
IDR(s) and IDR(s)Eig in Parallel Computing

Jens-Peter M. Zemke
zemke@tu-harburg.de

Institut für Numerische Simulation
Technische Universität Hamburg-Harburg

The University of Tokyo, Tokyo
2010/02/12

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 1 / 54

http://www.tu-harburg.de/~matjz/
http://www.tu-harburg.de/ins/
http://www.tu-harburg.de/

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 2 / 54

IDR and IDR(s) Krylov subspace methods

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 3 / 54

IDR and IDR(s) Krylov subspace methods

Krylov subspace methods

In this talk we consider the IDR methods by Peter Sonneveld (Sonneveld,
2006; Sonneveld, 2008; Wesseling and Sonneveld, 1980) and their
generalizations, the IDR(s) methods, starting with the first IDR(s) algorithm
(Sonneveld and van Gijzen, 2008).

IDR and IDR(s) are Krylov subspace methods. The mth Krylov subspace Km is
defined for a given square matrix A and a starting vector q as follows,

Km(A,q) := span {q,Aq, . . . ,Am−1q}.

There is a natural isomorphism

v ∈ Km ⇔ v = ν(A)q

between vectors v in a Krylov subspace and polynomials ν ∈ Pm−1 (as long as
the Krylov subspace Km has full dimension dim(Km) = m).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 4 / 54

IDR and IDR(s) Krylov subspace methods

Krylov subspace methods

In this talk we consider the IDR methods by Peter Sonneveld (Sonneveld,
2006; Sonneveld, 2008; Wesseling and Sonneveld, 1980) and their
generalizations, the IDR(s) methods, starting with the first IDR(s) algorithm
(Sonneveld and van Gijzen, 2008).

IDR and IDR(s) are Krylov subspace methods. The mth Krylov subspace Km is
defined for a given square matrix A and a starting vector q as follows,

Km(A,q) := span {q,Aq, . . . ,Am−1q}.

There is a natural isomorphism

v ∈ Km ⇔ v = ν(A)q

between vectors v in a Krylov subspace and polynomials ν ∈ Pm−1 (as long as
the Krylov subspace Km has full dimension dim(Km) = m).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 4 / 54

IDR and IDR(s) Krylov subspace methods

Krylov subspace methods

In this talk we consider the IDR methods by Peter Sonneveld (Sonneveld,
2006; Sonneveld, 2008; Wesseling and Sonneveld, 1980) and their
generalizations, the IDR(s) methods, starting with the first IDR(s) algorithm
(Sonneveld and van Gijzen, 2008).

IDR and IDR(s) are Krylov subspace methods. The mth Krylov subspace Km is
defined for a given square matrix A and a starting vector q as follows,

Km(A,q) := span {q,Aq, . . . ,Am−1q}.

There is a natural isomorphism

v ∈ Km ⇔ v = ν(A)q

between vectors v in a Krylov subspace and polynomials ν ∈ Pm−1 (as long as
the Krylov subspace Km has full dimension dim(Km) = m).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 4 / 54

IDR and IDR(s) Krylov subspace methods

The origin of Krylov subspace methods

The Krylov matrices Km :=
(

q,Aq,A2q, . . . ,Am−1q
)

satisfy the matrix
recurrence (

q,AKm

)
= Km+1. (1)

The mth Krylov matrix spans a basis of the mth Krylov space Km iff m is less or
equal to the grade of q. We assume here that this is always the case.

Suppose we choose upper triangular basis transformations Km =: QmRm,

(
q,AQmRm

)
= Qm+1Rm+1 ⇒

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (2)

Next we strip off the first column on both sides.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 5 / 54

IDR and IDR(s) Krylov subspace methods

The origin of Krylov subspace methods

The Krylov matrices Km :=
(

q,Aq,A2q, . . . ,Am−1q
)

satisfy the matrix
recurrence (

q,AKm

)
= Km+1. (1)

The mth Krylov matrix spans a basis of the mth Krylov space Km iff m is less or
equal to the grade of q. We assume here that this is always the case.

Suppose we choose upper triangular basis transformations Km =: QmRm,

(
q,AQmRm

)
= Qm+1Rm+1 ⇒

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (2)

Next we strip off the first column on both sides.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 5 / 54

IDR and IDR(s) Krylov subspace methods

The origin of Krylov subspace methods

The Krylov matrices Km :=
(

q,Aq,A2q, . . . ,Am−1q
)

satisfy the matrix
recurrence (

q,AKm

)
= Km+1. (1)

The mth Krylov matrix spans a basis of the mth Krylov space Km iff m is less or
equal to the grade of q. We assume here that this is always the case.

Suppose we choose upper triangular basis transformations Km =: QmRm,

(
q,AQmRm

)
= Qm+1Rm+1 ⇒

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (2)

Next we strip off the first column on both sides.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 5 / 54

IDR and IDR(s) Krylov subspace methods

The origin of Krylov subspace methods

The Krylov matrices Km :=
(

q,Aq,A2q, . . . ,Am−1q
)

satisfy the matrix
recurrence (

q,AKm

)
= Km+1. (1)

The mth Krylov matrix spans a basis of the mth Krylov space Km iff m is less or
equal to the grade of q. We assume here that this is always the case.

Suppose we choose upper triangular basis transformations Km =: QmRm,

(
q,AQmRm

)
= Qm+1Rm+1 ⇒

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (2)

Next we strip off the first column on both sides.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 5 / 54

IDR and IDR(s) Krylov subspace methods

The connection to Hessenberg decompositions

The matrix Cm ∈ C(m+1)×m defined by(
?
o Cm

)
:= Rm+1

(
1 oT

o Rm

)−1

(3)

is unreduced extended Hessenberg.

