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Krylov methods in finite precision . . . an introduction

Krylov subspace methods

In this talk we consider the IDR methods by Peter Sonneveld (Sonneveld,
2006; Sonneveld, 2008; Wesseling and Sonneveld, 1980) and their
generalizations, the IDR(s) methods, starting with the first IDR(s) algorithm
(Sonneveld and van Gijzen, 2008).

IDR and IDR(s) are Krylov subspace methods. The mth Krylov subspace Km is
defined for a given square matrix A and a starting vector q as follows,

Km(A,q) := span {q,Aq, . . . ,Am−1q}.

There is a natural isomorphism

v ∈ Km ⇔ v = ν(A)q

between vectors v in a Krylov subspace and polynomials ν ∈ Pm−1 (as long as
the Krylov subspace Km has full dimension dim(Km) = m).
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Krylov methods in finite precision . . . an introduction

The origin of Krylov subspace methods

The Krylov matrices Km :=
(

q,Aq,A2q, . . . ,Am−1q
)

satisfy the matrix
recurrence (

q,AKm

)
= Km+1. (1)

The mth Krylov matrix spans a basis of the mth Krylov space Km iff m is less or
equal to the grade of q. We assume here that this is always the case.

Suppose we choose upper triangular basis transformations Km =: QmRm,

(
q,AQmRm

)
= Qm+1Rm+1 ⇒

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (2)

Next we strip off the first column on both sides.
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Krylov methods in finite precision . . . an introduction

The connection to Hessenberg decompositions

The matrix Cm ∈ C(m+1)×m defined by(
?
o Cm

)
:= Rm+1

(
1 oT

o Rm

)−1

(3)

is unreduced extended Hessenberg.

We end up with a Hessenberg decomposition

AQm = Qm+1Cm =: QmCm + qm+1cm+1,meT
m, (4)

where Cm is unreduced Hessenberg and measures the “ratio” of the basis
transformations.
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Krylov methods in finite precision . . . an introduction

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 7 / 80



Krylov methods in finite precision . . . an introduction

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 7 / 80



Krylov methods in finite precision . . . an introduction

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 7 / 80



Krylov methods in finite precision . . . an introduction

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m ),

xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).
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Krylov methods in finite precision . . . an introduction

Implementation of Krylov methods

These Hessenberg decompositions are (more or less explicitely) constructed
using linear algebra techniques (e.g., orthogonal and oblique projectors).

In finite precision the recurrence will only approximately be satisfied,

AQm + Fm = Qm+1Cm

= QmCm + qm+1cm+1,meT
m,

(5)

where the perturbation term Fm is in some sense “small” and/or structured.

Equations like Eqn. (5) will be called perturbed Hessenberg decompositions.
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Krylov methods in finite precision . . . an introduction

The polynomial point of view

To understand the perturbed case, we generalize and extend the polynomials
based on the computed Cm (or Cm) with their useful properties.

The polynomials are named by their property. In (Z., 2007) we considered the
following five types of polynomials:

I basis polynomials Bm,
I adjugate polynomials Am,
I Lagrange interpolation polynomials Lm[z−1] and Lm[z−1],
I Lagrange interpolation polynomials Lm[1− δz0] and Lm[1− δz0],
I residual polynomials Rm and Rm.

In this talk, we restrict ourselves to Lm[z−1], Lm[1− δz0] and Rm.
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In this talk, we restrict ourselves to Lm[z−1], Lm[1− δz0] and Rm.
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Krylov methods in finite precision . . . an introduction

Adjugate polynomials

First we consider certain bivariate polynomials — the adjugate polynomials.

I Property:
Am(z,Cm) = adj(zIm − Cm).

I This implies for all eigenvalues (Ritz values) θj of Cm (Z., 2006)

Am(θj,Cm)e1 = sj, Cmsj = sjθj.

I Definition:
Am(θ, z) :=

χm(θ)− χm(z)
θ − z

.

