{C}^{k \times k}$ should be unreduced HESSENBERG

a rather silly method

Consider any $v \neq 0$ such that $A v=v \lambda$ with $\lambda \neq 0$

- $A \in \mathbb{C}^{n \times n}$ is a general matrix not identical zero
- $Q_{k} \equiv[v, \ldots, v] \in \mathbb{C}^{n \times k}$
- $C_{k} \in \mathbb{C}^{k \times k}$ should be unreduced HESSENBERG

Set

$$
C_{k} \equiv\left(\begin{array}{cc}
o_{k-1}^{T} & 0 \tag{2}\\
\lambda I_{k-1} & \lambda e_{k-1}
\end{array}\right)
$$

a rather silly method

Consider any $v \neq 0$ such that $A v=v \lambda$ with $\lambda \neq 0$

- $A \in \mathbb{C}^{n \times n}$ is a general matrix not identical zero
- $Q_{k} \equiv[v, \ldots, v] \in \mathbb{C}^{n \times k}$
- $C_{k} \in \mathbb{C}^{k \times k}$ should be unreduced Hessenberg

Set

$$
C_{k} \equiv\left(\begin{array}{cc}
o_{k-1}^{T} & 0 \tag{2}\\
\lambda I_{k-1} & \lambda e_{k-1}
\end{array}\right)
$$

Then $A Q_{k}=Q_{k} C_{k}$.

Outline

(1) Getting started

- the name of the game
 - a few examples

- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

eigenmatrices et al.

JORDAN form, eigenmatrices:

$$
\begin{equation*}
A V=V J_{\Lambda}, \quad C_{k} S_{k}=S_{k} J_{\Theta} \tag{3}
\end{equation*}
$$

eigenmatrices et al.

JORDAN form, eigenmatrices:

$$
\begin{equation*}
A V=V J_{\Lambda}, \quad C_{k} S_{k}=S_{k} J_{\Theta} \tag{3}
\end{equation*}
$$

left eigenmatrices:

$$
\begin{equation*}
\hat{V}^{H} \equiv \check{V}^{T} \equiv V^{-1}, \quad \hat{S}_{k}^{H} \equiv \check{S}_{k}^{T} \equiv S_{k}^{-1} \tag{4}
\end{equation*}
$$

eigenmatrices et al.

JORDAN form, eigenmatrices:

$$
\begin{equation*}
A V=V J_{\Lambda}, \quad C_{k} S_{k}=S_{k} J_{\Theta} \tag{3}
\end{equation*}
$$

left eigenmatrices:

$$
\begin{equation*}
\hat{V}^{H} \equiv \check{V}^{T} \equiv V^{-1}, \quad \hat{S}_{k}^{H} \equiv \check{S}_{k}^{T} \equiv S_{k}^{-1} \tag{4}
\end{equation*}
$$

Jordan matrices (, boxes) and blocks:

$$
\begin{equation*}
J_{\Lambda}=\oplus J_{\lambda}, \quad J_{\lambda}=\oplus J_{\lambda \iota}, \quad J_{\Theta}=\oplus J_{\theta} \tag{5}
\end{equation*}
$$

eigenmatrices et al.

JORDAN form, eigenmatrices:

$$
\begin{equation*}
A V=V J_{\Lambda}, \quad C_{k} S_{k}=S_{k} J_{\Theta} \tag{3}
\end{equation*}
$$

left eigenmatrices:

$$
\begin{equation*}
\hat{V}^{H} \equiv \check{V}^{T} \equiv V^{-1}, \quad \hat{S}_{k}^{H} \equiv \check{S}_{k}^{T} \equiv S_{k}^{-1} \tag{4}
\end{equation*}
$$

JORDAN matrices (, boxes) and blocks:

$$
\begin{equation*}
J_{\Lambda}=\oplus J_{\lambda}, \quad J_{\lambda}=\oplus J_{\lambda \iota}, \quad J_{\Theta}=\oplus J_{\theta} \tag{5}
\end{equation*}
$$

partial eigenmatrices:

$$
\begin{equation*}
V=\oplus V_{\lambda}, \quad V_{\lambda}=\oplus V_{\lambda \iota}, \quad S_{k}=\oplus S_{\theta} \tag{6}
\end{equation*}
$$

characteristic matrix et al.

characteristic matrices:

$$
\begin{equation*}
{ }^{z} A \equiv z l-A, \quad{ }^{z} C_{k} \equiv z I_{k}-C_{k} \tag{7}
\end{equation*}
$$

characteristic matrix et al.

characteristic matrices:

$$
\begin{equation*}
{ }^{z} A \equiv z I-A, \quad{ }^{z} C_{k} \equiv z I_{k}-C_{k} . \tag{7}
\end{equation*}
$$

the adjugate:

$$
\begin{equation*}
P(z) \equiv \operatorname{adj}\left({ }^{z} C_{k}\right) \tag{8}
\end{equation*}
$$

characteristic matrix et al.

characteristic matrices:

$$
\begin{equation*}
{ }^{z} A \equiv z I-A, \quad{ }^{z} C_{k} \equiv z I_{k}-C_{k} \tag{7}
\end{equation*}
$$

the adjugate:

$$
\begin{equation*}
P(z) \equiv \operatorname{adj}\left({ }^{z} C_{k}\right) \tag{8}
\end{equation*}
$$

characteristic polynomials:

$$
\begin{equation*}
\chi C_{k}(z) \equiv \operatorname{det}\left({ }^{z} C_{k}\right), \quad \chi_{C_{i: j}}(z) \equiv \operatorname{det}\left({ }^{z} C_{i: j}\right) \tag{9}
\end{equation*}
$$

characteristic matrix et al.

characteristic matrices:

$$
\begin{equation*}
{ }^{z} A \equiv z I-A, \quad{ }^{z} C_{k} \equiv z I_{k}-C_{k} \tag{7}
\end{equation*}
$$

the adjugate:

$$
\begin{equation*}
P(z) \equiv \operatorname{adj}\left({ }^{z} C_{k}\right) \tag{8}
\end{equation*}
$$

characteristic polynomials:

$$
\begin{equation*}
\chi C_{k}(z) \equiv \operatorname{det}\left({ }^{z} C_{k}\right), \quad \chi_{C_{i: j}}(z) \equiv \operatorname{det}\left({ }^{z} C_{i: j}\right) \tag{9}
\end{equation*}
$$

reduced characteristic polynomial:

$$
\begin{equation*}
\chi c_{k}(z)=(z-\theta)^{\alpha} \omega(z) \tag{10}
\end{equation*}
$$

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact Krycov methods

HESSENBERG eigenvalue-eigenmatrix relations

Definition (off-diagonal products)

We denote the products of off-diagonal elements by

$$
\begin{equation*}
c_{i: j} \equiv \prod_{\ell=i}^{j} c_{\ell+1, \ell} \tag{11}
\end{equation*}
$$

HESSENBERG eigenvalue-eigenmatrix relations

Definition (off-diagonal products)

We denote the products of off-diagonal elements by

$$
\begin{equation*}
c_{i: j} \equiv \prod_{\ell=i}^{j} c_{\ell+1, \ell} . \tag{11}
\end{equation*}
$$

Definition (polynomial vectors ν and $\check{\nu}$)

We define vectors of (scaled) characteristic polynomials by

$$
\begin{equation*}
\nu(z) \equiv\left(\frac{\chi c_{l+1: k}(z)}{c_{l: k-1}}\right)_{l=1}^{k}, \quad \check{\nu}(z) \equiv\left(\frac{\chi c_{l-1}(z)}{c_{1: l-1}}\right)_{l=1}^{k} . \tag{12}
\end{equation*}
$$

