Abstract Perturbed Krylov Methods

Jens-Peter M. Zemke
zemke@tu-harburg.de

Institut für Numerische Simulation
Technische Universität Hamburg-Harburg

30.03.2006

Outline

Philosophical considerations

A matrix equation The iterative point of view The polynomial point of view

Outline

Philosophical considerations

A matrix equation The iterative point of view The polynomial point of view

The results on ...
Ritz vectors
QOR iterates
QOR residuals

Outline

Philosophical considerations

A matrix equation The iterative point of view The polynomial point of view

The results on ...
Ritz vectors
QOR iterates QOR residuals

A "numerical" experiment

Eigenvectors using Lanczos' method

A matrix-theoretical beginning

We start with the equation

$$
\begin{aligned}
A Q_{k} \quad & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} .
\end{aligned}
$$

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k} \quad & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as
Krylov decomposition.

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} \underline{C}_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.
Here, we suppose that

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.
Here, we suppose that

$$
A \in \mathbb{C}^{(n, n)} \quad \text { is a general square matrix, }
$$

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.
Here, we suppose that

$$
\begin{array}{rlr}
A & \in \mathbb{C}^{(n, n)} & \text { is a general square matrix, } \\
Q_{k+1}=\left(\begin{array}{ll}
Q_{k} & q_{k+1}
\end{array}\right) & \in \mathbb{C}^{(n, k+1)} & \text { is a matrix of "basis" vectors, }
\end{array}
$$

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.
Here, we suppose that

$$
\begin{array}{rlr}
A & \in \mathbb{C}^{(n, n)} & \text { is a general square matrix, } \\
Q_{k+1}=\left(\begin{array}{cc}
Q_{k} & q_{k+1}
\end{array}\right) \in \mathbb{C}^{(n, k+1)} & \text { is a matrix of "basis" vectors, } \\
C_{k}=\binom{C_{k}}{c_{k+1, k} e_{k}^{T}} & \in \mathbb{C}^{(k+1, k)} & \text { is an extended Hessenberg matrix, }
\end{array}
$$

A matrix-theoretical beginning

We start with the equation

$$
\begin{align*}
A Q_{k}+F_{k} & =Q_{k+1} C_{k} \\
& =Q_{k} C_{k}+q_{k+1} c_{k+1, k} e_{k}^{T} . \tag{1}
\end{align*}
$$

This equation is known as perturbed Krylov decomposition.
Here, we suppose that

$$
\begin{array}{rlr}
A & \in \mathbb{C}^{(n, n)} & \text { is a general square matrix, } \\
Q_{k+1}=\left(\begin{array}{cc}
Q_{k} & q_{k+1}
\end{array}\right) & \in \mathbb{C}^{(n, k+1)} & \text { is a matrix of "basis" vectors, } \\
\underline{C}_{k}=\binom{C_{k}}{c_{k+1, k} e_{k}^{T}} & \in \mathbb{C}^{(k+1, k)} & \text { is an extended Hessenberg matrix, } \\
F_{k} & \in \mathbb{C}^{(n, k)} & \text { is a general perturbation. }
\end{array}
$$

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k \tag{2}
\end{align*}
$$

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

- The perturbations $\left\{f_{l}=F_{k} e_{l}\right\}_{l=1}^{k}$ enter stage after step l.

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

- The perturbations $\left\{f_{l}=F_{k} e_{l}\right\}_{l=1}^{k}$ enter stage after step l.
- Without perturbations, the Hessenberg structure results in polynomial dependence of the basis vectors $\left\{q_{j}=Q_{k} e_{j}\right\}_{j=1}^{k}$ from A.

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

- The perturbations $\left\{f_{l}=F_{k} e_{l}\right\}_{l=1}^{k}$ enter stage after step l.
- Without perturbations, the Hessenberg structure results in polynomial dependence of the basis vectors $\left\{q_{j}=Q_{k} e_{j}\right\}_{j=1}^{k}$ from A.
- We are concerned with quantities from Krylov subspaces. These are represented as linear combinations $Q_{k} z$ for some $z \in \mathbb{C}^{k}$.