I Generalization:

A`+1:m(θ, z) :=
χ`+1:m(θ)− χ`+1:m(z)

θ − z
, ` = 0, 1, . . . ,m.
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Krylov methods in finite precision . . . an introduction

Lagrange polynomials

Next we consider Lagrange interpolation polynomials interpolating the inverse
function and a singularly perturbed identity function.

The Lagrange interpolation of the inverse is denoted by Lm[z−1](z).

I Property:
Lm[z−1](Cm) = C−1

m .

I Definition:
Lm[z−1](z) :=

χm(0)− χm(z)
zχm(0)

= −Am(0, z)
χm(0)

.

I Generalization:

L`+1:m[z−1](z) :=
χ`+1:m(0)− χ`+1:m(z)

zχ`+1:m(0)
= −A`+1:m(0, z)

χ`+1:m(0)
, ` = 0, 1, . . . ,m.
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Krylov methods in finite precision . . . an introduction

Lagrange polynomials and QOR iterates

Theorem (The finite precision QOR iterates)

Suppose that all C`+1:m are regular. We define the mth QOR solution by

zm := C−1
m e1‖r0‖2

and the mth QOR iterate by
xm := Qmzm.

Then

xm = Lm[z−1](A)r0 −
m∑

`=1

z`m L`+1:m[z−1](A)f`. (6)

Really sloppily speaking, in case of convergence,

x∞ = A−1r0 + A−1F∞z∞ = A−1(r0 + F∞z∞).

Proving convergence is the hard task.
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Krylov methods in finite precision . . . an introduction

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation polynomial of the
singularly perturbed identity is denoted by L0

m[1− δz0](z).

I Properties:
L0

m[1− δz0](Cm) = Im, L0
m[1− δz0](0) = 0.

I Definition:

L0
m[1− δz0](z) :=

χm(0)− χm(z)
χm(0)

= Lm[z−1](z)z.

I Generalization:

L0
`+1:m[1− δz0](z) :=

χ`+1:m(0)− χ`+1:m(z)
χ`+1:m(0)

= L`+1:m[z−1](z)z, ` = 0, 1, . . . ,m.
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Krylov methods in finite precision . . . an introduction

Residual polynomials

Last but not least we consider the well-known residual polynomials (Stiefel,
1955) denoted by Rm(z).

I Properties:
Rm(Cm) = Om, Rm(0) = 1.

I Definition:

Rm(z) :=
χm(z)
χm(0)

= 1− L0
m[1− δz0](z) = det (Im − zC−1

m ).

I Generalization:

R`+1:m(z) :=
χ`+1:m(z)
χ`+1:m(0)

= 1− L0
`+1:m[1− δz0](z), ` = 0, 1, . . . ,m.

Two types of polynomials⇒ two expressions for the QOR residuals.
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Krylov methods in finite precision . . . an introduction

Residual polynomials and QOR residuals

Theorem (The finite precision QOR residuals)

Suppose that q1 = r0/‖r0‖2 and that all C`+1:m are regular. Let xm denote the
mth QOR iterate and rm := r0 − Axm the corresponding residual.

Then

rm = Rm(A)r0 +
m∑

`=1

z`mL0
`+1:m[1− δz0](A)f`

= Rm(A)r0 −
m∑

`=1

z`mR`+1:m(A)f` + Fmzm.

(7)

The first equation is related to the perturbation amplification.
The second equation is related to the attainable accuracy.
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Krylov methods in finite precision . . . an introduction

Implications for the analysis of IDR/IDR(s)

We have shown that the behavior of a perturbed QOR Krylov subspace
method can completely be described in terms of

I the computed Ritz values θj, 1 6 j 6 m,
I the components of the computed QOR solutions zm, and
I the perturbation terms f`, 1 6 ` 6 m.

The components of the QOR solutions are at hand in the course of the
computation. The perturbation terms can be described using bounds on the
errors introduced by the execution of the algorithm in finite precision, followed
by some simple algebraic manipulations.