HESSENBERG eigenvalue-eigenmatrix relations

Definition (matrices of derivatives)

We define rectangular matrices collecting the derivatives by

$$
\begin{align*}
& \mathcal{S}_{\alpha-1}(\theta) \equiv\left[\nu(\theta), \nu^{\prime}(\theta), \frac{\nu^{\prime \prime}(\theta)}{2}, \ldots, \frac{\nu^{(\alpha-1)}(\theta)}{(\alpha-1)!}\right] \tag{13}\\
& \check{\mathcal{S}}_{\alpha-1}(\theta) \equiv\left[\frac{\check{\nu}^{(\alpha-1)}(\theta)}{(\alpha-1)!}, \ldots, \frac{\check{\nu}^{\prime \prime}(\theta)}{2}, \check{\nu}^{\prime}(\theta), \check{\nu}(\theta)\right] \tag{14}
\end{align*}
$$

HESSENBERG eigenvalue-eigenmatrix relations

Definition (matrices of derivatives)

We define rectangular matrices collecting the derivatives by

$$
\begin{align*}
& \mathcal{S}_{\alpha-1}(\theta) \equiv\left[\nu(\theta), \nu^{\prime}(\theta), \frac{\nu^{\prime \prime}(\theta)}{2}, \ldots, \frac{\nu^{(\alpha-1)}(\theta)}{(\alpha-1)!}\right] \tag{13}\\
& \check{\mathcal{S}}_{\alpha-1}(\theta) \equiv\left[\frac{\check{\nu}^{(\alpha-1)}(\theta)}{(\alpha-1)!}, \ldots, \frac{\check{\nu}^{\prime \prime}(\theta)}{2}, \check{\nu}^{\prime}(\theta), \check{\nu}(\theta)\right] \tag{14}
\end{align*}
$$

Observation
These matrices gather complete left and right JORDAN chains.

HESSENBERG eigenvalue-eigenmatrix relations

Theorem (HEER)

HESSENBERG eigenmatrices satisfy

$$
\begin{equation*}
\frac{P^{(\alpha-1)}(\theta)}{(\alpha-1)!}=S_{\theta} \omega\left(J_{\theta}\right) \check{S}_{\theta}^{T}=c_{1: k-1} \mathcal{S}_{\alpha-1}(\theta) \check{S}_{\alpha-1}(\theta)^{T} \tag{15}
\end{equation*}
$$

HESSENBERG eigenvalue-eigenmatrix relations

Theorem (HEER)

HESSENBERG eigenmatrices satisfy

$$
\begin{equation*}
\frac{P^{(\alpha-1)}(\theta)}{(\alpha-1)!}=S_{\theta} \omega\left(J_{\theta}\right) \check{S}_{\theta}^{T}=c_{1: k-1} \mathcal{S}_{\alpha-1}(\theta) \check{S}_{\alpha-1}(\theta)^{T} \tag{15}
\end{equation*}
$$

Proof.

Proof based on comparison of TAYLOR expansions of the adjugate $P(z)$ as inverse divided by determinant and the polynomial expression for the adjugate in terms of characteristic polynomials of submatrices (Zemke 2004, submitted to LAA).

HESSENBERG eigenvalue-eigenmatrix relations

Lemma (HEER)

We can choose the partial eigenmatrices such that

$$
\begin{align*}
e_{1}^{T} \check{S}_{\theta} & =e_{\alpha}^{T}\left(\omega\left(J_{\theta}\right)\right)^{-T}, \tag{16a}\\
S_{\theta}^{T} e_{l} & =c_{1: /-1} \chi c_{l+1: K}\left(J_{\theta}\right)^{T} e_{1} . \tag{16b}
\end{align*}
$$

Tailored to diagonalizable C_{k} :

$$
\begin{equation*}
\check{s}_{j /} s_{\ell j}=\frac{\chi c_{1: l-1}\left(\theta_{j}\right) c_{l: \ell-1} \chi c_{\ell+1: k}\left(\theta_{j}\right)}{\chi_{C_{k}}^{\prime}\left(\theta_{j}\right)} \quad \forall I \leqslant \ell . \tag{17}
\end{equation*}
$$

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure
(2) The results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3)
... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

basic definitions

Definition (basis polynomials)

We define the (trailing) basis polynomials by

$$
\begin{align*}
\mathcal{B}_{k}(z) & \equiv \frac{\chi c_{k}(z)}{c_{1: k}}=\check{\nu}_{k+1}(z), \tag{18}\\
\mathcal{B}_{l+1: k}(z) & \equiv \frac{\chi c_{l+1: k}(z)}{c_{l+1: k}}=\frac{c_{l+1, I}}{c_{k+1, k}} \nu_{l}(z), \quad \forall I=1, \ldots, k . \tag{19}
\end{align*}
$$

basic definitions

Definition (basis polynomials)

We define the (trailing) basis polynomials by

$$
\begin{align*}
\mathcal{B}_{k}(z) & \equiv \frac{\chi c_{k}(z)}{c_{1: k}}=\check{\nu}_{k+1}(z), \tag{18}\\
\mathcal{B}_{l+1: k}(z) & \equiv \frac{\chi c_{l+1: k}(z)}{c_{l+1: k}}=\frac{c_{l+1, I}}{c_{k+1, k}} \nu_{l}(z), \quad \forall I=1, \ldots, k . \tag{19}
\end{align*}
$$

Observation

The trailing basis polynomials are the basis polynomials of the trailing submatrices $C_{l+1: k}$.

"basis" vectors

Theorem (the "basis" vectors)

The "basis" vectors of a KryLov method are given by

$$
\begin{equation*}
q_{k+1}=\mathcal{B}_{k}(A) q_{1} \tag{20}
\end{equation*}
$$

"basis" vectors

Theorem (the "basis" vectors)

The "basis" vectors of a perturbed KRYLOV method are given by

$$
\begin{equation*}
q_{k+1}=\mathcal{B}_{k}(A) q_{1}+\sum_{l=1}^{k} \mathcal{B}_{l+1: k}(A) \frac{f_{l}}{c_{l+1, l}} . \tag{20}
\end{equation*}
$$

"basis" vectors

Theorem (the "basis" vectors)

The "basis" vectors of a perturbed KRYLOV method are given by

$$
\begin{equation*}
q_{k+1}=\mathcal{B}_{k}(A) q_{1}+\sum_{l=1}^{k} \mathcal{B}_{l+1: k}(A) \frac{f_{l}}{c_{l+1, l}} . \tag{20}
\end{equation*}
$$

Observation

The perturbed "basis" vectors can be interpreted as an additive overlay of exact "basis" vectors.

a rough sketch of a short proof

Proof.

Introduce variable z :

$$
M_{k}=Q_{k}\left(z I-C_{k}\right)+(z I-A) Q_{k}+F_{k}
$$

a rough sketch of a short proof

Proof.

Introduce variable z :

$$
\begin{aligned}
M_{k} & =Q_{k}\left(z I-C_{k}\right)+(z I-A) Q_{k}+F_{k} \\
M_{k} \operatorname{adj}\left({ }^{z} C_{k}\right) & =Q_{k} \chi C_{k}(z)+(z I-A) Q_{k} \operatorname{adj}\left({ }^{z} C_{k}\right)+F_{k} \operatorname{adj}\left({ }^{z} C_{k}\right)
\end{aligned}
$$

a rough sketch of a short proof

Proof.

