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Krylov subspace methods origin

Origin of Krylov methods

The Krylov matrix K,, = (q, Aq,A%q,. .. ,A’”—lq) satisfies

((L AKn) =Kyt (1)
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Krylov subspace methods origin

Origin of Krylov methods

The Krylov matrix K,, = (q, Aq,A%q,. .. ,Am—lq) satisfies
(q, AK,,) =K1, (1)

The (columns of the) nth Krylov matrix span(s) a basis of the nth Krylov space
KC,, iff n is less or equal to the grade of q.
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Krylov subspace methods origin

Origin of Krylov methods

The Krylov matrix K,, = (q, Aq,A%q,. .. ,A'”—lq) satisfies
(q, AK,,) =K1, (1)

The (columns of the) nth Krylov matrix span(s) a basis of the nth Krylov space
KC,, iff n is less or equal to the grade of q.

Suppose we choose upper triangular basis transformations K,, = Q,R,,

(q7 AQan) =QuRi1 = (q7 AQn) = Qut1Ru11 <(1) §i>_l~ (@)
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Krylov subspace methods origin

Origin of Krylov methods

Then C, defined by

(0 oc)erallm) ©

is unreduced extended Hessenberg.
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Krylov subspace methods origin

Origin of Krylov methods

Then C,, defined by

(Z g) =Ry (3, {’:) B 3)

is unreduced extended Hessenberg.

We end up with a Hessenberg decomposition
AQ, = Qn+lgn =Q,C, + qn+lcn+1,ney7;7 (4)

where C, is unreduced Hessenberg and measures the “ratio” of the basis
transformations.
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Krylov subspace methods classification

Classification of Krylov methods

These Hessenberg decompositions are computed directly (e.g., using the
methods of Lanczos or Arnoldi), split (e.g., (Bi)CG-Omin, i.e., using an LDMT
decomposition), or implicitly (so-called Lanczos-type product methods, LTPM;
e.g., CGS, BiCGStab).
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Krylov subspace methods classification

Classification of Krylov methods

These Hessenberg decompositions are computed directly (e.g., using the
methods of Lanczos or Arnoldi), split (e.g., (Bi)CG-Omin, i.e., using an LDMT
decomposition), or implicitly (so-called Lanczos-type product methods, LTPM;
e.g., CGS, BiCGStab).

There are (basically) three well-known approaches based on Hessenberg
decompositions, namely

QOR: approximate x = A~'ry by x, := Q,C; 'e;||rol],
QMR: approximate x = A~'ry by x, := Q,Cle, ||ro|,
Ritz-Galérkin: approximate part of J = V-!AV by J, := S, 'C,S,,
V. :=Q.S,.
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Krylov subspace methods classification

Classification of Krylov methods

These Hessenberg decompositions are computed directly (e.g., using the
methods of Lanczos or Arnoldi), split (e.g., (Bi)CG-Omin, i.e., using an LDMT
decomposition), or implicitly (so-called Lanczos-type product methods, LTPM;
e.g., CGS, BiCGStab).

There are (basically) three well-known approaches based on Hessenberg
decompositions, namely

QOR: approximate x = A~'ry by x, := Q,C; 'e;||rol],
QMR: approximate x = A~'ry by x, := Q,Cle, ||ro|,
Ritz-Galérkin: approximate part of J = V-!AV by J, := S, 'C,S,,
V. :=Q.S,.

To every method from one class corresponds a method of the other.
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Krylov subspace methods classification

Classification of Krylov methods

Krylov subspace methods compute elements from the polynomial Krylov
space.
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Krylov subspace methods classification

Classification of Krylov methods

Krylov subspace methods compute elements from the polynomial Krylov
space.

The three classes of methods can be described using polynomials and
polynomial interpolation:

QOR: r, = R,(A)rg, Wwhere R,(z):=det(I, —zC, "),
X, = La[z7!(A)ry, where L,[z71(z) := % ,2# 0,
QVR: r, =R, (A)rop, where R, (z):=det(l, —zC/L),

x, = L,z "](A)ro, where L,[:7'](z) interpolates
the function z~! at the harmonic Ritz values,
Ritz-Galérkin: AV, =V, J, = X"(A)q e’S, (for a specially chosen S,),

Clin

v = A,(0,A)qi,  where  A,(0,2) = @0l gy
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Krylov subspace methods implementation

Implementation of Krylov methods

These Hessenberg decompositions are (more or less explicitely) constructed
using linear algebra techniques (e.g., orthogonal and oblique projectors).
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Krylov subspace methods implementation

Implementation of Krylov methods

These Hessenberg decompositions are (more or less explicitely) constructed
using linear algebra techniques (e.g., orthogonal and oblique projectors).