We end up with a Hessenberg decomposition

AQm = Qm+1Cm =: QmCm + qm+1cm+1,meT
m, (4)

where Cm is unreduced Hessenberg and measures the “ratio” of the basis
transformations.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 6 / 54

IDR and IDR(s) Krylov subspace methods

The connection to Hessenberg decompositions

The matrix Cm ∈ C(m+1)×m defined by(
?
o Cm

)
:= Rm+1

(
1 oT

o Rm

)−1

(3)

is unreduced extended Hessenberg.

We end up with a Hessenberg decomposition

AQm = Qm+1Cm =: QmCm + qm+1cm+1,meT
m, (4)

where Cm is unreduced Hessenberg and measures the “ratio” of the basis
transformations.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 6 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 7 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 7 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Matrix based

There are three well-known approaches based on such Hessenberg
decompositions (with ‖r0‖2q1 = r0), namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†me1‖r0‖2,
Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1

m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact
is used in (Gutknecht and Z., 2010) to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description:
Krylov subspace methods compute elements from the polynomial Krylov
subspace Km.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 7 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),

xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates

the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0,

where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,

Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) Krylov subspace methods

Classification of Krylov methods: Polynomial based

The three classes of methods can be described using certain polynomials and
polynomial interpolation:

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†mIm),
xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm − Cm).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 8 / 54

IDR and IDR(s) 1976–1980: IDR

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 9 / 54

IDR and IDR(s) 1976–1980: IDR

Origin

In 1976 Sonneveld experimentally observed that for B ∈ Cn×n and a given
starting vector f0 ∈ Cn and f1 := Bf0 the three-term recurrence

fk+1 := B(fk − γk(fk − fk−1)), γk :=
pH fk

pH(fk − fk−1)

almost always stops after 2n steps with the zero vector f2n = on (Sonneveld,
2006; Sonneveld, 2008).

Analyzing this startling behavior, he discovered that the two consecutive
vectors f2j, f2j+1 constructed in this manner live in spaces Gj of shrinking
dimensions, nowadays known as “Sonneveld spaces”.

He thus called this property “Induced Dimension Reduction” (IDR), and
algorithms like the given three-term recurrence “IDR Algorithms”.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 10 / 54

IDR and IDR(s) 1976–1980: IDR

Origin

In 1976 Sonneveld experimentally observed that for B ∈ Cn×n and a given
starting vector f0 ∈ Cn and f1 := Bf0 the three-term recurrence

fk+1 := B(fk − γk(fk − fk−1)), γk :=
pH fk

pH(fk − fk−1)

almost always stops after 2n steps with the zero vector f2n = on (Sonneveld,
2006; Sonneveld, 2008).

Analyzing this startling behavior, he discovered that the two consecutive
vectors f2j, f2j+1 constructed in this manner live in spaces Gj of shrinking
dimensions, nowadays known as “Sonneveld spaces”.

He thus called this property “Induced Dimension Reduction” (IDR), and
algorithms like the given three-term recurrence “IDR Algorithms”.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 10 / 54

IDR and IDR(s) 1976–1980: IDR

Origin

In 1976 Sonneveld experimentally observed that for B ∈ Cn×n and a given
starting vector f0 ∈ Cn and f1 := Bf0 the three-term recurrence

fk+1 := B(fk − γk(fk − fk−1)), γk :=
pH fk

pH(fk − fk−1)

almost always stops after 2n steps with the zero vector f2n = on (Sonneveld,
2006; Sonneveld, 2008).

Analyzing this startling behavior, he discovered that the two consecutive
vectors f2j, f2j+1 constructed in this manner live in spaces Gj of shrinking
dimensions, nowadays known as “Sonneveld spaces”.

He thus called this property “Induced Dimension Reduction” (IDR), and
algorithms like the given three-term recurrence “IDR Algorithms”.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 10 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Theorem

Sonneveld first made experiments and then gave a rigorous proof. It is easy
to see that apart from the first two (arbitrarily chosen) residuals the
constructed residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
(k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 11 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Theorem

Sonneveld first made experiments and then gave a rigorous proof. It is easy
to see that apart from the first two (arbitrarily chosen) residuals the
constructed residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
(k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 11 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Theorem

Sonneveld first made experiments and then gave a rigorous proof. It is easy
to see that apart from the first two (arbitrarily chosen) residuals the
constructed residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
(k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 11 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Theorem

Sonneveld first made experiments and then gave a rigorous proof. It is easy
to see that apart from the first two (arbitrarily chosen) residuals the
constructed residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
(k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 11 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Algorithms
The three-term recurrence

fk+1 = B(fk − γk(fk−1 − fk)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax = b ⇒ x = (I− A)x + b =: B x + b.

The classical Richardson iteration with a starting guess x0 is then given by

xk+1 = (I− A)xk + b.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 12 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Algorithms
The three-term recurrence

fk+1 = B(fk − γk(fk−1 − fk)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax = b ⇒ x = (I− A)x + b =: B x + b.

The classical Richardson iteration with a starting guess x0 is then given by

xk+1 = (I− A)xk + b.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 12 / 54

IDR and IDR(s) 1976–1980: IDR

IDR Algorithms
The three-term recurrence

fk+1 = B(fk − γk(fk−1 − fk)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax = b ⇒ x = (I− A)x + b =: B x + b.