Introduce variable z :

$$
\begin{aligned}
M_{k} & =Q_{k}\left(z I-C_{k}\right)+(z I-A) Q_{k}+F_{k} \\
M_{k} \operatorname{adj}\left({ }^{(} C_{k}\right) & =Q_{k} \chi C_{k}(z)+(z I-A) Q_{k} \operatorname{adj}\left({ }^{2} C_{k}\right)+F_{k} \operatorname{adj}\left({ }^{z} C_{k}\right) .
\end{aligned}
$$

HEER: $\operatorname{adj}\left({ }^{2} C_{k}\right) e_{1}=c_{1: k-1} \nu(z)$.

a rough sketch of a short proof

Proof.

Introduce variable z :

$$
\begin{aligned}
M_{k} & =Q_{k}\left(z I-C_{k}\right)+(z I-A) Q_{k}+F_{k} \\
M_{k} \operatorname{adj}\left({ }^{(} C_{k}\right) & =Q_{k} \chi C_{k}(z)+(z I-A) Q_{k} \operatorname{adj}\left({ }^{2} C_{k}\right)+F_{k} \operatorname{adj}\left({ }^{z} C_{k}\right) .
\end{aligned}
$$

HEER: $\operatorname{adj}\left({ }^{2} C_{k}\right) e_{1}=c_{1: k-1} \nu(z)$. Insert A into

$$
c_{k+1, k} q_{k+1}=\frac{q_{1} \chi c_{k}(z)}{c_{1: k-1}}+(z l-A) Q_{k} \nu(z)+F_{k} \nu(z) .
$$

a closer \& deeper look

Theorem (the "basis" vectors revisited)
Let C_{k} be diagonalizable and suppose that $\lambda \neq \theta_{j}$ for all j :

$$
\left(\sum_{j=1}^{k} \frac{c_{1: k}}{\chi_{c_{k}}^{\prime}\left(\theta_{j}\right)\left(\lambda-\theta_{j}\right)}\right) \hat{v}^{H} q_{k+1}=\hat{v}^{H} q_{1}
$$

a closer \& deeper look

Theorem (the "basis" vectors revisited)

Let C_{k} be diagonalizable and suppose that $\lambda \neq \theta_{j}$ for all j :

$$
\begin{aligned}
\left(\sum_{j=1}^{k} \frac{c_{1: k}}{\chi_{C_{k}}^{\prime}\left(\theta_{j}\right)\left(\lambda-\theta_{j}\right)}\right) & \hat{v}^{H} q_{k+1}=\hat{v}^{H} q_{1} \\
& +\sum_{l=1}^{k}\left(\sum_{j=1}^{k} \frac{c_{1: I} \chi_{C_{l+1: k}}\left(\theta_{j}\right)}{\chi_{C_{k}}^{\prime}\left(\theta_{j}\right)\left(\lambda-\theta_{j}\right)}\right) \frac{\hat{v}^{H} f_{l}}{c_{l+1, l}}
\end{aligned}
$$

a closer \& deeper look

Theorem (the "basis" vectors revisited)

Let C_{k} be diagonalizable and suppose that $\lambda \neq \theta_{j}$ for all j :

$$
\begin{aligned}
\left(\sum_{j=1}^{k} \frac{c_{1: k}}{\chi_{C_{k}}^{\prime}\left(\theta_{j}\right)\left(\lambda-\theta_{j}\right)}\right) & \hat{v}^{H} q_{k+1}=\hat{v}^{H} q_{1} \\
& +\sum_{l=1}^{k}\left(\sum_{j=1}^{k} \frac{c_{1: 1}\left(\chi c_{l+1: k}\left(\theta_{j}\right)\right.}{\chi_{C_{k}}^{\prime}\left(\theta_{j}\right)\left(\lambda-\theta_{j}\right)}\right) \frac{\hat{v}^{H} f_{l}}{c_{l+1, l}} .
\end{aligned}
$$

Remark

Generalization to the non-diagonalizable case exists.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure

(2) The results ...

- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

eigenvalues, JORDAN block, partial eigenmatrix

Unreduced Hessenberg matrices C_{k} are non-derogatory.
Notations
In the following,

The matrices are such that

$$
\begin{equation*}
C_{k} S_{\theta}=S_{\theta} J_{\theta}, \quad \text { where } \quad J_{\theta} \in \mathbb{C}^{\alpha \times \alpha} \tag{21}
\end{equation*}
$$

eigenvalues, JORDAN block, partial eigenmatrix

Unreduced Hessenberg matrices C_{k} are non-derogatory.

Notations

In the following,
(generic) eigenvalue: denoted by $\theta=\theta^{(k)}$,

The matrices are such that

$$
\begin{equation*}
C_{k} S_{\theta}=S_{\theta} J_{\theta}, \quad \text { where } \quad J_{\theta} \in \mathbb{C}^{\alpha \times \alpha} \tag{21}
\end{equation*}
$$

eigenvalues, JORDAN block, partial eigenmatrix

Unreduced Hessenberg matrices C_{k} are non-derogatory.

Notations

In the following,
(generic) eigenvalue: denoted by $\theta=\theta^{(k)}$,
(algebraic) multiplicity: denoted by $\alpha=\alpha(\theta)$,

The matrices are such that

$$
\begin{equation*}
C_{k} S_{\theta}=S_{\theta} J_{\theta}, \quad \text { where } \quad J_{\theta} \in \mathbb{C}^{\alpha \times \alpha} \tag{21}
\end{equation*}
$$

eigenvalues, JORDAN block, partial eigenmatrix

Unreduced Hessenberg matrices C_{k} are non-derogatory.

Notations

In the following,
(generic) eigenvalue: denoted by $\theta=\theta^{(k)}$,
(algebraic) multiplicity: denoted by $\alpha=\alpha(\theta)$,
JORDAN block: denoted by $J_{\theta}=J_{\theta}^{(k)}$,

The matrices are such that

$$
\begin{equation*}
C_{k} S_{\theta}=S_{\theta} J_{\theta}, \quad \text { where } \quad J_{\theta} \in \mathbb{C}^{\alpha \times \alpha} . \tag{21}
\end{equation*}
$$

eigenvalues, JORDAN block, partial eigenmatrix

Unreduced Hessenberg matrices C_{k} are non-derogatory.

Notations

In the following,
(generic) eigenvalue: denoted by $\theta=\theta^{(k)}$,
(algebraic) multiplicity: denoted by $\alpha=\alpha(\theta)$,
JORDAN block: denoted by $J_{\theta}=J_{\theta}^{(k)}$,
partial eigenmatrix: $S_{\theta}=S_{\theta}^{(k)}$.
The matrices are such that

$$
\begin{equation*}
C_{k} S_{\theta}=S_{\theta} J_{\theta}, \quad \text { where } \quad J_{\theta} \in \mathbb{C}^{\alpha \times \alpha} . \tag{21}
\end{equation*}
$$

RITZ pairs, RITZ residuals

Definition (RITZ pair)

Define RItz pair by

$$
\begin{equation*}
\left(J_{\theta}, Y_{\theta} \equiv Q_{k} S_{\theta}\right) \tag{22}
\end{equation*}
$$

RITZ pairs, RITZ residuals

Definition (RITZ pair)

Define RITZ pair by

$$
\begin{equation*}
\left(J_{\theta}, Y_{\theta} \equiv Q_{k} S_{\theta}\right) . \tag{22}
\end{equation*}
$$

Not necessarily a "true" RITZ pair, since there need to be no RITz projection associated with it.

RITZ pairs, RITZ residuals

Definition (RITZ pair)

Define RITz pair by

$$
\begin{equation*}
\left(J_{\theta}, Y_{\theta} \equiv Q_{k} S_{\theta}\right) . \tag{22}
\end{equation*}
$$

Not necessarily a "true" RITZ pair, since there need to be no RITz projection associated with it.