In finite precision the recurrence will only approximately be satisfied,

AQn + Fn = Qn+lgn = QnCn + qn+lcn+1,ne,{7 (5)

where the perturbation term F, is in some sense “small” and/or structured.
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These Hessenberg decompositions are (more or less explicitely) constructed
using linear algebra techniques (e.g., orthogonal and oblique projectors).

In finite precision the recurrence will only approximately be satisfied,

AQn + Fn = Qn+lgn = QnCn + qn+lcn+1,ne,{7 (5)

where the perturbation term F, is in some sense “small” and/or structured.

All the given polynomial relations extend to the perturbed case. Additional
error terms indicate the obtainable level of accuracy (Z, 2007).
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Krylov subspace methods implementation

Implementation of Krylov methods

These Hessenberg decompositions are (more or less explicitely) constructed
using linear algebra techniques (e.g., orthogonal and oblique projectors).

In finite precision the recurrence will only approximately be satisfied,

AQn + Fn = Qn+lgn = QnCn + qn+lcn+1,ne,{7 (5)

where the perturbation term F, is in some sense “small” and/or structured.

All the given polynomial relations extend to the perturbed case. Additional
error terms indicate the obtainable level of accuracy (Z, 2007).

To analyze the convergence behavior of a perturbed QOR Krylov method one
has to figure out the behavior of the Ritz values, i.e., the eigenvalues of the
Hessenberg matrices C,,.
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

IDR is a Krylov subspace method, as every step is based on a multiplication
with the matrix A (the iterates lie in a Krylov subspace) and certain linear
combinations of previous basis vectors are used to compute new vectors
(which defines an upper triangular basis transformation).
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IDR as Krylov subspace method

IDR is a Krylov subspace method, as every step is based on a multiplication
with the matrix A (the iterates lie in a Krylov subspace) and certain linear
combinations of previous basis vectors are used to compute new vectors
(which defines an upper triangular basis transformation).

It turns out that IDR is a QOR method.
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

IDR is a Krylov subspace method, as every step is based on a multiplication
with the matrix A (the iterates lie in a Krylov subspace) and certain linear
combinations of previous basis vectors are used to compute new vectors
(which defines an upper triangular basis transformation).

It turns out that IDR is a QOR method.

As the residuals are used as “basis” vectors (they need not be a basis, but
that doesn’t matter), the Krylov subspace method IDR will be what | refer to as
‘of type ORTHORES'.
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

IDR is a Krylov subspace method, as every step is based on a multiplication
with the matrix A (the iterates lie in a Krylov subspace) and certain linear
combinations of previous basis vectors are used to compute new vectors
(which defines an upper triangular basis transformation).

It turns out that IDR is a QOR method.

As the residuals are used as “basis” vectors (they need not be a basis, but
that doesn’t matter), the Krylov subspace method IDR will be what | refer to as
‘of type ORTHORES'.

In these methods the columns of the resulting extended Hessenberg matrix
sum to zero.
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

The IDR recurrences of the prototype IDR(s) algorithm can be summarized by

r, =

Vi

(I — ij) Vu—1,

=r, — R, 2Ac, = l~{ny,,

=1 ="y, + 5 (W -

(n)
£+1

)rn ¢+ 7( )rn—s-
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

The IDR recurrences of the prototype IDR(s) algorithm can be summarized by

r, = (I — quA) Vu—1,
V, =T, — ﬁ,,Acn = I~{ny,, (6)
=(1 =)y + D 0 = AW e+ e

Here, n > s, and the index of the scalar w; is defined by

. n
J = s+1|’

compare with the so-called “index functions” (Yeung/Boley, 2005).
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

The IDR recurrences of the prototype IDR(s) algorithm can be summarized by

r, = (I — quA) Vu—1,
v, =1, — R,Ac, = ﬁnyn (6)
=1 =+ T2 08 = A+ 1

Here, n > s, and the index of the scalar w; is defined by

. n
J = s+1|’

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing v, from the recurrence we obtain the perturbed generalized
Hessenberg decomposition

AR,Y,D, +F, =R, Y’. 7)
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

By inspection, the banded Hessenberg matrix Y, has zero column sums.
Inverting the upper triangular banded matrix Y,D,,, we obtain the Hessenberg
decomposition

AR, +F,D]'Y, ' =R, Y.D,'Y, ! = R,;,S°. (8)

Here, the Sonneveld matrix S,, is defined as long as all w; # 0 and all fyf") # 1.
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decomposition

AR, +F,D]'Y, ' =R, Y.D,'Y, ! = R,;,S°. (8)

Here, the Sonneveld matrix S,, is defined as long as all w; # 0 and all fyf") # 1.

