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Rank-One Updates

Sherman-Morrison(-Woodbury)

Theorem (Sherman-Morrison-Woodbury)

Let A ∈ Rn×n and U, V ∈ Rn×k be given. Suppose that A and A + UVT are
invertible. Then

(A + UVT)−1 = A−1 − A−1U(I + VTA−1U)−1VTA−1. (1)

Here we only need the older result for rank-one updates:

Corollary (Sherman-Morrison)

Suppose that k = 1, u = U and v = V. Then

(A + uvT)−1 = A−1 − 1
1 + vTA−1u

A−1uvTA−1. (2)
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Rank-One Updates Updates for GMRES

Two special rank-one updates; the first update

We are interested in approximate solutions to Ax = b from the KRYLOV space

K(A, b) = span{b, Ab, . . . , Ak−1b}.

Suppose that u = b and denote v = y. Let Ã = A− byT . Then

x =

A−1

b

= (Ã + byT)−1

b

= Ã−1

b

− 1
1 + yT Ã−1b

Ã−1byT Ã−1

b

(3)

≈ x̃k −
1

1 + yT x̃k
x̃kyT x̃k

=
x̃k

1 + yT x̃k
= x̄k. (4)

We use approximations x̃k to x̃ = Ã−1b from the KRYLOV space K̃ = K(Ã, b),

x̃k ≈ Ã−1b. (5)

We get approximations x̄k to x = A−1b from the KRYLOV space K̃ = K(Ã, b).
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TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 5 / 38



Rank-One Updates Updates for GMRES

Two special rank-one updates; the first update

We are interested in approximate solutions to Ax = b from the KRYLOV space

K(A, b) = span{b, Ab, . . . , Ak−1b}.

Suppose that u = b and denote v = y. Let Ã = A− byT . Then
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1 + yT Ã−1b
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1 + yT Ã−1b
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Ã−1byT Ã−1b (3)
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1 + yT Ã−1b
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x̃k ≈ Ã−1b. (5)

We get approximations x̄k to x = A−1b from the KRYLOV space K̃ = K(Ã, b).
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Rank-One Updates Updates for GMRES

Two special rank-one updates; the second update

In the first update, x̄k = x̃k/(1 + yT x̃k). What if yT x̃k ≈ −1?

Suppose that u = Ad and denote v = y. Let Ã = A− AdyT . Let γ = yTd

6= 1.

Then
Ãd = (A− AdyT)d = (1− γ)Ad. (6)

Furthermore, since Ã−1Ad = d/(1− γ),

x =

A−1

b

= (Ã + AdyT)−1

b

= Ã−1

b

− 1
1 + yT Ã−1Ad

Ã−1AdyT Ã−1

b

= Ã−1

b

− dyT Ã−1

b

≈ x̃k − yT x̃kd = x̄k.

(7)

We get approximations x̄k to x = A−1b from the modified space K̃ ∪ {d}.

Corresponds to preconditioning: AMx̃ = b, x̄k = Mx̃k with M = I − dyT .
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= (Ã + AdyT)−1

b

= Ã−1
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Ãd = (A− AdyT)d = (1− γ)Ad. (6)

Furthermore, since Ã−1Ad = d/(1− γ),
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A−1b = (Ã + AdyT)−1b = Ã−1b− 1
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= Ã−1b− dyT Ã−1b ≈ x̃k − yT x̃kd

= x̄k.

(7)

We get approximations x̄k to x = A−1b from the modified space K̃ ∪ {d}.

Corresponds to preconditioning: AMx̃ = b, x̄k = Mx̃k with M = I − dyT .

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 6 / 38



Rank-One Updates Updates for GMRES

Two special rank-one updates; the second update

In the first update, x̄k = x̃k/(1 + yT x̃k). What if yT x̃k ≈ −1?

Suppose that u = Ad and denote v = y. Let Ã = A− AdyT . Let γ = yTd 6= 1.
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Rank-One Updates Updates for GMRES

Arnoldi decompositions and Krylov spaces

We consider the first update Ã = A− byT . What happens in the Arnoldi
algorithm?