Observation

A backward expression for the RITZ residual is given by

$$
\begin{equation*}
A Y_{\theta}-Y_{\theta} J_{\theta}=q_{k+1} c_{k+1, k} e_{k}^{T} S_{\theta}-F_{k} S_{\theta} . \tag{23}
\end{equation*}
$$

RITZ residuals (generic case)

Theorem (generic RITZ residuals)

The RITZ residual for an (arbitrarily chosen) RITZ pair:

$$
\begin{align*}
A Y_{\theta}-Y_{\theta} J_{\theta}=\left(\frac{\chi c_{k}(A)}{c_{1: k}}\right) & q_{1} e_{k}^{T} S_{\theta} \\
& +\sum_{l=1}^{k}\left(\frac{\chi c_{l+1: k}(A)}{c_{l: k-1}}\right) f_{l} e_{k}^{T} S_{\theta}-f_{l} e_{l}^{T} S_{\theta} \tag{24}
\end{align*}
$$

RITZ residuals (generic case)

Theorem (generic RITZ residuals)

The RITZ residual for an (arbitrarily chosen) RITZ pair:

$$
\left.\begin{array}{rl}
A Y_{\theta}-Y_{\theta} J_{\theta}=\left(\frac{\chi c_{k}(A)}{c_{1: k}}\right) & q_{1} e_{k}^{T} S_{\theta} \\
& +\sum_{l=1}^{k}\left(\frac{\chi}{c_{l+1: k}(A)}\right. \tag{24}\\
c_{l: k-1}
\end{array}\right) f_{l} e_{k}^{T} S_{\theta}-f_{l} e_{l}^{T} S_{\theta} . ~ l
$$

Proof.

Backward expression and Theorem on the "basis" vectors.

RITZ residuals (special case)

Use (unique) choice for the partial eigenmatrix S_{θ} (HEER):

Theorem (special RITZ residuals)

The RITZ residual for the special partial eigenmatrix from HEER is given by

$$
\begin{align*}
A Y_{\theta}-Y_{\theta} J_{\theta} & =\chi c_{k}(A) q_{1} e_{1}^{T} \\
& +\sum_{l=1}^{k} c_{1: l-1}\left(\chi c_{l+1: k}(A) f_{l} e_{1}^{T}-f_{l} e_{1}^{T} \chi c_{l+1: k}\left(J_{\theta}\right)\right) . \tag{25}
\end{align*}
$$

bivariate adjugate polynomials

Definition (bivariate adjugate polynomials)

We define the bivariate adjugate polynomials by

$$
\mathcal{A}_{k}(\theta, z) \equiv\left\{\begin{array}{cc}
\left(\chi_{c_{k}}(\theta)-\chi_{c_{k}}(z)\right)(\theta-z)^{-1}, & z \neq \theta \tag{26}\\
\chi_{C_{k}}^{\prime}(z), & z=\theta
\end{array}\right.
$$

Trailing bivariate adjugate polynomials $\mathcal{A}_{l+1: k}$ are defined using $C_{l+1: k}$ in place of $C_{k}, I=1, \ldots, k$.

bivariate adjugate polynomials

Definition (bivariate adjugate polynomials)

We define the bivariate adjugate polynomials by

$$
\mathcal{A}_{k}(\theta, z) \equiv\left\{\begin{array}{cc}
\left(\chi c_{k}(\theta)-\chi c_{c_{k}}(z)\right)(\theta-z)^{-1}, & z \neq \theta, \tag{26}\\
\chi_{C_{k}}^{\prime}(z), & z=\theta .
\end{array}\right.
$$

Trailing bivariate adjugate polynomials $\mathcal{A}_{1+1: k}$ are defined using $C_{l+1: k}$ in place of $C_{k}, l=1, \ldots, k$.

Observation

Even with an eigenvalue $\theta: \mathcal{A}_{k}\left(\theta, C_{k}\right)=\operatorname{adj}\left(\theta I_{k}-C_{k}\right)=P(\theta)$.

RITZ vectors

Theorem (the RITz vectors)

The RITZ vectors of a KrYLov method are given by

$$
\begin{align*}
& \operatorname{vec}\left(Y_{\theta}\right)= \\
& \qquad\left(\begin{array}{c}
\mathcal{A}_{k}(\theta, A) \\
\mathcal{A}_{k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) q_{1} \tag{27}
\end{align*}
$$

(derivation with respect to "shift" θ)

RITZ vectors

Theorem (the RITz vectors)

The RITZ vectors of a perturbed KRYLOV method are given by

$$
\begin{align*}
& \operatorname{vec}\left(Y_{\theta}\right)= \\
& \left(\begin{array}{c}
\mathcal{A}_{k}(\theta, A) \\
\mathcal{A}_{k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{k}^{(\alpha-1)}(\theta, \boldsymbol{A})}{(\alpha-1)!}
\end{array}\right) q_{1}+\sum_{l=1}^{k} c_{1: l-1}\left(\begin{array}{c}
\mathcal{A}_{l+1: k}(\theta, A) \\
\mathcal{A}_{l+1: k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{l+1: k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) f_{/ .} \tag{27}
\end{align*}
$$

(derivation with respect to "shift" θ)

sketch of proof: basics

The proof utilizes the following general aspects:

sketch of proof: basics

The proof utilizes the following general aspects:

- The adjugate of a matrix is defined as matrix of cofactors.

sketch of proof: basics

The proof utilizes the following general aspects:

- The adjugate of a matrix is defined as matrix of cofactors.
- The adjugate is linked to eigenvectors and, more general, principal vectors.

sketch of proof: basics

The proof utilizes the following general aspects:

- The adjugate of a matrix is defined as matrix of cofactors.
- The adjugate is linked to eigenvectors and, more general, principal vectors.
- The adjugate is linked to the inverse and the determinant.

sketch of proof: basics

The proof utilizes the following general aspects:

- The adjugate of a matrix is defined as matrix of cofactors.
- The adjugate is linked to eigenvectors and, more general, principal vectors.
- The adjugate is linked to the inverse and the determinant.

The problem: the definition of the bivariate adjugate polynomials given here is not "adequate", we need another form.

sketch of proof: HESSENBERG basics

To derive this peculiar form we use the first adjugate identity:
Lemma (first (HESSENBERG) adjugate identity)

sketch of proof: HESSENBERG basics

To derive this peculiar form we use the first adjugate identity:

Lemma (first (HESSENBERG) adjugate identity)

First adjugate identity:

$$
\begin{equation*}
(z-\theta) \operatorname{adj}\left({ }^{Z} A\right) \operatorname{adj}\left({ }^{\theta} A\right)=\operatorname{det}\left({ }^{Z} A\right) \operatorname{adj}\left({ }^{\theta} A\right)-\operatorname{det}\left({ }^{\theta} A\right) \operatorname{adj}\left({ }^{Z} A\right) . \tag{28}
\end{equation*}
$$

sketch of proof: HESSENBERG basics

To derive this peculiar form we use the first adjugate identity:
Lemma (first (HESSENBERG) adjugate identity)
First adjugate identity:

$$
\begin{equation*}
(z-\theta) \operatorname{adj}\left({ }^{Z} A\right) \operatorname{adj}\left({ }^{\theta} A\right)=\operatorname{det}\left({ }^{Z} A\right) \operatorname{adj}\left({ }^{\theta} A\right)-\operatorname{det}\left({ }^{\theta} A\right) \operatorname{adj}\left({ }^{Z} A\right) . \tag{28}
\end{equation*}
$$