The classical Richardson iteration with a starting guess x0 is then given by

xk+1 = (I− A)xk + b.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 12 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1)− rk

= (I− A)(rk − γkA(xk − xk−1)− rk

= −A(rk + γk(I− A)(xk − xk−1))
⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 13 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1)− rk

= (I− A)(rk − γkA(xk − xk−1)− rk

= −A(rk + γk(I− A)(xk − xk−1))
⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 13 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1)− rk

= (I− A)(rk − γkA(xk − xk−1)− rk

= −A(rk + γk(I− A)(xk − xk−1))
⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 13 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 14 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 14 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 14 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Impressions of “finite termination” and acceleration in finite precision:

0 5 10

10
−10

10
0

10
10

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 5 and no scaling

0 20 40 60
10

0

10
10

10
20

10
30

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 20 and no scaling

0 100 200
10

0

10
100

10
200

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 100 and no scaling

0 5 10

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 5 and scaling

0 20 40 60

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 20 and scaling

0 100 200

10
−10

10
0

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

PIA for n = 100 and scaling

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 15 / 54

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 16 / 54

http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 16 / 54

http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 16 / 54

http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

IDR and IDR(s) 1976–1980: IDR

Primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 16 / 54

http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 17 / 54

IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 17 / 54

IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 17 / 54

IDR and IDR(s) 1976–1980: IDR

Classical IDR

γ0 = 0, f0 = Ax0 − b, ∆g0 = on, ∆y0 = on
For k = 1, . . . do

sk = fk−1 + γk−1∆gk−1
tk = Ask
if k = 1 or k is even
ωk = (tH

k sk)/(tH
k tk)

else
ωk = ωk−1

end
∆xk = γk−1∆yk−1 − ωksk
∆ fk = γk−1∆gk−1 − ωktk
xk = xk−1 + ∆xk
fk = fk−1 + ∆fk
if k is even

∆yk = ∆yk−1
∆gk = ∆gk−1

else
∆yk = ∆xk
∆gk = ∆fk

end
γk = −(pHfk)/(pH∆gk)

done

This is the original IDR
Algorithm from page 551 of
(Wesseling and Sonneveld,
1980).

It uses OrthoRes(1) in the first
step and a residual (these are
the −f2j) minimization every
second step.

The finite termination property
follows from a generalization of
the IDR Theorem based on
commutativity of the linear
polynomials I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 17 / 54

IDR and IDR(s) 1976–1980: IDR

Classical IDR

A numerical comparison of Richardson iteration, original IDR, and PIA.

0 5 10

10
−10

10
0

10
10

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 5 and no scaling

0 20 40 60

10
0

10
20

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 20 and no scaling

0 100 200

10
0

10
100

10
200

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 100 and no scaling

0 5 10

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 5 and scaling

0 20 40 60

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 20 and scaling

0 100 200

10
−10

10
0

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

RIP for n = 100 and scaling

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 18 / 54

IDR and IDR(s) 1976–1980: IDR

Brothers of classical and primitive IDR

In 1976 Sonneveld considered the acceleration of Gauß-Seidel (AGS).
Similarly, the IDR philosophy can be used as an accelerator for the other
classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods.

Some of these methods have been considered much more recently by Seiji
Fujino et al. under the names ISOR, IJacobi, IGS. The generalization of these
methods to incorporate more than one shadow vector seems very promising
on distributed memory computers.

One has to look careful at the difference between preconditioning and using a
variable splitting before applying IDR acceleration or afterwards.

The numerical behavior is not very promising. But this picture changes, when
we use more shadow vectors . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 19 / 54

IDR and IDR(s) 1976–1980: IDR

Brothers of classical and primitive IDR

In 1976 Sonneveld considered the acceleration of Gauß-Seidel (AGS).
Similarly, the IDR philosophy can be used as an accelerator for the other
classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods.

Some of these methods have been considered much more recently by Seiji
Fujino et al. under the names ISOR, IJacobi, IGS. The generalization of these
methods to incorporate more than one shadow vector seems very promising
on distributed memory computers.

One has to look careful at the difference between preconditioning and using a
variable splitting before applying IDR acceleration or afterwards.

The numerical behavior is not very promising. But this picture changes, when
we use more shadow vectors . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 19 / 54

IDR and IDR(s) 1976–1980: IDR

Brothers of classical and primitive IDR

In 1976 Sonneveld considered the acceleration of Gauß-Seidel (AGS).
Similarly, the IDR philosophy can be used as an accelerator for the other
classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods.

Some of these methods have been considered much more recently by Seiji
Fujino et al. under the names ISOR, IJacobi, IGS. The generalization of these
methods to incorporate more than one shadow vector seems very promising
on distributed memory computers.

One has to look careful at the difference between preconditioning and using a
variable splitting before applying IDR acceleration or afterwards.

The numerical behavior is not very promising. But this picture changes, when
we use more shadow vectors . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 19 / 54

IDR and IDR(s) 1976–1980: IDR

Brothers of classical and primitive IDR

In 1976 Sonneveld considered the acceleration of Gauß-Seidel (AGS).
Similarly, the IDR philosophy can be used as an accelerator for the other
classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods.

Some of these methods have been considered much more recently by Seiji
Fujino et al. under the names ISOR, IJacobi, IGS. The generalization of these
methods to incorporate more than one shadow vector seems very promising
on distributed memory computers.

One has to look careful at the difference between preconditioning and using a
variable splitting before applying IDR acceleration or afterwards.