Theorem (Arnoldi decompositions of A and Ã)

The Arnoldi decompositions of A and Ã are given by

AQk = Qk+1Hk, ÃQk = Qk+1H̃k, (8)

where H̃k = Hk − e1zT with z = ‖b‖QT
k y.

Thus, K̃ ≡ K(Ã, b) = K.

Proof.

ÃQk

= (A− byT)Qk = Qk+1Hk − byTQk = Qk+1(Hk − e1zT)

= Qk+1H̃k.

(9)
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Proof.
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AQk = Qk+1Hk, ÃQk = Qk+1H̃k, (8)

where H̃k = Hk − e1zT with z = ‖b‖QT
k y.

Thus, K̃ ≡ K(Ã, b) = K.
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Rank-One Updates Updates for GMRES

Options for the first update

We could use it in:

(full) GMRES: this does not help, since K̃ = K.
restarted GMRES: to try to overcome stagnation.

non-optimal methods: e.g. BiCG, QMR.

We restrict ourselves to the second choice.
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Rank-One Updates Updates for GMRES

How to choose y?

Any idea? And now for something completely different . . .
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Rank-One Updates Convergence Curves

Outline
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Rank-One Updates Convergence Curves

Arioli, Greenbaum, Pták, Strakoš

Theorem (“Any convergence curve is possible”)

GMRES on Â with right hand side b with zero initial guess gives

‖r̂k‖ = fk, 0 6 k 6 n− 1, (10)

if and only if
Â = WRH̃WT , (11)

R arbitrary nonsingular upper triangular, W orthogonal,

WTb =


±

√
f 2
0 − f 2

1
...

±
√

f 2
n−1 − f 2

n

 H̃ =


0 · · · 0 1/(bTwn)
1 0 −(bTw1)/(bTw1)

. . .
...

...
0 1 −(bTwn−1)/(bTw1)

 (12)

where fn = 0.
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Rank-One Updates Convergence Curves

Jurjen Duintjer Tebbens

In Jurjen’s setting we have a family of matrices Ã = A− byT , y ∈ Rn.

Jurjen gives three proofs that also in his framework any convergence curve is
possible.

The first proof is based on αj = yTAjb: this theoretical proof works also for
FOM.

The second proof is based on αj = yTqj: this proof is used in the
implementation.

The third proof is based on αj = yTwj: this proof is for comparison and
less well known implementations.

We sketch the second proof based on the coefficients of y in terms of the
Arnoldi basis {qj}k

j=1.
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Rank-One Updates Convergence Curves

Jurjen’s second proof

We need the QR decomposition of H̃k based on Givens rotations.

Let the
Givens rotations be given by

G̃i =


Ii−2 0 · · · 0

0 c̃i−1 s̃i−1
...

... −s̃i−1 c̃i−1 0

0 · · · 0 In−i

 (13)

The residual norms are given in terms of sines of angles (cf. Saad,
Eiermann/Ernst):

‖r̃k‖ = |̃sk · · · · · s̃1|‖b‖. (14)

This implies

|̃sk| =
‖r̃k‖
‖r̃k−1‖

=
fk

fk−1
. (15)
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Rank-One Updates Convergence Curves

Jurjen’s second proof, cont’d

Jurjen shows by an induction argument that

s̃k =
h̃2

k+1,k

h̃2
k+1,k + (

∑k
j=1 c̃jh̃jk

∏k−1
i=j (−s̃i))2

. (16)

Since

H̃k = Hk + e1zT

,

s̃k =
h2

k+1,k

h2
k+1,k + (h̃1k

∏k−1
i=1 (−s̃i) +

∑k
j=2 c̃jhjk

∏k−1
i=j (−s̃i))2

. (17)

We know that h̃1k = h1k + zk = h1k + ‖b‖yTqk ≡ h1k + ‖b‖αk.
Thus, |̃sk| = fk/fk−1 when αk is choosen as

α±k =
±

√
1−(fk/fk−1)2

(fk/fk−1)2 hk+1,k −
∑k

j=1 c̃jhjk
∏k−1

i=j (−s̃j)

−‖b‖
∏k−1

i=1 (−s̃j)
. (18)
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Rank-One Updates Convergence Curves

Drawbacks and options

I The technique of prescribing residual norms only works in the first cycle
with zero x0.