Specialized to Hessenberg matrices:

$$
\begin{equation*}
(z-\theta) \sum_{j=1}^{k} \chi c_{1: j-1}(z) \chi c_{j+1: k}(\theta)=\chi c_{k}(z)-\chi c_{k}(\theta) . \tag{29}
\end{equation*}
$$

sketch of proof: gluing results together

The last line implies the following representations $(\ell \geqslant 0)$:

$$
\mathcal{A}_{l+1: k}^{(\ell)}(\theta, z)=\sum_{j=I+1}^{k} \chi_{C_{l+1: j-1}}(z) \chi_{C_{j+1: k}}^{(\ell)}(\theta) \quad \forall I=0,1, \ldots, k . \text { (30) }
$$

sketch of proof: gluing results together

The last line implies the following representations ($\ell \geqslant 0$):

$$
\mathcal{A}_{l+1: k}^{(\ell)}(\theta, z)=\sum_{j=l+1}^{k} \chi_{C_{l+1: j-1}}(z) \chi_{C_{j+1: k}}^{(\ell)}(\theta) \quad \forall I=0,1, \ldots, k .(30)
$$

This together with
are the building blocks for the proof.

sketch of proof: gluing results together

The last line implies the following representations ($\ell \geqslant 0$):

$$
\mathcal{A}_{l+1: k}^{(\ell)}(\theta, z)=\sum_{j=l+1}^{k} \chi_{C_{l+1: j-1}}(z) \chi_{C_{j+1: k}}^{(\ell)}(\theta) \quad \forall I=0,1, \ldots, k \cdot(30)
$$

This together with

- the special choice of the partial eigenmatrix S_{θ}
are the building blocks for the proof.

sketch of proof: gluing results together

The last line implies the following representations ($\ell \geqslant 0$):

$$
\mathcal{A}_{l+1: k}^{(\ell)}(\theta, z)=\sum_{j=l+1}^{k} \chi_{C_{l+1: j-1}}(z) \chi_{C_{j+1: k}}^{(\ell)}(\theta) \quad \forall I=0,1, \ldots, k \cdot(30)
$$

This together with

- the special choice of the partial eigenmatrix S_{θ}
- the representation of the "basis" vectors are the building blocks for the proof.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure

(2) The results ...

- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact KryLov methods

(Q)OR: the approach

Suppose that C_{k} is invertible and that $q_{1}=r_{0} /\left\|r_{0}\right\|$. Let z_{k} denote the solution to the linear system of equations

$$
\begin{equation*}
C_{k} z_{k}=e_{1}\left\|r_{0}\right\| \tag{31}
\end{equation*}
$$

(Q)OR: the approach

Suppose that C_{k} is invertible and that $q_{1}=r_{0} /\left\|r_{0}\right\|$. Let z_{k} denote the solution to the linear system of equations

$$
\begin{equation*}
C_{k} z_{k}=e_{1}\left\|r_{0}\right\| . \tag{31}
\end{equation*}
$$

Define the k th (Q)OR iterate x_{k} by

$$
\begin{equation*}
x_{k}=Q_{k} z_{k} \tag{32}
\end{equation*}
$$

(Q)OR: the approach

Suppose that C_{k} is invertible and that $q_{1}=r_{0} /\left\|r_{0}\right\|$. Let z_{k} denote the solution to the linear system of equations

$$
\begin{equation*}
C_{k} z_{k}=e_{1}\left\|r_{0}\right\| . \tag{31}
\end{equation*}
$$

Define the k th (Q)OR iterate x_{k} by

$$
\begin{equation*}
x_{k}=Q_{k} z_{k} \tag{32}
\end{equation*}
$$

and the k th (true) (Q)OR residual by

$$
\begin{equation*}
r_{k}=r_{0}-A x_{k} \tag{33}
\end{equation*}
$$

a backward expression for the (Q)OR residual

Observation

A backward expression for the (Q)OR residual is given by

$$
r_{k}=r_{0}-A x_{k}=\left(Q_{k} C_{k}-A Q_{k}\right) C_{k}^{-1} e_{1}\left\|r_{0}\right\|
$$

a backward expression for the (Q)OR residual

Observation

A backward expression for the (Q)OR residual is given by

$$
\begin{aligned}
r_{k} & =r_{0}-A x_{k}=\left(Q_{k} C_{k}-A Q_{k}\right) C_{k}^{-1} e_{1}\left\|r_{0}\right\| \\
& =\left(-q_{k+1} c_{k+1, k} e_{k}^{T}+F_{k}\right) z_{k}
\end{aligned}
$$

a backward expression for the (Q)OR residual

Observation

A backward expression for the (Q)OR residual is given by

$$
\begin{aligned}
r_{k} & =r_{0}-A x_{k}=\left(Q_{k} C_{k}-A Q_{k}\right) C_{k}^{-1} e_{1}\left\|r_{0}\right\| \\
& =\left(-q_{k+1} c_{k+1, k} e_{k}^{T}+F_{k}\right) z_{k} \\
& =-q_{k+1} c_{k+1, k} z_{k k}+\sum_{l=1}^{k} f_{l} z_{l k}
\end{aligned}
$$

adjugate, inverse, determinant

Express the inverse of C_{k} as adjugate by determinant:

$$
\frac{-z_{l k}}{\left\|r_{0}\right\|}=e_{l}^{T}\left(-C_{k}\right)^{-1} e_{1}
$$

adjugate, inverse, determinant

Express the inverse of C_{k} as adjugate by determinant:

$$
\frac{-z_{l k}}{\left\|r_{0}\right\|}=e_{l}^{T}\left(-C_{k}\right)^{-1} e_{1}=\frac{e_{l}^{T} \operatorname{adj}\left(-C_{k}\right) e_{1}}{\operatorname{det}\left(-C_{k}\right)}
$$

adjugate, inverse, determinant

Express the inverse of C_{k} as adjugate by determinant:

$$
\begin{aligned}
\frac{-z_{l k}}{\left\|r_{0}\right\|} & =e_{l}^{T}\left(-C_{k}\right)^{-1} e_{1}=\frac{e_{l}^{T} \operatorname{adj}\left(-C_{k}\right) e_{1}}{\operatorname{det}\left(-C_{k}\right)} \\
& =\frac{c_{1: I-1} \chi_{C_{l+1: k}}(0)}{\chi_{C_{k}}(0)}
\end{aligned}
$$

adjugate, inverse, determinant

Express the inverse of C_{k} as adjugate by determinant:

$$
\begin{aligned}
\frac{-z_{l k}}{\left\|r_{0}\right\|} & =e_{l}^{T}\left(-C_{k}\right)^{-1} e_{1}=\frac{e_{l}^{T} \operatorname{adj}\left(-C_{k}\right) e_{1}}{\operatorname{det}\left(-C_{k}\right)} \\
& =\frac{c_{1: I-1} \chi_{C_{l+1: k}}(0)}{\chi_{C_{k}}(0)}
\end{aligned}
$$

Utilize

$$
\begin{equation*}
r_{k}=q_{k+1} c_{k+1, k}\left(-z_{k k}\right)-\sum_{l=1}^{k} f_{l}\left(-z_{l k}\right) \tag{34}
\end{equation*}
$$

(Q)OR: the residuals

This backward expression plus Theorem on the "basis" vectors:

Theorem (the (Q)OR residual vectors)

The residual vectors of a given by

$$
\begin{equation*}
r_{k}=\frac{\chi c_{k}(A)}{\chi c_{k}(0)} r_{0} \tag{35}
\end{equation*}
$$

(Q)OR: the residuals

This backward expression plus Theorem on the "basis" vectors:

Theorem (the (Q)OR residual vectors)