The numerical behavior is not very promising. But this picture changes, when
we use more shadow vectors . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 19 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 20 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Rebirth of IDR: IDR(s)

In 2006, 30 years after inventing IDR, Sonneveld together with van Gijzen
reconsidered IDR and came up with a variant called IDR(s) that used
orthogonalization against a larger space, where s denotes the dimension of
that space.

Algorithmically, the transition from IDR to IDR(s) corresponds to replacing the
single vector p ∈ Cn with a matrix P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg
decompositions (also referred to as rational Hessenberg decompositions) and
to generalize QOR, QMR and Ritz-Galërkin.

We have to prove that the expressions for the iterates and residuals based on
polynomials are still valid. But: All these approaches extend easily to
generalized Hessenberg decompositions.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 21 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Rebirth of IDR: IDR(s)

In 2006, 30 years after inventing IDR, Sonneveld together with van Gijzen
reconsidered IDR and came up with a variant called IDR(s) that used
orthogonalization against a larger space, where s denotes the dimension of
that space.

Algorithmically, the transition from IDR to IDR(s) corresponds to replacing the
single vector p ∈ Cn with a matrix P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg
decompositions (also referred to as rational Hessenberg decompositions) and
to generalize QOR, QMR and Ritz-Galërkin.

We have to prove that the expressions for the iterates and residuals based on
polynomials are still valid. But: All these approaches extend easily to
generalized Hessenberg decompositions.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 21 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Rebirth of IDR: IDR(s)

In 2006, 30 years after inventing IDR, Sonneveld together with van Gijzen
reconsidered IDR and came up with a variant called IDR(s) that used
orthogonalization against a larger space, where s denotes the dimension of
that space.

Algorithmically, the transition from IDR to IDR(s) corresponds to replacing the
single vector p ∈ Cn with a matrix P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg
decompositions (also referred to as rational Hessenberg decompositions) and
to generalize QOR, QMR and Ritz-Galërkin.

We have to prove that the expressions for the iterates and residuals based on
polynomials are still valid. But: All these approaches extend easily to
generalized Hessenberg decompositions.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 21 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Rebirth of IDR: IDR(s)

In 2006, 30 years after inventing IDR, Sonneveld together with van Gijzen
reconsidered IDR and came up with a variant called IDR(s) that used
orthogonalization against a larger space, where s denotes the dimension of
that space.

Algorithmically, the transition from IDR to IDR(s) corresponds to replacing the
single vector p ∈ Cn with a matrix P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg
decompositions (also referred to as rational Hessenberg decompositions) and
to generalize QOR, QMR and Ritz-Galërkin.

We have to prove that the expressions for the iterates and residuals based on
polynomials are still valid. But: All these approaches extend easily to
generalized Hessenberg decompositions.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 21 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while
⇒ vn−1 = (I−∇Rn−s:n−1(PH∇Rn−s:n−1)−1PH)rn−1

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections.

and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections.

and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)−1PHrn−1
vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while
⇒ rn = (I− ωjA)vn−1

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 22 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Hessenberg decompositions

We already noted that essential features of Krylov subspace methods can be
described by a Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (5)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (6)

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 23 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Hessenberg decompositions

We already noted that essential features of Krylov subspace methods can be
described by a Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (5)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (6)

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 23 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: Hessenberg decompositions

We already noted that essential features of Krylov subspace methods can be
described by a Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (5)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (6)

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 23 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions

AQnUn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (7)

and perturbed generalized Hessenberg decompositions

AQnUn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (8)

with upper triangular (possibly even singular) Un.

Generalized Hessenberg decompositions correspond to an oblique projection
of the pencil (A, I) to the pencil (Hn,Un) as long as Qn+1 has full rank,

Q̂H
n (A, I)QnUn = Q̂H

n (AQnUn,QnUn)

= Q̂H
n (Qn+1Hn,QnUn) = (IT

n Hn,Un) = (Hn,Un),
(9)

where Q̂H
n := IT

n Q†n+1.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 24 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions

AQnUn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (7)

and perturbed generalized Hessenberg decompositions

AQnUn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (8)

with upper triangular (possibly even singular) Un.

Generalized Hessenberg decompositions correspond to an oblique projection
of the pencil (A, I) to the pencil (Hn,Un) as long as Qn+1 has full rank,

Q̂H
n (A, I)QnUn = Q̂H

n (AQnUn,QnUn)

= Q̂H
n (Qn+1Hn,QnUn) = (IT

n Hn,Un) = (Hn,Un),
(9)

where Q̂H
n := IT

n Q†n+1.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 24 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions

AQnUn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (7)

and perturbed generalized Hessenberg decompositions

AQnUn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (8)

with upper triangular (possibly even singular) Un.

Generalized Hessenberg decompositions correspond to an oblique projection
of the pencil (A, I) to the pencil (Hn,Un) as long as Qn+1 has full rank,

Q̂H
n (A, I)QnUn = Q̂H

n (AQnUn,QnUn)

= Q̂H
n (Qn+1Hn,QnUn) = (IT

n Hn,Un) = (Hn,Un),
(9)

where Q̂H
n := IT

n Q†n+1.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 24 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations.

Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1) and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations. Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1) and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations. Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1) and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations. Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1).

and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations. Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1), and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

Understanding IDR: OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations. Three well-known ways for implementing
the QOR/QMR approach are commonly denoted as OrthoRes, OrthoMin,
OrthoDir.