The Sonneveld matrix has zero column sums and is thus of type ORTHORES.
This implies that IDR follows the QOR approach.
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My vision on IDR IDR as QOR

IDR as Krylov subspace method

By inspection, the banded Hessenberg matrix Y, has zero column sums.
Inverting the upper triangular banded matrix Y,D,,, we obtain the Hessenberg
decomposition

AR, +F,D]'Y, ' =R, Y.D,'Y, ! = R,;,S°. (8)

Here, the Sonneveld matrix S,, is defined as long as all w; # 0 and all ’yfk) # 1.

The Sonneveld matrix has zero column sums and is thus of type ORTHORES.
This implies that IDR follows the QOR approach.

By well-known results the residuals can be expressed in terms of the leading
submatrices of the Sonneveld matrix,

det (S¢ —zI,
b= Si(A)r. 6) = det(, — 7)) = H S
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

In unperturbed IDR the generalized Hessenberg decomposition is given by

AR,Y,D, =R, |Y° = AR, =R, S° 9)
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

In unperturbed IDR the generalized Hessenberg decomposition is given by

AR,Y,D, =R, |Y° = AR, =R, S° 9)

We can use the leading submatrices of the Sonneveld matrix Sy, for the
computation of Ritz values, the Ritz vectors are the eigenvectors prolonged by
the “basis” given by R,. We can estimate the accuracy similar to Lanczos’
method by looking at the last element of the eigenvector and the size of the
current residual.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

In unperturbed IDR the generalized Hessenberg decomposition is given by

AR,Y,D, =R, |Y° = AR, =R, S° 9)

We can use the leading submatrices of the Sonneveld matrix S¢ for the
computation of Ritz values, the Ritz vectors are the eigenvectors prolonged by
the “basis” given by R,. We can estimate the accuracy similar to Lanczos’
method by looking at the last element of the eigenvector and the size of the
current residual.

Numerically more stable and more efficient is the use of the Sonneveld pencil
(Y?,Y,D,,). The stability comes from the fact that we need not be afraid of a
large condition of Y, and/or D,,. The efficiency is due to the structure: The
Sonneveld matrix is a full unreduced Hessenberg matrix, the Sonneveld pencil
is banded upper Hessenberg/triangular and QZ is the method of choice.
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My vision on IDR
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As the example reveals, it is quite troublesome to distinguish the wanted
unknown zeros of the residual polynomials (corresponding to a two-sided

Lanczos’ process we are interested in) from the known inverse local
minimizers 1/w;.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As the example reveals, it is quite troublesome to distinguish the wanted
unknown zeros of the residual polynomials (corresponding to a two-sided
Lanczos’ process we are interested in) from the known inverse local
minimizers 1/w;.

There seems to be a more stable way to compute approximations to A’s
eigenvalues, indicated by the green circles ; -)
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As the example reveals, it is quite troublesome to distinguish the wanted
unknown zeros of the residual polynomials (corresponding to a two-sided
Lanczos’ process we are interested in) from the known inverse local
minimizers 1/w;.

There seems to be a more stable way to compute approximations to A’s
eigenvalues, indicated by the green circles ; -)

Indeed, in LTPM we only want to compute the zeros of one of the residual
polynomial factors of the residual polynomial.
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IDR for eigenvalues

As the example reveals, it is quite troublesome to distinguish the wanted
unknown zeros of the residual polynomials (corresponding to a two-sided
Lanczos’ process we are interested in) from the known inverse local
minimizers 1/w;.

There seems to be a more stable way to compute approximations to A’s
eigenvalues, indicated by the green circles ; -)

Indeed, in LTPM we only want to compute the zeros of one of the residual
polynomial factors of the residual polynomial. This can be done.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As the example reveals, it is quite troublesome to distinguish the wanted
unknown zeros of the residual polynomials (corresponding to a two-sided
Lanczos’ process we are interested in) from the known inverse local
minimizers 1/w;.

There seems to be a more stable way to compute approximations to A’s
eigenvalues, indicated by the green circles ; -)

Indeed, in LTPM we only want to compute the zeros of one of the residual
polynomial factors of the residual polynomial. This can be done.