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

- The perturbations $\left\{f_{l}=F_{k} e_{l}\right\}_{l=1}^{k}$ enter stage after step l.
- Without perturbations, the Hessenberg structure results in polynomial dependence of the basis vectors $\left\{q_{j}=Q_{k} e_{j}\right\}_{j=1}^{k}$ from A.
- We are concerned with quantities from Krylov subspaces. These are represented as linear combinations $Q_{k} z$ for some $z \in \mathbb{C}^{k}$.
Idea:

The dependence on the iteration

We investigate this matrix equation iteratively:

$$
\begin{align*}
A Q_{k} e_{l}+F_{k} e_{l} & =Q_{k+1} C_{k} e_{l} \\
& =Q_{k} C_{k} e_{l}+q_{k+1} c_{k+1, k} \delta_{k l}, \quad \forall l \leqslant k . \tag{2}
\end{align*}
$$

Observations:

- The perturbations $\left\{f_{l}=F_{k} e_{l}\right\}_{l=1}^{k}$ enter stage after step l.
- Without perturbations, the Hessenberg structure results in polynomial dependence of the basis vectors $\left\{q_{j}=Q_{k} e_{j}\right\}_{j=1}^{k}$ from A.
- We are concerned with quantities from Krylov subspaces. These are represented as linear combinations $Q_{k} z$ for some $z \in \mathbb{C}^{k}$.
Idea:
- Interpret perturbed Krylov methods as overlay of several polynomial methods.

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [$Z, 2005$] we considered the following five types of polynomials:

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [$Z, 2005$] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [$Z, 2005$] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},
- adjugate polynomials \mathcal{A}_{k},

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [$Z, 2005$] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},
- adjugate polynomials \mathcal{A}_{k},
- Lagrange polynomials $\mathcal{L}_{k}\left[z^{-1}\right]$ and $\underline{\mathcal{L}}_{k}\left[z^{-1}\right]$,

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [Z, 2005] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},
- adjugate polynomials \mathcal{A}_{k},
- Lagrange polynomials $\mathcal{L}_{k}\left[z^{-1}\right]$ and $\mathcal{L}_{k}\left[z^{-1}\right]$,
- Lagrange polynomials $\mathcal{L}_{k}\left[1-\delta_{z 0}\right]$ and $\underline{\mathcal{L}}_{k}\left[1-\delta_{z 0}\right]$,

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [Z, 2005] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},
- adjugate polynomials \mathcal{A}_{k},
- Lagrange polynomials $\mathcal{L}_{k}\left[z^{-1}\right]$ and $\mathcal{L}_{k}\left[z^{-1}\right]$,
- Lagrange polynomials $\mathcal{L}_{k}\left[1-\delta_{z 0}\right]$ and $\underline{\mathcal{L}}_{k}\left[1-\delta_{z 0}\right]$,
- residual polynomials \mathcal{R}_{k} and $\underline{\mathcal{R}}_{k}$.

Introducing: polynomials

We study polynomials based on the computed C_{k} or \underline{C}_{k} with certain useful properties.

These polynomials are named by their property.
In [$Z, 2005$] we considered the following five types of polynomials:

- basis polynomials \mathcal{B}_{k},
- adjugate polynomials \mathcal{A}_{k},
- Lagrange polynomials $\mathcal{L}_{k}\left[z^{-1}\right]$ and $\underline{\mathcal{L}}_{k}\left[z^{-1}\right]$,
- Lagrange polynomials $\mathcal{L}_{k}\left[1-\delta_{z 0}\right]$ and $\underline{\mathcal{L}}_{k}\left[1-\delta_{z 0}\right]$,
- residual polynomials \mathcal{R}_{k} and $\underline{\mathcal{R}}_{k}$.

We restrict ourselves to $\mathcal{A}_{k}, \mathcal{L}_{k}\left[z^{-1}\right], \mathcal{L}_{k}\left[1-\delta_{z 0}\right]$ and \mathcal{R}_{k}.

Adjugate polynomials

First we consider certain bivariate polynomials - the adjugate polynomials.