The prototype IDR(s) belongs to the class OrthoRes and uses short
recurrences, therefore we refer to it as IDR(s)ORes.

OrthoRes-type methods have a generalized Hessenberg decomposition

ARnUn = Rn+1H◦n = RnH◦n + rn+1h◦n+1,neT
n , (10)

where eTH◦n = oT
n , eT = (1, . . . , 1), and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖2

‖q1‖2
, . . . ,

‖rn‖2

‖qn+1‖2

)
(11)

is diagonally scaled to be the matrix of residual vectors.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 25 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

1 · rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR and IDR(s) 2006–2010: IDR(s)

IDR: The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ(n)
s) rn−1 +

∑s−1
`=1 (γ(n)

s−`+1 − γ
(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

1 · rn := (I− ωjA) vn−1 .

(12)

Here, n > s, and the index of the scalar ωj is defined by

j :=
⌊

n
s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦n . (13)

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 26 / 54

IDR(s)Eig Sonneveld pencil

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 27 / 54

IDR(s)Eig Sonneveld pencil

IDR: Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦n ,YnD(n)
ω), can be

depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×

,

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 28 / 54

IDR(s)Eig Sonneveld pencil

IDR: Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦n ,YnD(n)
ω), can be

depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×

,

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 28 / 54

IDR(s)Eig Purified pencil

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 29 / 54

IDR(s)Eig Purified pencil

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×

,

×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 30 / 54

IDR(s)Eig Purified pencil

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×

,

×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 30 / 54

IDR(s)Eig Purified pencil

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×

,

×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 30 / 54

IDR(s)Eig Purified pencil

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦n Gn,UnD(n)

ω), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+

,

×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦n Gn we can get rid

of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 31 / 54

IDR(s)Eig Purified pencil

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦n Gn,UnD(n)

ω), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+

,

×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦n Gn we can get rid

of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 31 / 54

IDR(s)Eig Deflated pencil

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 32 / 54

IDR(s)Eig Deflated pencil

Understanding IDR: Deflation

Let D denote an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω)), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,

×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 33 / 54

IDR(s)Eig Deflated pencil

Understanding IDR: Deflation

Let D denote an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω)), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,

×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 33 / 54

IDR(s)Eig Deflated pencil

Understanding IDR: Deflation

Let D denote an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω)), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,

×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 33 / 54

IDR(s)Eig BiORes(s,1)

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 34 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(UnD(n)
ω)) gives an algebraic eigenvalue

problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω))−1 =

××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

The extended matrix version Ln satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1
and Ωj(z) =

∏j
k=1(1− ωkz) are given by Ωj(A)q js+k = rj(s+1)+k.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 35 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(UnD(n)
ω)) gives an algebraic eigenvalue

problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω))−1 =

××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

The extended matrix version Ln satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1
and Ωj(z) =

∏j
k=1(1− ωkz) are given by Ωj(A)q js+k = rj(s+1)+k.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 35 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(UnD(n)
ω)) gives an algebraic eigenvalue

problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω))−1 =

××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

The extended matrix version Ln satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1
and Ωj(z) =

∏j
k=1(1− ωkz) are given by Ωj(A)q js+k = rj(s+1)+k.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 35 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P.

Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction (Sleijpen et al., 2008) one can prove that q js+k ⊥ Kj(AH,P);
thus, this is a two-sided Lanczos process with s left and one right starting
vectors.

This can more easily be proven using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
of the Sonneveld spaces.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 36 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P. Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction (Sleijpen et al., 2008) one can prove that q js+k ⊥ Kj(AH,P);
thus, this is a two-sided Lanczos process with s left and one right starting
vectors.

This can more easily be proven using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
of the Sonneveld spaces.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 36 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P. Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction (Sleijpen et al., 2008) one can prove that q js+k ⊥ Kj(AH,P);
thus, this is a two-sided Lanczos process with s left and one right starting
vectors.

This can more easily be proven using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
of the Sonneveld spaces.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 36 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P. Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction (Sleijpen et al., 2008) one can prove that q js+k ⊥ Kj(AH,P);
thus, this is a two-sided Lanczos process with s left and one right starting
vectors.

This can more easily be proven using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
of the Sonneveld spaces.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 36 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

The first equality

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that

I the first s + 1 residuals obviously are in G0 := K(A, r0),
I the next s + 1 residuals (or any other vectors in G1) are in the I− ω1A

image of S = P⊥,
I the last s + 1 residuals are in the I− ωjA image of S = P⊥,
I the last residuals are I− ωjA images of linear combinations of previously

obtained images (I− ωj−1A) · · · (I− ωkA) of S = P⊥.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 37 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

The first equality

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that

I the first s + 1 residuals obviously are in G0 := K(A, r0),
I the next s + 1 residuals (or any other vectors in G1) are in the I− ω1A

image of S = P⊥,
I the last s + 1 residuals are in the I− ωjA image of S = P⊥,
I the last residuals are I− ωjA images of linear combinations of previously

obtained images (I− ωj−1A) · · · (I− ωkA) of S = P⊥.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 37 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