By the manner of construction of the residuals, which is based on the
mappings (I — w;A) : Gi_1 — G;, we know that for some w, € Gy = K(A,ry)

r, = Qi (A)w,,

Va1 = Q1 (A)w,, Qf'(z):g(l_“’fz)’ j:LHJ' (19)
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The polynomials defined by dividing the residual polynomials by the
polynomials €2; are residual polynomials in the Krylov subspace K(A,ry). The
polynomials €2; are also residual polynomials, since €;(0) = 1.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The polynomials defined by dividing the residual polynomials by the
polynomials €2; are residual polynomials in the Krylov subspace K(A,ry). The
polynomials €2; are also residual polynomials, since €;(0) = 1.

We derive the Hessenberg decomposition corresponding to the basis of the
purified residuals w,,. This way we only have to compute the unknown
eigenvalue approximations instead of computing again the local minimizers.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The polynomials defined by dividing the residual polynomials by the
polynomials €2; are residual polynomials in the Krylov subspace K(A,ry). The
polynomials €2; are also residual polynomials, since €2;(0) = 1.

We derive the Hessenberg decomposition corresponding to the basis of the
purified residuals w,,. This way we only have to compute the unknown
eigenvalue approximations instead of computing again the local minimizers.

Some thinking results in the wanted purified generalized Hessenberg
decomposition
AwnUan = Wn-HX,?, (1 1)

where the change from the original residuals r, to the purified residuals w, is
reflected in the construction of the matrix U, from Y, by cutting out lower
triangles from the band such that U, is block-diagonal with alternating s x s
upper triangular blocks and single zero elements at every multiple of s + 1.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The pencil (Y;,U,D,,) is regular and has j = |n/(s + 1) | infinite eigenvalues.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The pencil (Y;,U,D,,) is regular and has j = |n/(s + 1) | infinite eigenvalues.

We can show based on the properties of unreduced Hessenberg pencils (Z,
2006) and manipulation of equation (11) (Z, 2007) that scalar multiples of the
leading determinants of the Hessenberg pencil ‘H,, := (zZU,D,, — Y;,) define
the purified residual polynomials.

Jens-Peter M. Zemke IDR(s): Finite precision aspects TU Delft, June 3rd 2009 15/21



My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The pencil (Y;,U,D,,) is regular and has j = |n/(s + 1) | infinite eigenvalues.

We can show based on the properties of unreduced Hessenberg pencils (Z,
2006) and manipulation of equation (11) (Z, 2007) that scalar multiples of the
leading determinants of the Hessenberg pencil ‘H,, := (zZU,D,, — Y;,) define
the purified residual polynomials.

This suggests to use the leading submatrices of the banded pencil to compute
the wanted eigenvalue approximations. Using QZ this can effectively be done.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The pencil (Y;,U,D,,) is regular and has j = |n/(s + 1) | infinite eigenvalues.

We can show based on the properties of unreduced Hessenberg pencils (Z,
2006) and manipulation of equation (11) (Z, 2007) that scalar multiples of the
leading determinants of the Hessenberg pencil ‘H,, := (zZU,D,, — Y;,) define
the purified residual polynomials.

This suggests to use the leading submatrices of the banded pencil to compute
the wanted eigenvalue approximations. Using QZ this can effectively be done.

This has two drawbacks: We make no use of the known |n/(s + 1)] infinite
eigenvalues and this does not reveal the structure of the underlying two-sided
Lanczos’ process.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

The pencil (Y;,U,D,,) is regular and has j = |n/(s + 1) | infinite eigenvalues.

We can show based on the properties of unreduced Hessenberg pencils (Z,
2006) and manipulation of equation (11) (Z, 2007) that scalar multiples of the
leading determinants of the Hessenberg pencil ‘H,, := (zZU,D,, — Y;,) define
the purified residual polynomials.

This suggests to use the leading submatrices of the banded pencil to compute
the wanted eigenvalue approximations. Using QZ this can effectively be done.

This has two drawbacks: We make no use of the known |n/(s + 1)] infinite
eigenvalues and this does not reveal the structure of the underlying two-sided
Lanczos’ process.