Thus, we need to understand how the Ritz values behave in finite precision.
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IDR and IDR(s) 1976–1980: IDR

Origin

In 1976 Sonneveld experimentally observed that for B ∈ Cn×n and a given
starting vector f0 ∈ Cn and f1 := Bf0 the three-term recurrence

fk+1 := B(fk − γk(fk − fk−1)), γk :=
pH fk

pH(fk − fk−1)

almost always stops after 2n steps with the zero vector f2n = on (Sonneveld,
2006; Sonneveld, 2008).

Analyzing this startling behavior, he discovered that the two consecutive
vectors f2j, f2j+1 constructed in this manner live in spaces Gj of shrinking
dimensions, nowadays known as “Sonneveld spaces”.

He thus called this property “Induced Dimension Reduction” (IDR), and
algorithms like the given three-term recurrence “IDR Algorithms”.
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IDR and IDR(s) 1976–1980: IDR

IDR Theorem

Sonneveld first made experiments and then gave a rigorous proof. It is easy
to see that apart from the first two (arbitrarily chosen) residuals the
constructed residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
( k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.
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IDR and IDR(s) 1976–1980: IDR

IDR Algorithms
The three-term recurrence

fk+1 = B(fk − γk(fk−1 − fk)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax = b ⇒ x = (I− A)x + b =: B x + b.

The classical Richardson iteration with a starting guess x0 is then given by

xk+1 = (I− A)xk + b.
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IDR and IDR(s) 1976–1980: IDR

Primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1)− rk

= (I− A)(rk − γkA(xk − xk−1)− rk

= −A(rk + γk(I− A)(xk − xk−1))
⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).
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IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).
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IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Impressions of “finite termination” and acceleration in finite precision:
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IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.
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IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 26 / 80



IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 26 / 80



IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 26 / 80



IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 26 / 80



IDR and IDR(s) 1976–1980: IDR

Classical IDR

A numerical comparison of Richardson iteration, original IDR, and PIA.
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IDR and IDR(s) 1976–1980: IDR

Brothers of classical and primitive IDR

In 1976 Sonneveld considered the acceleration of Gauß-Seidel (AGS).
Similarly, the IDR philisophy can be used as an accelerator for the other
classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods.

Some of these methods have been considered much more recently by Seiji
Fujino et al. under the names ISOR, IJacobi, IGS. The generalization of these
methods to incorporate more than one shadow vector seems very promising
on distributed memory computers.

One has to look careful at the difference between preconditioning and using a
variable splitting before applying IDR acceleration or afterwards.

The numerical behavior is not very promising. But this picture changes, when
we use more shadow vectors . . .
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IDR and IDR(s) 2006–2010: IDR(s)

Outline

Krylov methods in finite precision

. . . an introduction

IDR and IDR(s)

1976–1980: IDR

2006–2010: IDR(s)

IDR: two close relatives

IDR and Lanczos

IDR and Lanczos-type product methods

Numerical experiments

Many pictures — less mathematics
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IDR and IDR(s) 2006–2010: IDR(s)

Rebirth of IDR: IDR(s)

In 2006, 30 years after inventing IDR, Sonneveld together with van Gijzen
reconsidered IDR and came up with a variant called IDR(s) that used
orthogonalization against a larger space, where s denotes the dimension of
that space.

Algorithmically, the transition from IDR to IDR(s) corresponds to replacing the
single vector p ∈ Cn with a matrix P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg
decompositions (also referred to as rational Hessenberg decompositions) and
to generalize QOR, QMR and Ritz-Galërkin.

We have to prove that the expressions for the iterates and residuals based on
polynomials are still valid. But: All these approaches extend easily to
generalized Hessenberg decompositions.
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IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.
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IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Hessenberg decompositions

We already noted that essential features of Krylov subspace methods can be
described by a Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (8)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (9)

The matrix Hn of the perturbed variant will, in general, still be unreduced.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions

AQnUn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (10)

and perturbed generalized Hessenberg decompositions

AQnUn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (11)

with upper triangular (possibly even singular) Un.