The residual vectors of a perturbed (Q)OR KRYLov method are given by

$$
\begin{equation*}
r_{k}=\frac{\chi c_{k}(A)}{\chi c_{k}(0)} r_{0}+\left\|r_{0}\right\| \sum_{l=1}^{k} c_{1: l-1} \frac{\chi c_{l+1: k}(A)-\chi c_{l+1: k}(0)}{\chi c_{k}(0)} f_{l} . \tag{35}
\end{equation*}
$$

(Q)OR: the residuals

This backward expression plus Theorem on the "basis" vectors:

Theorem (the (Q)OR residual vectors)

The residual vectors of a perturbed (Q)OR KRYLov method are given by

$$
\begin{equation*}
r_{k}=\frac{\chi c_{k}(A)}{\chi c_{k}(0)} r_{0}+\left\|r_{0}\right\| \sum_{l=1}^{k} c_{1: l-1} \frac{\chi c_{l+1: k}(A)-\chi c_{l+1: k}(0)}{\chi c_{k}(0)} f_{l} . \tag{35}
\end{equation*}
$$

The perturbation terms remind of adjugate polynomials ...

adjugate, inverse, interpolation (I)

Definition (univariate adjugate polynomials)

We define univariate adjugate polynomials by

$$
\mathcal{A}_{k}(z)=(-1)^{k}\left(\chi_{c_{k}}(0)-\chi_{c_{k}}(z)\right) z^{-1}
$$

By Cayley-Hamilton: $\mathcal{A}_{k}\left(C_{k}\right)=\operatorname{adj}\left(C_{k}\right)$

adjugate, inverse, interpolation (I)

Definition (univariate adjugate polynomials)

We define univariate adjugate polynomials by

$$
\mathcal{A}_{k}(z)=(-1)^{k}\left(\chi_{c_{k}}(0)-\chi c_{k}(z)\right) z^{-1}
$$

By Cayley-Hamilton: $\mathcal{A}_{k}\left(C_{k}\right)=\operatorname{adj}\left(C_{k}\right)$

Observation

Univariate and bivariate adjugate polynomials are related by

$$
\mathcal{A}_{k}(z)=(-1)^{k+1} \mathcal{A}_{k}(z, 0)=(-1)^{k+1} \mathcal{A}_{k}(0, z)
$$

adjugate, inverse, interpolation (II)

Notations

We define and denote the LAGRANGE interpolation of the inverse by

$$
\mathcal{L}_{k}\left[z^{-1}\right](z)=\frac{\mathcal{A}_{k}(z)}{\operatorname{det}\left(C_{k}\right)}=\left(1-\frac{\chi c_{k}(z)}{\chi_{c_{k}}(0)}\right) z^{-1}
$$

adjugate, inverse, interpolation (II)

Notations

We define and denote the LAGRANGE interpolation of the inverse by

$$
\mathcal{L}_{k}\left[z^{-1}\right](z)=\frac{\mathcal{A}_{k}(z)}{\operatorname{det}\left(C_{k}\right)}=\left(1-\frac{\chi c_{k}(z)}{\chi c_{k}(0)}\right) z^{-1}
$$

Notations

We define and denote the LAGRANGE interpolation of a perturbed identity by

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)=\mathcal{L}_{k}\left[z^{-1}\right](z) z=\frac{\chi c_{k}(0)-\chi c_{k}(z)}{\chi_{c_{k}}(0)}
$$

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$.

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
c_{1: l-1} \frac{\chi_{c_{l+1: k}}(0)-\chi_{c_{l+1: k}}(A)}{\chi_{c_{k}}(0)}=
$$

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
\begin{array}{r}
c_{1: I-1} \frac{\chi C_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi C_{k}(0)}= \\
\frac{\chi C_{l+1: k}(0)-\chi C_{l+1: k}}{}(A) \\
\chi C_{l+1: k}(0)
\end{array}
$$

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
\begin{aligned}
& c_{1: l-1} \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{k}(0)}= \\
& \quad \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{l+1: k}(0)} \cdot \frac{c_{1: l-1} \chi c_{l+1: k}(0)}{\chi c_{k}(0)}
\end{aligned}
$$

(36)

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
\begin{align*}
& c_{1: l-1} \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{k}(0)}= \\
& \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{l+1: k}(0)} \cdot \frac{c_{1: l-1} \chi c_{l+1: k}(0)}{\chi c_{k}(0)}= \\
& \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) \tag{36}
\end{align*}
$$

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
\begin{align*}
c_{1: l-1} \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{k}(0)}= & \\
\frac{\chi C_{l+1: k}(0)-\chi c_{l+1: k}(A)}{\chi c_{l+1: k}(0)} & \frac{c_{1: l-1-1} \chi_{C_{l+1: k}}(0)}{\chi c_{k}(0)}= \\
& \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) \frac{z_{l k}}{\left\|r_{0}\right\|} \tag{36}
\end{align*}
$$

trailing \{adjugate, inverse, interpolation\}

We expand all notations to the trailing submatrices $C_{l+1: k}$. Then,

$$
\begin{align*}
& c_{1: l-1} \frac{\chi c_{l+1: k}(0)-\chi c_{l+1: k}}{}(A) \\
& \chi c_{k}(0) \\
& \frac{\chi C_{l+1: k}(0)-\chi c_{l+1: k}}{}(A) \tag{36}\\
& \chi c_{l+1: k}(0)
\end{align*} \cdot \frac{\frac{c_{1: l-1} \chi c_{l+1: k}(0)}{\chi c_{k}(0)}=}{} \begin{array}{ll}
\mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) \frac{z_{l k}}{\left\|r_{0}\right\|}
\end{array}
$$

(Q)OR: the residuals

Theorem (the (Q)OR residual vectors)

Suppose that all submatrices $C_{l+1: k}$ are nonsingular. Then the residual vectors can be written as

$$
\begin{equation*}
r_{k}=\frac{\chi c_{k}(A)}{\chi c_{k}(0)} r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) f_{l} . \tag{37}
\end{equation*}
$$

This occurs frequently, consider e.g. CG for HPD A.

(Q)OR: the errors, regular A

What about the error vectors?

(Q)OR: the errors, regular A

What about the error vectors?

Theorem (the (Q)OR error vectors, regular A)

Suppose that A is invertible and let $x=A^{-1} r_{0}$ denote the unique solution of the linear system $A x=r_{0}$. Then the error vectors are given by

$$
\begin{equation*}
\left(x-x_{k}\right)=\frac{\chi c_{k}(A)}{\chi c_{k}(0)}(x-0)+\left\|r_{0}\right\| \sum_{l=1}^{k} c_{1: l-1} \frac{\mathcal{A}_{l+1: k}(0, A)}{\chi c_{k}(0)} f_{l} . \tag{38}
\end{equation*}
$$

(Q)OR: the errors, regular A

What about invertible submatrices?

(Q)OR: the errors, regular A

What about invertible submatrices?

Theorem (the (Q)OR error vectors, regular A and $C_{I+1: k}$)

Suppose that all trailing submatrices $C_{l+1: k}$ are nonsingular. Then the error vectors can be written as

$$
\begin{equation*}
\left(x-x_{k}\right)=\frac{\chi_{c_{k}}(A)}{\chi_{C_{k}}(0)}(x-0)-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} . \tag{39}
\end{equation*}
$$

(Q)OR: the errors, singular A

What about singular A ?

(Q)OR: the errors, singular A

What about singular A ?