Both drawbacks can be removed utilizing Schur’s determinant formula.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

Block-Gauf elimination applied to a typical block of the pencil results in

H* h, L* I o o
e (v —1) W | [—el/(y—1) 1/(*=1) b/ —1)| =
o € ‘H, O 0 1
‘H* —heel/(y* 1) h{/(v*—1) L*—hh[/(* 1)
o ! o’ . (12)

*

—eel /(v —1)  ef/(v*—1) H.—ehl/(v*—1)
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

Block-Gauf elimination applied to a typical block of the pencil results in

‘H*  h, L* I 0 0
( e, (v-1) hrT) (—ef/(v* -1) 1/(v*—=1) —hl/(v*— 1)) =
(0] e ‘H, O ) I

(ZH* —hel/(v* = 1) hl/(y*=1) L*—hh!/(v*— 1))
of T . (12)

(1]
—eel /(7" —1)  ef/(v"—1) *H,—ehl/(v* 1)

*

—_

*

This shows that we can work on a deflated pencil, here depicted block-wise,

H* —hel/(7* —1) L* —hhl/(y* 1)
( —eel /(¥ —1)  “H,—eh!/(v* — 1)) : (13)
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

Block-Gauf elimination applied to a typical block of the pencil results in

‘H*  h, L* I 0 0
( e, (v-1) hrT) (—ef/(v* -1) 1/(v*—=1) —hl/(v*— 1)) =
(0] e ‘H, O ) I

(ZH* —hel/(v* = 1) hl/(y*=1) L*—hh!/(v*— 1))
of T . (12)

(1]
—eel /(v —1)  ef/(v*—1) H.—ehl/(v*—1)

*

—_

*

This shows that we can work on a deflated pencil, here depicted block-wise,

H* —hel/(7* —1) L* —hhl/(y* 1)
( —eel /(¥ —1)  “H,—eh!/(v* — 1)) : (13)

This pencil again is of ORTHORES-type as the column sums of the deflated
Hessenberg matrix are zero.
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As we did remove the infinite eigenvalues, i.e., the zero blocks from the
block-diagonal upper triangular matrix U,, we can now invert the deflated

matrix D(Y,D,,G,) and multiply it from the right to the deflated Hessenberg
matrix D(Y;G,).
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My vision on IDR IDR for eigenvalues

IDR for eigenvalues

As we did remove the infinite eigenvalues, i.e., the zero blocks from the
block-diagonal upper triangular matrix U,, we can now invert the deflated
matrix D(Y,D,,G,) and multiply it from the right to the deflated Hessenberg
matrix D(Y;G,).

Here, G, denotes the block-Gauf3 eliminator and D denotes the deflation
operator D(M) = M(ind, ind), where ind denotes the set of indices to remain.
We remark that Y, D,, is not altered by application of G,,.
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IDR for eigenvalues

As we did remove the infinite eigenvalues, i.e., the zero blocks from the
block-diagonal upper triangular matrix U,, we can now invert the deflated
matrix D(Y,D,,G,) and multiply it from the right to the deflated Hessenberg
matrix D(Y;G,).

Here, G, denotes the block-Gauf3 eliminator and D denotes the deflation
operator D(M) = M(ind, ind), where ind denotes the set of indices to remain.
We remark that Y, D,, is not altered by application of G,,.

As D(Y:G,) is of ORTHORES-type, Hessenberg, and block tridiagonal with
blocks of size s x s, and as D(Y,D..G,) is block-diagonal upper triangular with
blocks of size s x s, the resulting matrix

PZ = D(Y;Gn)(D(YanGn»_l (14)

is the matrix of the ORTHORES-form of the underlying two-sided Lanczos’
process with s left and one right starting vectors.
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IDR for eigenvalues

The following picture shows the structure of the resulting matrix PS of the
deflated purified process for IDR(7) applied for 160 steps.

0
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0 20 40 60 80 100 120 140
nz = 1615
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Conclusion
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>

>

>

We sketched our approach of error analysis of IDR.
We gave various ways of computing eigenvalues using IDR.

We showed the relation between IDR and the ORTHORES-form of a
two-sided Lanczos’ process.

We presented a numerical example depicting finite precision aspects.

Many questions, some of them partially attacked, remain:

>

>

How do we compute Ritz vectors? How accurate are the Ritz pairs?
How are the residual and purified residual decomposition related
matrix-wise?

Are all eigenvalues approximated just once?

Why does the finite precision Lanczos’ process re-compute the
minimizers and compute spurious eigenvalues close to zero?

How does the condition grow when the roots 1/w; become (almost)
multiple (mostly s fold)?

How does this affect the convergence rate of finite precision IDR?
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Conclusion

Thank you for your attention.
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