The first equality

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that

I the first s + 1 residuals obviously are in G0 := K(A, r0),
I the next s + 1 residuals (or any other vectors in G1) are in the I− ω1A

image of S = P⊥,
I the last s + 1 residuals are in the I− ωjA image of S = P⊥,
I the last residuals are I− ωjA images of linear combinations of previously

obtained images (I− ωj−1A) · · · (I− ωkA) of S = P⊥.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 37 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides
The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

is based on
BP⊥ = (B−H P)⊥

and
U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from

P⊥ =
{

v ∈ Cn | PHv = on
}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = on

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{

y = Bv ∧ PHv = on
}
⇔ PHv = PHB−1y = (B−HP)Hy = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 38 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides
The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

is based on
BP⊥ = (B−H P)⊥

and
U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from

P⊥ =
{

v ∈ Cn | PHv = on
}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = on

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{

y = Bv ∧ PHv = on
}
⇔ PHv = PHB−1y = (B−HP)Hy = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 38 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides
The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A) H {P}
)⊥

is based on
BP⊥ = (B−H P)⊥

and
U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from

P⊥ =
{

v ∈ Cn | PHv = on
}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = on

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{

y = Bv ∧ PHv = on
}
⇔ PHv = PHB−1y = (B−HP)Hy = on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 38 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality(j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥

are satisfied

I since the polynomials Ωk(A), 0 6 k < j form a basis of the space of
polynomials of degree less j, and

I by the property proved on the last slide, respectively.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 39 / 54

IDR(s)Eig BiORes(s,1)

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality(j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
are satisfied

I since the polynomials Ωk(A), 0 6 k < j form a basis of the space of
polynomials of degree less j, and

I by the property proved on the last slide, respectively.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 39 / 54

IDR(s)Eig Generalizations of IDR(s)

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 40 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

In the analysis of the similarities of and differences between IDR and
ML(k)BiCGStab, Sonneveld and van Gijzen realized that the residuals
computed last in a complete cycle are of importance.

In their new implementation IDR(s)BiO (van Gijzen and Sonneveld, 2008) of
the IDR Theorem, they use basis vectors g−1, . . . , g−s ∈ Gj, which are not
simply residual differences but linear combinations.

The new vectors vn and rn+1 are in this general setting given by the updates

vn = rn −
s∑

i=1

gn−iγi =: rn −Gncn, and thus,

rn+1 = (I− ωA)vn = rn − ωAvn −
s∑

i=1

gn−iγi,

where cn is determined such that PHvn = o.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 41 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

In the analysis of the similarities of and differences between IDR and
ML(k)BiCGStab, Sonneveld and van Gijzen realized that the residuals
computed last in a complete cycle are of importance.

In their new implementation IDR(s)BiO (van Gijzen and Sonneveld, 2008) of
the IDR Theorem, they use basis vectors g−1, . . . , g−s ∈ Gj, which are not
simply residual differences but linear combinations.

The new vectors vn and rn+1 are in this general setting given by the updates

vn = rn −
s∑

i=1

gn−iγi =: rn −Gncn, and thus,

rn+1 = (I− ωA)vn = rn − ωAvn −
s∑

i=1

gn−iγi,

where cn is determined such that PHvn = o.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 41 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

In the analysis of the similarities of and differences between IDR and
ML(k)BiCGStab, Sonneveld and van Gijzen realized that the residuals
computed last in a complete cycle are of importance.

In their new implementation IDR(s)BiO (van Gijzen and Sonneveld, 2008) of
the IDR Theorem, they use basis vectors g−1, . . . , g−s ∈ Gj, which are not
simply residual differences but linear combinations.

The new vectors vn and rn+1 are in this general setting given by the updates

vn = rn −
s∑

i=1

gn−iγi =: rn −Gncn, and thus,

rn+1 = (I− ωA)vn = rn − ωAvn −
s∑

i=1

gn−iγi,

where cn is determined such that PHvn = o.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 41 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 42 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 42 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 42 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 42 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

I In (Sleijpen et al., 2008) the authors derive different implementations of
ML(k)BiCGStab-like algorithms.

I In (Sleijpen and van Gijzen, 2009) the authors combine the IDR
philosophy with higher degree stabilization polynomials. The resulting
method is named IDR(s)Stab(`). The approach is comparable to the one
resulting in BiCGStab(`).

I In (Tanio and Sugihara, 2009) the authors derive the algorithm
GBiCGStab(s,L), which is similar to IDR(s)Stab(`). In their own words:
“Our algorithm is to theirs what the Gauss-Seidel iteration is to the Jacobi
iteration.” A predecessor of GBiCGStab(s,L) seems to be the method
called GIDR(s,L) in (Tanio and Sugihara, 2008).

I In (Sleijpen and Abe, 2010) the ideas behind BiCGStab2 (Gutknecht,
1993) and GPBiCG (Zhang, 1997) are considered.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 42 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

The relation of IDR to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz (Simoncini and Szyld, 2009).

Another, simpler motivation is that the residual polynomials should be
designed to dampen the spectrum. Using the residual polynomial
representation of IDR we could choose the 1/ωj close but not equal to
eigenvalues, at least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to
use a few steps of the Arnoldi method to compute some Ritz values, which
are then used in some ordering as 1/ωj values.

For real nonsymmetric matrices this typically results in an algorithm based on
complex arithmetic in place of real arithmetic.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 43 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

The relation of IDR to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz (Simoncini and Szyld, 2009).

Another, simpler motivation is that the residual polynomials should be
designed to dampen the spectrum. Using the residual polynomial
representation of IDR we could choose the 1/ωj close but not equal to
eigenvalues, at least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to
use a few steps of the Arnoldi method to compute some Ritz values, which
are then used in some ordering as 1/ωj values.

For real nonsymmetric matrices this typically results in an algorithm based on
complex arithmetic in place of real arithmetic.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 43 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

The relation of IDR to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz (Simoncini and Szyld, 2009).