Adjugate polynomials

First we consider certain bivariate polynomials - the adjugate polynomials.

- Property:

$$
\mathcal{A}_{k}\left(z, C_{k}\right)=\operatorname{adj}\left(z I_{k}-C_{k}\right) .
$$

Adjugate polynomials

First we consider certain bivariate polynomials - the adjugate polynomials.

- Property:

$$
\mathcal{A}_{k}\left(z, C_{k}\right)=\operatorname{adj}\left(z I_{k}-C_{k}\right) .
$$

- This implies [Z, 2006]

$$
\mathcal{A}_{k}\left(\theta_{j}, C_{k}\right) e_{1}=s_{j}, \quad C_{k} s_{j}=\theta_{j} s_{j}
$$

for all eigenvalues (Ritz values) θ_{j} of C_{k}.

Adjugate polynomials

First we consider certain bivariate polynomials - the adjugate polynomials.

- Property:

$$
\mathcal{A}_{k}\left(z, C_{k}\right)=\operatorname{adj}\left(z I_{k}-C_{k}\right) .
$$

- This implies [Z, 2006]

$$
\mathcal{A}_{k}\left(\theta_{j}, C_{k}\right) e_{1}=s_{j}, \quad C_{k} s_{j}=\theta_{j} s_{j}
$$

for all eigenvalues (Ritz values) θ_{j} of C_{k}.

- Definition:

$$
\mathcal{A}_{k}(\theta, z) \equiv \frac{\chi_{k}(\theta)-\chi_{k}(z)}{\theta-z} .
$$

Adjugate polynomials

First we consider certain bivariate polynomials - the adjugate polynomials.

- Property:

$$
\mathcal{A}_{k}\left(z, C_{k}\right)=\operatorname{adj}\left(z I_{k}-C_{k}\right) .
$$

- This implies [Z, 2006]

$$
\mathcal{A}_{k}\left(\theta_{j}, C_{k}\right) e_{1}=s_{j}, \quad C_{k} s_{j}=\theta_{j} s_{j}
$$

for all eigenvalues (Ritz values) θ_{j} of C_{k}.

- Definition:

$$
\mathcal{A}_{k}(\theta, z) \equiv \frac{\chi_{k}(\theta)-\chi_{k}(z)}{\theta-z} .
$$

- Generalization:

$$
\mathcal{A}_{l+1: k}(\theta, z) \equiv \frac{\chi_{l+1: k}(\theta)-\chi_{l+1: k}(z)}{\theta-z}, \quad l=0,1, \ldots, k
$$

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let $C_{k} S_{\theta}=S_{\theta} J_{\theta}$ (for a certain S_{θ}). Let the Ritz matrix be given by $Y_{\theta} \equiv Q_{k} S_{\theta}$. Then

$$
\operatorname{vec}\left(Y_{\theta}\right)=\left(\begin{array}{c}
\mathcal{A}_{k}(\theta, A) \tag{3}\\
\mathcal{A}_{k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) q_{1}+\sum_{l=1}^{k} c_{1: l-1}\left(\begin{array}{c}
\mathcal{A}_{l+1: k}(\theta, A) \\
\mathcal{A}_{l+1: k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{l+1: k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) f_{l,}
$$

with derivation with respect to the shift θ.

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let $C_{k} S_{\theta}=S_{\theta} J_{\theta}$ (for a certain S_{θ}). Let the Ritz matrix be given by $Y_{\theta} \equiv Q_{k} S_{\theta}$. Then

$$
\operatorname{vec}\left(Y_{\theta}\right)=\left(\begin{array}{c}
\mathcal{A}_{k}(\theta, A) \tag{3}\\
\mathcal{A}_{k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) q_{1}+\sum_{l=1}^{k} c_{1: l-1}\left(\begin{array}{c}
\mathcal{A}_{l+1: k}(\theta, A) \\
\mathcal{A}_{l+1: k}^{\prime}(\theta, A) \\
\vdots \\
\frac{\mathcal{A}_{l+1: k}^{(\alpha-1)}(\theta, A)}{(\alpha-1)!}
\end{array}\right) f_{l,}
$$

with derivation with respect to the shift θ.