I It is also possible to locally minimize the sines.
I Local minimization of the sines is possible with non-zero x0.
I The dependence on y in later cycles is non-linear.
I Utilization of new y in later cycles might enhance the convergence

beyond GMRES.
I In theory it is possible to use a global minimization.
I What about practicability?
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Rank-One Updates Distribution of Eigenvalues

Outline

Rank-One Updates
Updates for GMRES
Convergence Curves
Distribution of Eigenvalues

Residual Norms
Prescribed Residual Norms
Minimized Residual Norms
Preconditioning

Eigenvalues
Two Deflations

Theoretical Properties and Questions
Doubling Space Dimension

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 16 / 38



Rank-One Updates Distribution of Eigenvalues

“Any eigenvalue distribution is possible”

Theorem (“Any eigenvalue distribution is possible”)

Let the grade of b be n. Let Λ̃ = {λ̃j}n
j=1, where multiple λ̃j are allowed.

Then a vector y exists such that Λ̃ is the spectrum of Ã = A− byT .

Proof (part I).
n∏

j=1

(z− λ̃j) =
n∑

j=0

αjz j, αn = 1. (19)

We intend to show that y ∈ Cn and regular X ∈ Cn×n exists with

(A− byT)X = X


0 · · · 0 −α0
1 0 · · · −α1
...

. . . . . .
...

0 · · · 1 −αn−1

 . (20)

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 17 / 38



Rank-One Updates Distribution of Eigenvalues

“Any eigenvalue distribution is possible”

Theorem (“Any eigenvalue distribution is possible”)

Let the grade of b be n. Let Λ̃ = {λ̃j}n
j=1, where multiple λ̃j are allowed.

Then a vector y exists such that Λ̃ is the spectrum of Ã = A− byT .
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Rank-One Updates Distribution of Eigenvalues

Jurjen’s proof

Proof (part II).

We construct X = (x1, . . . , xn) with x1 = b.

Then

x2 = (A− byT)x1

= Ab− byTb = Ab− bγ1

(21)

with γ1 = yTb = yTx1.

The other columns are given by

x3 = (A− byT)2x1 = Ax2 − byTx2 = A2b− Abγ1 − bγ2,

xk = (A− byT)kx1 = (A− byT)xk−1

= Ak−1b− Ak−2bγ1 − · · · − Abγk−2 − bγk−1

= Ak−1b−
k−1∑
j=1

Ak−1−jbγj,

(22)

where γj = yTxj.
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Rank-One Updates Distribution of Eigenvalues

Jurjen’s proof

Proof (part III).

We look at the right hand side of (20) times en,

i.e.,

(A− byT)Xen = X


0 · · · 0 −α0
1 0 · · · −α1
...

. . . . . .
...

0 · · · 1 −αn−1

 en

=
n∑

j=1

−αj−1xj =
n∑

j=1

− αj−1(Aj−1b−
j−1∑
`=1

Aj−1−`bγ`).

(23)

The left hand side gives with Anb =
∑n−1

j=0 βj Ajb

(A− byT)xn = Anb−
n∑

j=1

An−jbγj

=
n−1∑
j=0

(βj − γn−j)Ajb.

(24)
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Rank-One Updates Distribution of Eigenvalues

Jurjen’s proof

Proof (part IV, final part).

Thus, we have to solve the linear system of equations
1 αn−1 · · · α1

0 1
. . .

...
...

. . . . . . αn−1
0 · · · 0 1




γn
...
γ2
γ1

 =


α0 + β0
α1 + β1

...
αn−1 + βn−1

 (25)

for γ. The vector y is given by X−Tγ.

Remark
The vector y is given by y = X(y)−Tγ(y).

Reading backwards, we can define
γ = γ(α, β) independent of y. But what about X? The columns of X satisfy
xj = xj(A, b, γ) and by inspection X is regular. Thus, y is well-defined.
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Residual Norms Prescribed Residual Norms

SHERMOR(m, k)

The algorithm sketched in prescribing residual norms is denoted by
SHERMOR(m, k), where

I m is the restart parameter, and
I k indicates how many residual norms are prescribed.