Another, simpler motivation is that the residual polynomials should be
designed to dampen the spectrum. Using the residual polynomial
representation of IDR we could choose the 1/ωj close but not equal to
eigenvalues, at least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to
use a few steps of the Arnoldi method to compute some Ritz values, which
are then used in some ordering as 1/ωj values.

For real nonsymmetric matrices this typically results in an algorithm based on
complex arithmetic in place of real arithmetic.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 43 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

The relation of IDR to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz (Simoncini and Szyld, 2009).

Another, simpler motivation is that the residual polynomials should be
designed to dampen the spectrum. Using the residual polynomial
representation of IDR we could choose the 1/ωj close but not equal to
eigenvalues, at least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to
use a few steps of the Arnoldi method to compute some Ritz values, which
are then used in some ordering as 1/ωj values.

For real nonsymmetric matrices this typically results in an algorithm based on
complex arithmetic in place of real arithmetic.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 43 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Last but not least: Certain old ideas have been reactivated. Sonneveld
presented the hitherto unpublished Accelerated Gauß-Seidel (AGS) method
at the Kyoto Forum on Krylov Subspace Methods in 2008.

Based on the algorithm in the proceedings, Seiji Fujino et al. considered the
acceleration of the classical splitting methods (Jacobi, Gauß-Seidel and
SOR). The resulting methods are called

I IDR(s)-Jacobi (w/o adaptive tuning),
I IDR(s)-GS,
I IDR(s)-SOR.

These approaches result in a “tight packing” of preconditioning and Krylov
subspace methods, compare with PIA. In most of these methods the ωj are
fixed by the splitting chosen.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 44 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Last but not least: Certain old ideas have been reactivated. Sonneveld
presented the hitherto unpublished Accelerated Gauß-Seidel (AGS) method
at the Kyoto Forum on Krylov Subspace Methods in 2008.

Based on the algorithm in the proceedings, Seiji Fujino et al. considered the
acceleration of the classical splitting methods (Jacobi, Gauß-Seidel and
SOR). The resulting methods are called

I IDR(s)-Jacobi (w/o adaptive tuning),
I IDR(s)-GS,
I IDR(s)-SOR.

These approaches result in a “tight packing” of preconditioning and Krylov
subspace methods, compare with PIA. In most of these methods the ωj are
fixed by the splitting chosen.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 44 / 54

IDR(s)Eig Generalizations of IDR(s)

Generalizations of IDR(s)

Last but not least: Certain old ideas have been reactivated. Sonneveld
presented the hitherto unpublished Accelerated Gauß-Seidel (AGS) method
at the Kyoto Forum on Krylov Subspace Methods in 2008.

Based on the algorithm in the proceedings, Seiji Fujino et al. considered the
acceleration of the classical splitting methods (Jacobi, Gauß-Seidel and
SOR). The resulting methods are called

I IDR(s)-Jacobi (w/o adaptive tuning),
I IDR(s)-GS,
I IDR(s)-SOR.

These approaches result in a “tight packing” of preconditioning and Krylov
subspace methods, compare with PIA. In most of these methods the ωj are
fixed by the splitting chosen.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 44 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Outline

IDR and IDR(s)

Krylov subspace methods

1976–1980: IDR

2006–2010: IDR(s)

IDR(s)Eig

Sonneveld pencil

Purified pencil

Deflated pencil

BiORes(s,1)

Generalizations of IDR(s)

Parallelization of IDR(s) and IDR(s)Eig

. . . an introduction to IDR(s) parallelization

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 45 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method.

Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),

I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),

I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,

I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),

I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

IDR(s) is a typical Krylov subspace method. Most known Krylov subspace
methods are based on

I matrix-vector products (“black-box” or with a sparse matrix),
I some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
I solution of small linear systems,
I _dots (line search minimization),
I _axpys or _gemvs (updates of vectors).

On the next slide we sketch the IDR(s) variant IDR(s)BiO described in the
Technical Report (van Gijzen and Sonneveld, 2008). Its Matlab source code
can be downloaded from
http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

This version of IDR(s) is contained in release 3.0 of the IFISS package.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 46 / 54

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

x = x0; r = b - A*x; ω = 1; PT = P’;
G = zeros(n,s); U = zeros(n,s); M = eye(s);
while “not converged”
PTr = PT*r;
for k = 1:s

% Solve small system and make v orthogonal to P:
c = M(k:s,k:s)\PTr(k:s);
v = r - G(:,k:s)*c;
U(:,k) = U(:,k:s)*c + ω*v;

% Compute G(:,k) = A U(:,k)
G(:,k) = A*U(:,k);

% Bi-Orthogonalize the new basis vectors:
for j = 1:k-1
α = (PT(j,:)*G(:,k))/M(j,j);
G(:,k) = G(:,k) - α*G(:,j);
U(:,k) = U(:,k) - α*U(:,j);

end
% New column of M = P’*G (first k-1 entries are zero)

M(k:s,k) = PT(k:s,:)*G(:,k);
% Make r orthogonal to p_j, j = 1,...,k

β = PTr(k)/M(k,k);
r = r - β*G(:,k); x = x + β*U(:,k);

% New PTr = P’*r (first k components are zero)
if k < s

PTr(k+1:s) = PTr(k+1:s) - β*M(k+1:s,k);
end

end
% Note: r is already perpendicular to P so v = r
v = r; t = A*v;
select or compute ω;
r = r - ω*t; x = x + ω*v;

end

Parallelization possible, e.g.:
{Sca,P}LAPACK, CUBLAS/CUDA,
cloud computing,. . .