Theorem (the (Q)OR error vectors, singular A)

When A is singular, with $x \equiv A^{D} r_{0}$, where A^{D} denotes the Drazin inverse of A,

$$
\begin{align*}
& \left(x-A A^{D} x_{k}\right)=\frac{\chi c_{k}(A)}{\chi c_{k}(0)}(x-0) \\
& \quad+\left\|r_{0}\right\| \sum_{l=1}^{k} c_{1: l-1} \frac{\mathcal{A}_{l+1: k}(0, A)}{\chi c_{k}(0)} A A^{D} f_{l} . \tag{40}
\end{align*}
$$

(Q)OR: the errors, singular A

What about invertible submatrices?

(Q)OR: the errors, singular A

What about invertible submatrices?
Theorem (the (Q)OR error vectors, singular A, regular $C_{I+1: k}$)
When A is singular, with $x \equiv A^{D} r_{0}$,

$$
\begin{align*}
&\left(x-A A^{D} x_{k}\right)=\frac{\chi c_{k}(A)}{\chi c_{k}(0)}(x-0) \\
&-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) A A^{D} f_{/ l} \tag{41}
\end{align*}
$$

(Q)OR: the iterates

The iterates x_{k} can be composed like the Ritz vectors.

(Q)OR: the iterates

The iterates x_{k} can be composed like the Ritz vectors.

Theorem (the (Q)OR iterates)

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}-\left\|r_{0}\right\| \sum_{l=1}^{k} c_{1: l-1} \frac{\mathcal{A}_{l+1: k}(0, A)}{\chi_{c_{k}}(0)} f_{l} \tag{42}
\end{equation*}
$$

(Q)OR: the iterates

The case of invertible $C_{l+1: k}$:

(Q)OR: the iterates

The case of invertible $C_{l+1: k}$:

Theorem (the (Q)OR iterates, regular $C_{l+1: k}$)

Suppose that all $C_{I+1: k}$ are regular. Then

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}+\sum_{l=1}^{k} z_{\mid k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} \tag{43}
\end{equation*}
$$

(Q)OR: the iterates

The case of invertible $C_{l+1: k}$:

Theorem (the (Q)OR iterates, regular $C_{l+1: k}$)

Suppose that all $C_{l+1: k}$ are regular.
Then

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}+\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} . \tag{43}
\end{equation*}
$$

Observation

This is a linear combination of $k+1$ approximations from distinct KryLov subspaces, spanned by the same matrix A, but distinct starting vectors.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structure
(2) The results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
... and their impacts
- general comments
- finite precision issues
- inexact KryLov methods

(Q)MR: the approach

Let \underline{z}_{k} denote the minimal-norm solution of the least-squares problem

$$
\begin{equation*}
\left\|\underline{C}_{k} \underline{z}_{k}-\underline{e}_{1}\right\| r_{0}\| \|=\min \tag{44}
\end{equation*}
$$

(Q)MR: the approach

Let \underline{z}_{k} denote the minimal-norm solution of the least-squares problem

$$
\begin{equation*}
\left\|\underline{C}_{k} \underline{z}_{k}-\underline{e}_{1}\right\| r_{0}\| \|=\min \tag{44}
\end{equation*}
$$

Define the k th (Q)MR iterate \underline{x}_{k} by

$$
\begin{equation*}
\underline{x}_{k}=Q_{k} \underline{z}_{k} \tag{45}
\end{equation*}
$$

(Q)MR: the approach

Let \underline{z}_{k} denote the minimal-norm solution of the least-squares problem

$$
\begin{equation*}
\left\|\underline{C}_{k} \underline{z}_{k}-\underline{e}_{1}\right\| r_{0}\| \|=\min \tag{44}
\end{equation*}
$$

Define the k th (Q)MR iterate \underline{x}_{k} by

$$
\begin{equation*}
\underline{x}_{k}=Q_{k} \underline{z}_{k} \tag{45}
\end{equation*}
$$

and the k th quasi-residual by

$$
\begin{equation*}
\mathfrak{r}_{k}=\underline{e}_{1}\left\|r_{0}\right\|-\underline{C}_{k} \underline{z}_{k}=\left(\underline{I}_{k}-\underline{C}_{k} \underline{C}_{k}^{\dagger}\right) \underline{e}_{1}\left\|r_{0}\right\| \tag{46}
\end{equation*}
$$

(Q)MR: a backward expression for the residual

Observation

The residual \underline{r}_{k} of the (Q)MR iterates has the following backward expression:

$$
\begin{align*}
\underline{r}_{k} & =r_{0}-A \underline{x}_{k}=Q_{k+1} \underline{e}_{1}\left\|r_{0}\right\|-A Q_{k} \underline{z}_{k} \tag{47}\\
& =Q_{k+1}\left(\underline{e}_{1}\left\|r_{0}\right\|-\underline{C}_{k} \underline{z}_{k}\right)+F_{k} \underline{z}_{k}=Q_{k+1} \mathfrak{r}_{k}+\sum_{l=1}^{k} f_{l} \underline{z}_{l k} \tag{48}
\end{align*}
$$

(Q)MR: a backward expression for the residual

Observation

The residual \underline{r}_{k} of the (Q)MR iterates has the following backward expression:

$$
\begin{align*}
\underline{r}_{k} & =r_{0}-A \underline{x}_{k}=Q_{k+1} \underline{e}_{1}\left\|r_{0}\right\|-A Q_{k} \underline{z}_{k} \tag{47}\\
& =Q_{k+1}\left(\underline{e}_{1}\left\|r_{0}\right\|-\underline{C}_{k} \underline{z}_{k}\right)+F_{k} \underline{z}_{k}=Q_{k+1} \mathfrak{r}_{k}+\sum_{l=1}^{k} f_{l} \underline{z}_{l k} \tag{48}
\end{align*}
$$

Observation

To express the residual \underline{r}_{k} as polynomial in A, we "only" need "polynomial" expressions for \mathfrak{r}_{k} and \underline{z}_{k}.

(Q)MR: HESSENBERG rewritings

Definition (the scalar vectors $\mu, \check{\mu}$ and $\hat{\mu}$)

We define pairs of vectors $\mu^{j}, \check{\mu}^{j} \in \mathbb{C}^{j}$ and $\hat{\mu}^{j} \equiv \bar{\mu}^{j} \in \mathbb{C}^{j}$:

$$
\begin{align*}
& \mu \equiv\left(\frac{(-1)^{I+1} \operatorname{det}\left(C_{l+1: j}\right)}{C_{l: j-1}}\right)_{I=1}^{j}, \tag{49}\\
& \check{\mu} \equiv\left(\frac{(-1)^{j-l} \operatorname{det}\left(C_{l-1}\right)}{c_{1: l-1}}\right)_{I=1}^{j} \tag{50}
\end{align*}
$$

(Q)MR: HESSENBERG rewritings

Lemma (Moore-Penrose inverse of extended Hessenberg)

The Moore-Penrose inverse of the extended Hessenberg matrix \underline{C}_{k} is given by

$$
\underline{C}_{k}^{\dagger}=\frac{\sum_{j=1}^{k}\left|c_{j+1: k}\right|^{2}\left(\begin{array}{cc}
\overline{\operatorname{det}\left(C_{j}\right)} \operatorname{adj}\left(C_{j}\right) & \overline{C_{1: j}} \operatorname{adj}\left(C_{j}\right) \hat{\mu}^{j} \tag{51}\\
O_{k-j, j} & O_{k-j, k-j}
\end{array}\right.}{\sum_{j=0}^{k}\left|c_{j+1: k}\right|^{2}\left|\operatorname{det}\left(C_{j}\right)\right|^{2}}
$$

(Q)MR: HESSENBERG rewritings

Lemma (the minimal norm solution)