We might scale differently such that (here only for approximate eigenvectors)

$$
y=\frac{\mathcal{A}_{k}(\theta, A)}{\prod_{\ell=1}^{k-1} c_{\ell+1, \ell}} q_{1}+\sum_{l=1}^{k} \frac{\mathcal{A}_{l+1: k}(\theta, A)}{\prod_{\ell=l+1}^{k-1} c_{\ell+1, \ell}} \frac{f_{l}}{c_{l+1, l}}
$$

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by $\mathcal{L}_{k}\left[z^{-1}\right](z)$.

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by $\mathcal{L}_{k}\left[z^{-1}\right](z)$.

- Property:

$$
\mathcal{L}_{k}\left[z^{-1}\right]\left(C_{k}\right)=C_{k}^{-1} .
$$

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by $\mathcal{L}_{k}\left[z^{-1}\right](z)$.

- Property:

$$
\mathcal{L}_{k}\left[z^{-1}\right]\left(C_{k}\right)=C_{k}^{-1} .
$$

- Definition:

$$
\mathcal{L}_{k}\left[z^{-1}\right](z) \equiv \frac{\chi_{k}(0)-\chi_{k}(z)}{z \chi_{k}(0)}=-\frac{\mathcal{A}_{k}(0, z)}{\chi_{k}(0)} .
$$

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by $\mathcal{L}_{k}\left[z^{-1}\right](z)$.

- Property:

$$
\mathcal{L}_{k}\left[z^{-1}\right]\left(C_{k}\right)=C_{k}^{-1} .
$$

- Definition:

$$
\mathcal{L}_{k}\left[z^{-1}\right](z) \equiv \frac{\chi_{k}(0)-\chi_{k}(z)}{z \chi_{k}(0)}=-\frac{\mathcal{A}_{k}(0, z)}{\chi_{k}(0)} .
$$

- Generalization:

$$
\mathcal{L}_{l+1: k}\left[z^{-1}\right](z) \equiv \frac{\chi_{l+1: k}(0)-\chi_{l+1: k}(z)}{z \chi_{l+1: k}(0)}=-\frac{\mathcal{A}_{l+1: k}(0, z)}{\chi_{l+1: k}(0)}, \quad l=0,1, \ldots, k
$$

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all $C_{l+1: k}$ are regular. Define $z_{k} \equiv C_{k}^{-1} e_{1}\left\|r_{0}\right\|$ and $x_{k} \equiv Q_{k} z_{k}$. Then

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} \tag{4}
\end{equation*}
$$

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all $C_{l+1: k}$ are regular. Define $z_{k} \equiv C_{k}^{-1} e_{1}\left\|r_{0}\right\|$ and $x_{k} \equiv Q_{k} z_{k}$. Then

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} \tag{4}
\end{equation*}
$$

Really sloppily speaking, in case of convergence,

$$
x_{\infty}=A^{-1} r_{0}+A^{-1} F_{\infty} z_{\infty}=A^{-1}\left(r_{0}+F_{\infty} z_{\infty}\right)
$$

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all $C_{l+1: k}$ are regular. Define $z_{k} \equiv C_{k}^{-1} e_{1}\left\|r_{0}\right\|$ and $x_{k} \equiv Q_{k} z_{k}$. Then

$$
\begin{equation*}
x_{k}=\mathcal{L}_{k}\left[z^{-1}\right](A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}\left[z^{-1}\right](A) f_{l} \tag{4}
\end{equation*}
$$

Really sloppily speaking, in case of convergence,

$$
x_{\infty}=A^{-1} r_{0}+A^{-1} F_{\infty} z_{\infty}=A^{-1}\left(r_{0}+F_{\infty} z_{\infty}\right) .
$$

Proving convergence is the hard task.

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by $\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)$.

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by $\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)$.

- Properties:

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right]\left(C_{k}\right)=I_{k}, \quad \mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](0)=0 .
$$

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by $\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)$.