Generalized Hessenberg decompositions correspond to an oblique projection
of the pencil (A, I) to the pencil (Hn,Un) as long as Qn+1 has full rank,

Q̂H
n (A, I)QnUn = Q̂H

n (AQnUn,QnUn)

= Q̂H
n (Qn+1Hn,QnUn) = (IT

n Hn,Un) = (Hn,Un),
(12)

where Q̂H
n := IT

n Q†n+1.
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IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations.

Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (13)

where eTH◦n = oT
n , eT = (1, . . . , 1) and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(14)

is diagonally scaled to be the matrix of residual vectors.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s ) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(15)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (16)
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦n ,YnD(n)
ω ), can be

depicted by 

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.
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IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω ), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).
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IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦n Gn,UnD(n)

ω ), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+


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Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦n Gn we can get rid

of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Deflation

Let D denote an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω )), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω ) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(UnD(n)
ω )) gives an algebraic eigenvalue

problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω ))−1 =


××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

The extended matrix version Ln satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1
and Ωj(z) =

∏j
k=1(1− ωkz) are given by Ωj(A)q js+k = rj(s+1)+k.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: a Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P.

Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction (Sleijpen et al., 2008) one can prove that q js+k ⊥ Kj(AH,P);
thus, this is a two-sided Lanczos process with s left and one right starting
vectors.

This can more easily be proven using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
of the Sonneveld spaces.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: a Lanczos process with multiple left-hand sides

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

The first equality

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that

I the first s + 1 residuals obviously are in G0 := K(A, r0),
I the next s + 1 residuals (or any other vectors in G1) are in the I− ω1A

image of S = P⊥,
I the last s + 1 residuals are in the I− ωjA image of S = P⊥,
I the last residuals are I− ωjA images of linear combinations of previously

obtained images (I− ωj−1A) · · · (I− ωkA) of S = P⊥.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: a Lanczos process with multiple left-hand sides
The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

is based on
BP⊥ = (B−H P)⊥

and
U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from

P⊥ =
{

v ∈ Cn | PHv = on
}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = on

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{

y = Bv ∧ PHv = on
}
⇔ PHv = PHB−1y = (B−HP)Hy = on.
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IDR and IDR(s) 2006–2010: IDR(s)

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥

are satisfied

I since the polynomials Ωk(A), 0 6 k < j form a basis of the space of
polynomials of degree less j, and

I by the property proved on the last slide, respectively.
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IDR and IDR(s) 2006–2010: IDR(s)

Generalizations of IDR(s)

In the analysis of the similarities of and differences between IDR and
ML(k)BiCGStab, Sonneveld and van Gijzen realized that the residuals
computed last in a complete cycle are of importance.

In their new implementation IDR(s)BiO (van Gijzen and Sonneveld, 2008) of
the IDR Theorem, they use basis vectors g−1, . . . , g−s ∈ Gj, which are not
simply residual differences but linear combinations.

The new vectors vn and rn+1 are in this general setting given by the updates

vn = rn −
s∑

i=1

gn−iγi =: rn −Gncn, and thus,

rn+1 = (I− ωA)vn = rn − ωAvn −
s∑

i=1

gn−iγi,

where cn is determined such that PHvn = o.
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IDR and IDR(s) 2006–2010: IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.
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IDR and IDR(s) 2006–2010: IDR(s)

Generalizations of IDR(s)

The relation of IDR to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz (Simoncini and Szyld, 2009).

Another, simpler motivation is that the residual polynomials should be
designed to dampen the spectrum. Using the residual polynomial
representation of IDR we could choose the 1/ωj close but not equal to
eigenvalues, at least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to
use a few steps of the Arnoldi method to compute some Ritz values, which
are then used in some ordering as 1/ωj values.