The minimal norm solution z_{k} is given by

$$
\begin{align*}
& \frac{\underline{z}_{k}}{\left\|r_{0}\right\|}\left.=\frac{\sum_{j=1}^{k}\left|c_{j+1: k}\right|^{2}\left(\overline{\operatorname{det}\left(C_{j}\right)} c_{1: j-1} \mu^{j}\right.}{o_{k-j}}\right) \tag{52}\\
& \sum_{j=0}^{k}\left|c_{j+1: k}\right|^{2}\left|\operatorname{det}\left(C_{j}\right)\right|^{2} \tag{53}\\
&=(-1)^{k+1} \frac{\left(o_{k} \operatorname{adj}\left(C_{k+1}^{\triangle}\right)\right) \operatorname{adj}\left(C_{k+1}^{H}\right) e_{k+1}}{\sum_{j=0}^{k}\left|c_{j+1: k}\right|^{2}\left|\operatorname{det}\left(C_{j}\right)\right|^{2}} .
\end{align*}
$$

(Q)MR: HESSENBERG rewritings

Lemma ((Q)MR and (Q)OR)

Suppose all leading C_{j} are regular. Then the relation between the k th $(Q) M R$ solution z_{k} and all prior (Q)OR solutions z_{j} is given by

$$
\begin{equation*}
\underline{z}_{k}=\frac{\sum_{j=0}^{k}\left|\operatorname{det}\left(C_{j}\right)\right|^{2}\left|c_{j+1: k}\right|^{2}\binom{z_{j}}{o_{k-j}}}{\sum_{j=0}^{k}\left|\operatorname{det}\left(C_{j}\right)\right|^{2}\left|c_{j+1: k}\right|^{2}}, \tag{54}
\end{equation*}
$$

where z_{0} is the empty matrix with dimensions 0×1.

(Q)MR: HESSENBERG rewritings

Lemma (the quasi-residual)

The quasi-residual \mathfrak{r}_{k} is given by

$$
\begin{equation*}
\frac{\mathfrak{r}_{k}}{\left\|r_{0}\right\|}=c_{1: k}\left(\frac{(-1)^{l-1} \overline{c_{l: k} \operatorname{det}\left(C_{l-1}\right)}}{\sum_{j=0}^{k}\left|c_{j+1: k}\right|^{2}\left|\operatorname{det}\left(C_{j}\right)\right|^{2}}\right)_{l=1}^{k+1} \tag{55}
\end{equation*}
$$

(Q)MR: the residuals, errors and iterates

The (Q)MR residuals, errors and iterates can be composed like their (Q)OR counterparts...

(Q)MR: the residuals, errors and iterates

The (Q)MR residuals, errors and iterates can be composed like their (Q)OR counterparts...

Lacking is the "right" interpretation.

(Q)MR: the residuals, errors and iterates

The (Q)MR residuals, errors and iterates can be composed like their (Q)OR counterparts ...

Lacking is the "right" interpretation.

This is currently work in progress.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3) \ldots and their impacts
- general comments
- finite precision issues
- inexact KryLov methods

general comments

The results ...

general comments

The results ...

- do not prove anything about convergence.

general comments

The results ...

- do not prove anything about convergence.
- do explain certain observations.

general comments

The results ...

- do not prove anything about convergence.
- do explain certain observations.
- help in understanding the intrinsic behavior.

general comments

The results ...

- do not prove anything about convergence.
- do explain certain observations.
- help in understanding the intrinsic behavior.
- are well suited for classroom introduction.

general comments

The results ...

- do not prove anything about convergence.
- do explain certain observations.
- help in understanding the intrinsic behavior.
- are well suited for classroom introduction.
- are useful in connection with results on particular methods.

general comments

The results ...

- do not prove anything about convergence.
- do explain certain observations.
- help in understanding the intrinsic behavior.
- are well suited for classroom introduction.
- are useful in connection with results on particular methods.
- are aiding the design of particular finite precision/inexact methods.

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3) ... and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

descriptions

We know that finite precision CG/Lanczos methods

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of Ritz values resembling (simple) eigenvalues.

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of RITZ values resembling (simple) eigenvalues.
- tend to show a "delay" in the convergence.

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of RITZ values resembling (simple) eigenvalues.
- tend to show a "delay" in the convergence.

We can use the theorem(s)

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of RITZ values resembling (simple) eigenvalues.
- tend to show a "delay" in the convergence.

We can use the theorem(s)

- on the "basis" vectors to explain the occurrence of multiple Ritz values.

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of RITZ values resembling (simple) eigenvalues.
- tend to show a "delay" in the convergence.

We can use the theorem(s)

- on the "basis" vectors to explain the occurrence of multiple Ritz values.
- on the RItZ residuals and vectors to understand the sizes of the Ritz vectors.

descriptions

We know that finite precision CG/Lanczos methods

- compute clusters of RITZ values resembling (simple) eigenvalues.
- tend to show a "delay" in the convergence.

We can use the theorem(s)

- on the "basis" vectors to explain the occurrence of multiple Ritz values.
- on the RITZ residuals and vectors to understand the sizes of the RITZ vectors.
- on the (Q)OR iterates to understand the "delay".

Outline

(1) Getting started

- the name of the game
- a few examples
- basic notations
- Hessenberg structureThe results ...
- "basis" transformations
- eigenvalue problems
- linear systems: (Q)OR
- linear systems: (Q)MR
(3) \ldots and their impacts
- general comments
- finite precision issues
- inexact Krylov methods

choices

In the inexact methods we have to chose the magnitudes of the errors $f_{l} \equiv \Delta_{l} q_{l}$ such that convergence is not spoiled.

choices

In the inexact methods we have to chose the magnitudes of the errors $f_{l} \equiv \Delta_{l} q_{l}$ such that convergence is not spoiled.

Example (inexact (Q)OR, e.g., inexact CG)

We have proven

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}+\sum_{l=1}^{k} z_{\mid k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} \tag{56}
\end{equation*}
$$

choices

In the inexact methods we have to chose the magnitudes of the errors $f_{l} \equiv \Delta_{l} q_{l}$ such that convergence is not spoiled.

Example (inexact (Q)OR, e.g., inexact CG)

We have proven

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}+\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} . \tag{56}
\end{equation*}
$$

Based on the behavior of the solution vectors z_{k} and/or the LAGRANGE interpolations we can allow the perturbation vectors f_{f} to grow (in certain directions).

Summary

Our abstraction

Summary

Our abstraction

- can not be used to directly prove convergence.

Summary

Our abstraction

- can not be used to directly prove convergence.
- does not predict the behavior of the Ritz values.

Summary

Our abstraction

- can not be used to directly prove convergence.
- does not predict the behavior of the Ritz values.
- expresses Rıtz vectors and (Q)OR quantities in terms of the computed Ritz values.

Summary

Our abstraction

- can not be used to directly prove convergence.
- does not predict the behavior of the Ritz values.
- expresses Rıtz vectors and (Q)OR quantities in terms of the computed Ritz values.
- establishes and promotes a new point of view:

Summary

Our abstraction

- can not be used to directly prove convergence.
- does not predict the behavior of the Ritz values.
- expresses Rıtz vectors and (Q)OR quantities in terms of the computed RItz values.
- establishes and promotes a new point of view:
perturbed abstract KRYLov methods as additive overlay of exact abstract KRYLOv methods.

Summary

Our abstraction

- can not be used to directly prove convergence.
- does not predict the behavior of the Ritz values.
- expresses Rıtz vectors and (Q)OR quantities in terms of the computed RItz values.
- establishes and promotes a new point of view:
perturbed abstract KRYLov methods as additive overlay of exact abstract KRYLOV methods.
- (Q)MR case has to be investigated more thoroughly.

that's all . . .

Děkuji.