The algorithm proceeds as follows:

I One cycle of ordinary GMRES(m) is used to compute an Arnoldi
decomposition AQm = Qm+1Hm.

I A vector y based on the {αj = yTqj}k
j=1 is constructed by y = Qkα1:k.

I GMRES(m) is used on Ã = A− byT and the result is backtransformed,

rm =
r̃m

1 + yT x̃m
, xm =

x̃m

1 + yT x̃m
. (26)
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I GMRES(m) is used on Ã = A− byT and the result is backtransformed,

rm =
r̃m

1 + yT x̃m
, xm =

x̃m

1 + yT x̃m
. (26)

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 22 / 38



Residual Norms Prescribed Residual Norms

SHERMOR(30, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

SHERMOR(30,10) vs. GMRES(30) vs. GMRES

number of restarts of length 30

|| 
r k ||

 / 
|| 

r 0 ||
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Residual Norms Prescribed Residual Norms

SHERMOR(30, 10) – a closer view

 0  2  4  6  8 10 12
10

−2

10
−1

10
0

10
1

10
2

SHERMOR(30,10) vs. GMRES(30) vs. GMRES

number of matrix−vector multiplies

|| 
r k ||

 / 
|| 

r 0 ||

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 24 / 38



Residual Norms Prescribed Residual Norms

How to choose the residual norms?

Jurjen shows that the behaviour is sensitive to the right choice.

He proves that if the prescribed slope of convergence is to steep, the method
fails when the backtransformation takes place since then yTxm ≈ −1.
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Residual Norms Minimized Residual Norms

Locally minimizing sines

Jurjen uses the knowledge used in SHERMOR(m, k) to minimize locally the
sines to obtain an algorithm named LOCAL(m, k).

This algorithm also works for nonzero guess x0.

He shows that the local minimization corresponds to the setting

yT (x0, q̃1, . . . , q̃k) =
1

‖b‖2 bT (−r0, Aq̃1, . . . , Aq̃k) . (27)

This is an orthogonalization against b, namely, the basis is constructed by
setting rmod

0 = r0 − bTr0b/‖b‖2 and iterating

vk = Aqk −
k∑

j=1

hjkqj −
bTAqk

‖b‖2 b, (28)

where hjk = qT
j Aqk. The next basis vector is given by qk+1 = vk/‖vk‖.
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Residual Norms Preconditioning

Using the other update

The algorithm based on the preconditioning rank-one update Ã = A− AdyT is
denoted by PSHERMOR(m, k).

Jurjen shows that the approach based on minimization of sines is equivalent
to solving a small quadratic rational equation for αk and choosing the root
according to the sign of a 2× 2 determinant.

Jurjen uses in the implementation the setting γ = yTd = 0 and d = x0, such
that in case of convergence Ad → b and we end up with the first update.

The quantity m is from GMRES(m), the k stands for k 6 m local minimizations.
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Eigenvalues Two Deflations

DEFSHERMOR(m)

We are interested in deflating the smallest Ritz value(s). When the smallest
Ritz value θk is simple and the left Ritz pair (θk, šk) is real, this is achieved by

z = (θk − θ̃k)
šk

š1k
= (θk − θ̃k)ν̌(θk). (29)

šT
k (Hk − e1zT) = θk šT

k − (θk − θ̃k)šT
k e1

šT
k

š1k

= θk šT
k − (θk − θ̃k)š1k

šT
k

š1k
= θ̃k šT

k

(30)

(Hk − e1zT)sj = θjsj + sj−1 ∀j 6= k. (31)

Jurjen gives another, more complicated proof that works for all Ritz values.
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Eigenvalues Two Deflations

A new deflation inside DEFSHERMOR(m, k)

shift = [2 2 0.01]; % these are Jurjen’s shifts .. how to choose?
zzz = zeros(RESTART,1); % initializing zzz
eone = eye(RESTART,1); % the first standard unit vector