For real nonsymmetric matrices this typically results in an algorithm based on
complex arithmetic in place of real arithmetic.
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IDR and IDR(s) 2006–2010: IDR(s)

Generalizations of IDR(s)

Last but not least: Certain old ideas have been reactivated. Sonneveld
presented the hitherto unpublished Accelerated Gauß-Seidel (AGS) method
at the Kyoto Forum on Krylov Subspace Methods in 2008.

Based on the algorithm in the proceedings, Seiji Fujino et al. considered the
acceleration of the classical splitting methods (Jacobi, Gauß-Seidel and
SOR). The resulting methods are called

I IDR(s)-Jacobi (w/o adaptive tuning),
I IDR(s)-GS,
I IDR(s)-SOR.

These approaches result in a “tight packing” of preconditioning and Krylov
subspace methods, compare with PIA. In most of these methods the ωj are
fixed by the splitting chosen.
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IDR: two close relatives IDR and Lanczos

Outline

Krylov methods in finite precision

. . . an introduction

IDR and IDR(s)

1976–1980: IDR

2006–2010: IDR(s)

IDR: two close relatives

IDR and Lanczos

IDR and Lanczos-type product methods

Numerical experiments

Many pictures — less mathematics
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IDR: two close relatives IDR and Lanczos

Similarities between Lanczos and IDR(1)

We have seen that IDR(s) is a Lanczos-type product method (LTPM), where
the underlying Lanczos process uses s left and one right starting vectors.

Furthermore, IDR(1) is slightly different from the classical IDR, but they
produce at every second step the same residuals, and so does BiCGStab.
We come back to this point in a minute.

In case of s = 1 we have to deal with a perturbed simple Lanczos process,
i.e., the Lanczos method. The Lanczos method is known to produce multiple
copies of outliers, i.e., many Ritz values converge to just one single prominent
eigenvalue of A.

The only difference between the Lanczos process underlying IDR(1) and the
finite precision Lanczos method is the perturbation term. Yet we will see that
the structural constraints result in totally different deviations from the
theoretical behavior of the Lanczos method.
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IDR: two close relatives IDR and Lanczos

Chris Paige, Anne Greenbaum, the Lanczos process

Following his seminal PhD thesis (Paige, 1971), Chris Paige published a
sequence of papers (Paige, 1972; Paige, 1976; Paige, 1980) on the error
analysis of the finite-precision behavior of the symmetric Lanczos process.

His results form the basis of Anne Greenbaum’s celebrated “backward error
analysis” (Greenbaum, 1989) of the finite-precision symmetric Lanczos and
CG methods, compare with (Greenbaum and Strakoš, 1992).

For an introduction and a general exposition especially on the finite-precision
symmetric Lanczos and CG methods see also (Meurant, 2006; Meurant and
Strakoš, 2006).

Thus far, this is maybe the only successful error analysis ever carried out for a
perturbed short-term Krylov subspace method.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 51 / 80



IDR: two close relatives IDR and Lanczos

Chris Paige, Anne Greenbaum, the Lanczos process

Following his seminal PhD thesis (Paige, 1971), Chris Paige published a
sequence of papers (Paige, 1972; Paige, 1976; Paige, 1980) on the error
analysis of the finite-precision behavior of the symmetric Lanczos process.

His results form the basis of Anne Greenbaum’s celebrated “backward error
analysis” (Greenbaum, 1989) of the finite-precision symmetric Lanczos and
CG methods, compare with (Greenbaum and Strakoš, 1992).

For an introduction and a general exposition especially on the finite-precision
symmetric Lanczos and CG methods see also (Meurant, 2006; Meurant and
Strakoš, 2006).

Thus far, this is maybe the only successful error analysis ever carried out for a
perturbed short-term Krylov subspace method.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 51 / 80



IDR: two close relatives IDR and Lanczos

Chris Paige, Anne Greenbaum, the Lanczos process

Following his seminal PhD thesis (Paige, 1971), Chris Paige published a
sequence of papers (Paige, 1972; Paige, 1976; Paige, 1980) on the error
analysis of the finite-precision behavior of the symmetric Lanczos process.