- Properties:

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right]\left(C_{k}\right)=I_{k}, \quad \mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](0)=0 .
$$

- Definition:

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z) \equiv \frac{\chi_{k}(0)-\chi_{k}(z)}{\chi_{k}(0)}=\mathcal{L}_{k}\left[z^{-1}\right](z) z .
$$

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by $\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)$.

- Properties:

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right]\left(C_{k}\right)=I_{k}, \quad \mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](0)=0 .
$$

- Definition:

$$
\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z) \equiv \frac{\chi_{k}(0)-\chi_{k}(z)}{\chi_{k}(0)}=\mathcal{L}_{k}\left[z^{-1}\right](z) z .
$$

- Generalization:

$$
\mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](z) \equiv \frac{\chi_{l+1: k}(0)-\chi_{l+1: k}(z)}{\chi_{l+1: k}(0)}=\mathcal{L}_{l+1: k}\left[z^{-1}\right](z) z . \quad l=0,1, \ldots, k .
$$

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by $\mathcal{R}_{k}(z)$.

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by $\mathcal{R}_{k}(z)$.

- Properties:

$$
\mathcal{R}_{k}\left(C_{k}\right)=O_{k}, \quad \mathcal{R}_{k}(0)=1 .
$$

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by $\mathcal{R}_{k}(z)$.

- Properties:

$$
\mathcal{R}_{k}\left(C_{k}\right)=O_{k}, \quad \mathcal{R}_{k}(0)=1 .
$$

- Definition:

$$
\mathcal{R}_{k}(z) \equiv \frac{\chi_{k}(z)}{\chi_{k}(0)}=1-\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)=\operatorname{det}\left(I_{k}-z C_{k}^{-1}\right) .
$$

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by $\mathcal{R}_{k}(z)$.

- Properties:

$$
\mathcal{R}_{k}\left(C_{k}\right)=O_{k}, \quad \mathcal{R}_{k}(0)=1 .
$$

- Definition:

$$
\mathcal{R}_{k}(z) \equiv \frac{\chi_{k}(z)}{\chi_{k}(0)}=1-\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)=\operatorname{det}\left(I_{k}-z C_{k}^{-1}\right) .
$$

- Generalization:

$$
\mathcal{R}_{l+1: k}(z) \equiv \frac{\chi_{l+1: k}(z)}{\chi_{l+1: k}(0)}=1-\mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](z) . \quad l=0,1, \ldots, k .
$$

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by $\mathcal{R}_{k}(z)$.

- Properties:

$$
\mathcal{R}_{k}\left(C_{k}\right)=O_{k}, \quad \mathcal{R}_{k}(0)=1 .
$$

- Definition:

$$
\mathcal{R}_{k}(z) \equiv \frac{\chi_{k}(z)}{\chi_{k}(0)}=1-\mathcal{L}_{k}^{0}\left[1-\delta_{z 0}\right](z)=\operatorname{det}\left(I_{k}-z C_{k}^{-1}\right) .
$$

- Generalization:

$$
\mathcal{R}_{l+1: k}(z) \equiv \frac{\chi_{l+1: k}(z)}{\chi_{l+1: k}(0)}=1-\mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](z) . \quad l=0,1, \ldots, k .
$$

Two types of polynomials \Rightarrow two expressions for the QOR residuals.

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose $q_{1}=r_{0} /\left\|r_{0}\right\|$ and let all $C_{l+1: k}$ be invertible. Let x_{k} denote the QOR iterate and $r_{k}=r_{0}-A x_{k}$ the corresponding residual.
Then

$$
\begin{align*}
r_{k} & =\mathcal{R}_{k}(A) r_{0}+\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) f_{l} \tag{5}\\
& =\mathcal{R}_{k}(A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{R}_{l+1: k}(A) f_{l}+F_{k} z_{k} .
\end{align*}
$$

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose $q_{1}=r_{0} /\left\|r_{0}\right\|$ and let all $C_{l+1: k}$ be invertible. Let x_{k} denote the QOR iterate and $r_{k}=r_{0}-A x_{k}$ the corresponding residual.
Then

$$
\begin{align*}
r_{k} & =\mathcal{R}_{k}(A) r_{0}+\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) f_{l} \tag{5}\\
& =\mathcal{R}_{k}(A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{R}_{l+1: k}(A) f_{l}+F_{k} z_{k} .
\end{align*}
$$

First expression: related to perturbation amplification.