%
[W,D] = eig((He(1:RESTART,1:RESTART)-eone*zzz’)’);
[theta,index] = sort(diag(D));
OldEigenvalues = theta
W = W(:,index);

%
ell = 1;

%
while ell < 4

if isreal(theta(1))
zzz = zzz+(theta(1)-shift(ell))*W(:,1)/W(1,1);
ell = ell+1;

else
disp(’not yet implemented’);
zzz = zzz+rand(RESTART,1);

end
%

[W,D] = eig((He(1:RESTART,1:RESTART)-eone*zzz’)’);
[theta,index] = sort(diag(D));
ChangedEigenvalues = theta
W = W(:,index);

end
%

NewEigenvalues = theta
yy = V*zzz/nnr0;
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Eigenvalues Two Deflations

Jurjen vs. Jens :-)

The last proof can be used to modify one eigenvalue after the other and gives
a computational feasible method, at least for a few eigenvalues we want to
change.

It would be interesting to investigate the changes in the left and right
eigenvectors in the sketched algorithm. I have already partially investigated
this . . .

These eigenvector changes might give a computational feasible way to
prescribe stably a change in a couple of eigenvalues.

At least, the changes are trivially restricted to (all) the left eigenvectors and
only the right eigenvectors corresponding to the changed eigenvalues.

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 34 / 38



Eigenvalues Two Deflations

Jurjen vs. Jens :-)

The last proof can be used to modify one eigenvalue after the other and gives
a computational feasible method, at least for a few eigenvalues we want to
change.

It would be interesting to investigate the changes in the left and right
eigenvectors in the sketched algorithm. I have already partially investigated
this . . .

These eigenvector changes might give a computational feasible way to
prescribe stably a change in a couple of eigenvalues.

At least, the changes are trivially restricted to (all) the left eigenvectors and
only the right eigenvectors corresponding to the changed eigenvalues.

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 34 / 38



Eigenvalues Two Deflations

Jurjen vs. Jens :-)

The last proof can be used to modify one eigenvalue after the other and gives
a computational feasible method, at least for a few eigenvalues we want to
change.

It would be interesting to investigate the changes in the left and right
eigenvectors in the sketched algorithm. I have already partially investigated
this . . .

These eigenvector changes might give a computational feasible way to
prescribe stably a change in a couple of eigenvalues.

At least, the changes are trivially restricted to (all) the left eigenvectors and
only the right eigenvectors corresponding to the changed eigenvalues.

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 34 / 38



Eigenvalues Two Deflations

Jurjen vs. Jens :-)

The last proof can be used to modify one eigenvalue after the other and gives
a computational feasible method, at least for a few eigenvalues we want to
change.

It would be interesting to investigate the changes in the left and right
eigenvectors in the sketched algorithm. I have already partially investigated
this . . .

These eigenvector changes might give a computational feasible way to
prescribe stably a change in a couple of eigenvalues.

At least, the changes are trivially restricted to (all) the left eigenvectors and
only the right eigenvectors corresponding to the changed eigenvalues.

TUHH Jens-Peter M. Zemke Rank-One Updates in Restarted GMRES Oberseminar 2006 34 / 38



Eigenvalues Two Deflations

DEFSHERMORN(m, 1)

Jurjen claims that his method only works in the inital cycle.

Jurjen also claims that when the matrix is nearly normal (and stays nearly
normal), the choice

y =
Qkz
‖b‖

, z = (θk − θ̃k)
sk

s1k
. (32)

will do similar.

The resulting algorithm is denoted by DEFSHERMORN(m, 1).

Variants for deflation of smallest conjugate complex eigenvalues using a real y
are also included in both the algorithms DEFSHERMOR(m) and
DEFSHERMORN(m, 1).
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Theoretical Properties and Questions Doubling Space Dimension

Global minimization

Jurjen shows that in theory when x0 6= 0 with the right choice it is possible to
achieve a minimization over a 2k-dimensional space.

This space is given by Kk(A, b) ∪ AKk(A, r0).
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Theoretical Properties and Questions Doubling Space Dimension

SHERMOR(30, 10) – an even closer view
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