His results form the basis of Anne Greenbaum’s celebrated “backward error
analysis” (Greenbaum, 1989) of the finite-precision symmetric Lanczos and
CG methods, compare with (Greenbaum and Strakoš, 1992).

For an introduction and a general exposition especially on the finite-precision
symmetric Lanczos and CG methods see also (Meurant, 2006; Meurant and
Strakoš, 2006).

Thus far, this is maybe the only successful error analysis ever carried out for a
perturbed short-term Krylov subspace method.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 51 / 80



IDR: two close relatives IDR and Lanczos

Chris Paige, Anne Greenbaum, the Lanczos process

Following his seminal PhD thesis (Paige, 1971), Chris Paige published a
sequence of papers (Paige, 1972; Paige, 1976; Paige, 1980) on the error
analysis of the finite-precision behavior of the symmetric Lanczos process.

His results form the basis of Anne Greenbaum’s celebrated “backward error
analysis” (Greenbaum, 1989) of the finite-precision symmetric Lanczos and
CG methods, compare with (Greenbaum and Strakoš, 1992).

For an introduction and a general exposition especially on the finite-precision
symmetric Lanczos and CG methods see also (Meurant, 2006; Meurant and
Strakoš, 2006).

Thus far, this is maybe the only successful error analysis ever carried out for a
perturbed short-term Krylov subspace method.

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 51 / 80



IDR: two close relatives IDR and Lanczos

Lanczos’ method in finite precision

We used the diagonal matrix

A = diag([linspace(0,1,50),3])

and the starting vector
e = ones(51,1)

in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps(1) = 2−52 ≈ 2.2204 · 10−16.

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged. Detoriation reaches
a maximum at step 19 = d(10 + 27)/2e.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK’s
routine DSTEGR, since MATLAB’s eig (using LAPACK’s DSYEV, i.e., the QR
algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.
Additionally, we heavily used the symbolic toolbox, i.e., MAPLE.
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IDR: two close relatives IDR and Lanczos

Lanczos’ method in finite precision
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IDR: two close relatives IDR and Lanczos

Lanczos’ method in finite precision

50 100 150 200 250 300 350 400 450
10

−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

Floating point Lanczos characteristics

step number

di
st

an
ce

 to
 e

ig
en

va
lu

e 
3 

/ d
er

iv
at

iv
e

 

 

positive distance to 3
negative distance to 3
derivative of Ritz value
upper stabilized bound

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 54 / 80



IDR: two close relatives IDR and Lanczos

Lanczos’ method in finite precision

The theory of the Lanczos method in case of non-selfadjoint matrices is still
less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.

The next example uses the matrix pores_2 of size 1224× 1224 from Matrix
Market. The left and right starting vectors have been chosen such that all
components are equal.

As there does not exist the best Lanczos method, we have chosen one of the
more stable ones, namely the variant described in (Bai, 1994)

.

We note that we can observe multiple copies, but this time the approximation
quality is reduced after a couple of steps, all Ritz values computed after
certain steps show worse behavior than before.
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IDR: two close relatives IDR and Lanczos

Lanczos’ method in finite precision

0 100 200 300 400 500 600 700 800
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

non−Hermitean Lanczos applied to pores 2

number of Lanczos steps

di
st

an
ce

 to
 e

ig
en

va
lu

e 
la

rg
es

t i
n 

m
ag

ni
tu

de
 (

−
1.

68
25

e+
07

)

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 56 / 80



IDR: two close relatives IDR and Lanczos-type product methods

Outline

Krylov methods in finite precision

. . . an introduction

IDR and IDR(s)
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2006–2010: IDR(s)

IDR: two close relatives

IDR and Lanczos

IDR and Lanczos-type product methods

Numerical experiments

Many pictures — less mathematics
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IDR: two close relatives IDR and Lanczos-type product methods

IDR, IDR(1), and BiCGStab

We already noted that IDR, IDR(1), and BiCGStab are in some sense
equivalent: They produce every second step the same residual. These steps
are related to the Lanczos method and the minimizers ωj.