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose $q_{1}=r_{0} /\left\|r_{0}\right\|$ and let all $C_{l+1: k}$ be invertible. Let x_{k} denote the QOR iterate and $r_{k}=r_{0}-A x_{k}$ the corresponding residual.
Then

$$
\begin{align*}
r_{k} & =\mathcal{R}_{k}(A) r_{0}+\sum_{l=1}^{k} z_{l k} \mathcal{L}_{l+1: k}^{0}\left[1-\delta_{z 0}\right](A) f_{l} \tag{5}\\
& =\mathcal{R}_{k}(A) r_{0}-\sum_{l=1}^{k} z_{l k} \mathcal{R}_{l+1: k}(A) f_{l}+F_{k} z_{k} .
\end{align*}
$$

First expression: related to perturbation amplification.
Second expression: related to the attainable accuracy.

An example: Lanczos' method

We used the diagonal matrix

$$
A=\operatorname{diag}([\operatorname{linspace}(0,1,50), 3])
$$

and the starting vector

$$
e=\operatorname{ones}(51,1)
$$

in an implementation of Lanczos' method in MATLAB on a PC conforming to ANSI/IEEE 754 with machine precision eps (1) $=2^{-52} \approx 2.2204 \cdot 10^{-16}$.

An example: Lanczos' method

We used the diagonal matrix

$$
A=\operatorname{diag}([\operatorname{linspace}(0,1,50), 3])
$$

and the starting vector

$$
e=\operatorname{ones}(51,1)
$$

in an implementation of Lanczos' method in MATLAB on a PC conforming to ANSI/IEEE 754 with machine precision eps (1) $=2^{-52} \approx 2.2204 \cdot 10^{-16}$.

At step 10 the first Ritz value has converged (up to machine precision) to the eigenvalue 3, at step 27 the second one has converged.

An example: Lanczos' method

We used the diagonal matrix

$$
A=\operatorname{diag}([\operatorname{linspace}(0,1,50), 3])
$$

and the starting vector

$$
e=\operatorname{ones}(51,1)
$$

in an implementation of Lanczos' method in MATLAB on a PC conforming to ANSI/IEEE 754 with machine precision eps (1) $=2^{-52} \approx 2.2204 \cdot 10^{-16}$.

At step 10 the first Ritz value has converged (up to machine precision) to the eigenvalue 3, at step 27 the second one has converged.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK's routine DSTEGR, since MATLAB's eig (using LAPACK's DSYEV, i.e., the QR algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.

An example: Lanczos' method

We used the diagonal matrix

$$
A=\operatorname{diag}([\operatorname{linspace}(0,1,50), 3])
$$

and the starting vector

$$
e=\operatorname{ones}(51,1)
$$

in an implementation of Lanczos' method in MATLAB on a PC conforming to ANSI/IEEE 754 with machine precision eps (1) $=2^{-52} \approx 2.2204 \cdot 10^{-16}$.

At step 10 the first Ritz value has converged (up to machine precision) to the eigenvalue 3, at step 27 the second one has converged.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK's routine DSTEGR, since MATLAB's eig (using LAPACK's DSYEV, i.e., the QR algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.

Additionally, we heavily used the symbolic toolbox, i.e., MAPLE.

An example: Lanczos' method

An example: Lanczos' method

© E. Stiefel
Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme
Commentarii Mathematici Helvetici 29, 157-179, 1955,
http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib. cgi?PPN358147735_0029.
Jens-Peter M. Zemke
Hessenberg eigenvalue-eigenmatrix relations.
Linear Algebra and Its Applications, 414/2-3, pp. 589-606, 2006,
http://dx.doi.org/10.1016/j.laa.2005.11.002.
Jens-Peter M. Zemke
Abstract perturbed Krylov methods.
Bericht 89, Institut für Numerische Simulation, TUHH, 2005,
http://doku.b.tu-harburg.de/volltexte/2006/158/.