If all sets of ωj, those of IDR, IDR(1), and those of BiCGStab, are chosen by
line minimization, the methods behave the same in exact arithmetic.

We show numerically that the Lanczos-part of finite precision BiCGStab
behaves by no means similar to the Lanczos method in finite precision.

The eigenvalue approximations corresponding to BiCGStab are easier to
analyze than those corresponding to IDR or IDR(1), since in BiCGStab the
coefficients of the tridiagonal matrix of the underlying Lanczos method are
explicitely computed.
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IDR: two close relatives IDR and Lanczos-type product methods

IDR, IDR(1), and BiCGStab
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IDR: two close relatives IDR and Lanczos-type product methods

IDR, IDR(1), and BiCGStab
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Numerical experiments Many pictures — less mathematics
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Numerical experiments Many pictures — less mathematics

General setting

We used the stablest variant of IDR(s)Eig to compute the Ritz values of
IDR(s)ORes. In all experiments presented, s = 2.

The matrices have been constructed to have a small condition number and
such that all eigenvalues are well-conditioned, but these real matrices have
imaginary eigenvalues. The matrices are shifted to be positive real or, at least,
such that zero is in the left part of the field of values.

We try to find multiple copies. From the analysis of IDR(s)ORes we know that
after the ultimately attainable accuracy has been reached, the eigenvalue
approximations could deteriorate. So we investigate far beyond this point.

Since for real data all minimizers are real, we have run two sets of
experiments with the same matrix and starting residual: The first experiment
is based on an orthonormal random real matrix P ∈ Rn×2, the second
experiment is based on an orthonormal random complex matrix P ∈ Cn×2.
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Numerical experiments Many pictures — less mathematics

Understanding IDR: Convergence for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 20 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 50 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 100 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 150 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 300 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 500 steps for s = 2; P real
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 1000 steps for s = 2; P real

−5 0 5 10 15 20 25 30 35
−15

−10

−5

0

5

10

15

real part

im
ag

in
ar

y 
pa

rt

IDR(2)ORes for 1000 sweeps on a matrix of size 200

 

 
eigenvalues of A
eigenvalues of the ρ−polynomial
inverse local minimizers

TUHH Jens-Peter M. Zemke The behavior of IDR(s) in finite precision Fukuoka, 2010/02/09 70 / 80



Numerical experiments Many pictures — less mathematics

Understanding IDR: Convergence for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 20 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 50 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 100 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 150 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 300 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 500 steps for s = 2; P complex
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Numerical experiments Many pictures — less mathematics

Understanding IDR: 1000 steps for s = 2; P complex
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Conclusion

Conclusions and Outlook

I We related the convergence of finite precision Krylov methods (including
IDR and IDR(s)) to the behaviour of the Ritz values.

I We presented the transition from IDR(s)ORes to BiORes(s,1). The results
obtained in transition enable us to compute the Ritz values. This is the
IDR(s)Eig approach sketched in (Gutknecht and Z., 2010).

I We gave selected numerical examples for (the symmetric and
non-symmetric variant of) the Lanczos method, BiCGStab and IDR(s).

I IDR, and, more general, IDR(s), is affected by finite precision: In contrast
to the Lanczos method the delay in convergence is due to Ritz values of
the Lanczos-part converging to the minimizers 1/ωj.

I In IDR, BiCGStab and IDR(s) we did not observe multiple Ritz
approximations to simple eigenvalues.

I The Ritz values build up a “barrier” and cluster there, once IDR(s)ORes
has reached the ultimately attainable accuracy.

I At the same time a Ritz value close to zero shows up.
I We still have to carefully look at the perturbation terms of the underlying

perturbed Lanczos process.
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どうも有難う御座います

藤野先生。

どうも有難う御座いました。
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