A naïve CUBLAS implementation
would be based on

I parallel evaluation of small
sized problems,

I several calls to
cublasSaxpy(),

I several calls to
cublasSgemv(),

I several calls to
cublasSdot(),

I several calls to
cublasScopy().

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 47 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement.

The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,
I reordering of a given sparse matrix using some heuristics (e.g., reverse

Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement. The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,

I reordering of a given sparse matrix using some heuristics (e.g., reverse
Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement. The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,
I reordering of a given sparse matrix using some heuristics (e.g., reverse

Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement. The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,
I reordering of a given sparse matrix using some heuristics (e.g., reverse

Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement. The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,
I reordering of a given sparse matrix using some heuristics (e.g., reverse

Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

There is room for improvement. The implementation of the matrix-vector
multiplication with A should be adjusted to the type of matrix given, e.g.,

I (fully optimized parallel) “black-box”,
I reordering of a given sparse matrix using some heuristics (e.g., reverse

Cuthill-McKee, multi-color schemes, . . .) for a better block-distribution to
the nodes and to reduce communication,

I parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous
environment, since we have several synchronization points in the algorithm,
namely the _dots from orthogonalization and (possibly) the computation of ωj

and (possibly) the computation of the norm of the residual or backward error.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 48 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

The naïve CUBLAS implementation can be enhanced by using some other
IDR(s) variant. The triangular bi-orthogonalisation scheme could be replaced:

I Instead of modified Gram-Schmidt we could use (iterated) classical
Gram-Schmidt.

I Furthermore, we could adopt delayed reorthogonalization (Hernández
et al., 2006) to the case of iterated Gram-Schmidt-like
bi-orthogonalisation.

I We could use other triangular basis transformations. This would result in
full s× s-systems, but the main computational effort takes places
elsewhere.

Similarly to the approaches used in parallel implementations of CG (Meurant,
1987; D’Azevedo et al., 1993) we could try to minimize the number of
synchronization barriers given by the orthogonalisation against P, any other
occurring (bi-)orthogonalization and the computation of ω by utilization of
algebraic rewritings.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 49 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

The naïve CUBLAS implementation can be enhanced by using some other
IDR(s) variant. The triangular bi-orthogonalisation scheme could be replaced:

I Instead of modified Gram-Schmidt we could use (iterated) classical
Gram-Schmidt.

I Furthermore, we could adopt delayed reorthogonalization (Hernández
et al., 2006) to the case of iterated Gram-Schmidt-like
bi-orthogonalisation.

I We could use other triangular basis transformations. This would result in
full s× s-systems, but the main computational effort takes places
elsewhere.

Similarly to the approaches used in parallel implementations of CG (Meurant,
1987; D’Azevedo et al., 1993) we could try to minimize the number of
synchronization barriers given by the orthogonalisation against P, any other
occurring (bi-)orthogonalization and the computation of ω by utilization of
algebraic rewritings.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 49 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

The naïve CUBLAS implementation can be enhanced by using some other
IDR(s) variant. The triangular bi-orthogonalisation scheme could be replaced:

I Instead of modified Gram-Schmidt we could use (iterated) classical
Gram-Schmidt.

I Furthermore, we could adopt delayed reorthogonalization (Hernández
et al., 2006) to the case of iterated Gram-Schmidt-like
bi-orthogonalisation.

I We could use other triangular basis transformations. This would result in
full s× s-systems, but the main computational effort takes places
elsewhere.

Similarly to the approaches used in parallel implementations of CG (Meurant,
1987; D’Azevedo et al., 1993) we could try to minimize the number of
synchronization barriers given by the orthogonalisation against P, any other
occurring (bi-)orthogonalization and the computation of ω by utilization of
algebraic rewritings.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 49 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

The naïve CUBLAS implementation can be enhanced by using some other
IDR(s) variant. The triangular bi-orthogonalisation scheme could be replaced:

I Instead of modified Gram-Schmidt we could use (iterated) classical
Gram-Schmidt.

I Furthermore, we could adopt delayed reorthogonalization (Hernández
et al., 2006) to the case of iterated Gram-Schmidt-like
bi-orthogonalisation.

I We could use other triangular basis transformations. This would result in
full s× s-systems, but the main computational effort takes places
elsewhere.

Similarly to the approaches used in parallel implementations of CG (Meurant,
1987; D’Azevedo et al., 1993) we could try to minimize the number of
synchronization barriers given by the orthogonalisation against P, any other
occurring (bi-)orthogonalization and the computation of ω by utilization of
algebraic rewritings.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 49 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s) – unpreconditioned IDR(s)BiO

The naïve CUBLAS implementation can be enhanced by using some other
IDR(s) variant. The triangular bi-orthogonalisation scheme could be replaced:

I Instead of modified Gram-Schmidt we could use (iterated) classical
Gram-Schmidt.

I Furthermore, we could adopt delayed reorthogonalization (Hernández
et al., 2006) to the case of iterated Gram-Schmidt-like
bi-orthogonalisation.

I We could use other triangular basis transformations. This would result in
full s× s-systems, but the main computational effort takes places
elsewhere.

Similarly to the approaches used in parallel implementations of CG (Meurant,
1987; D’Azevedo et al., 1993) we could try to minimize the number of
synchronization barriers given by the orthogonalisation against P, any other
occurring (bi-)orthogonalization and the computation of ω by utilization of
algebraic rewritings.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 49 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

We can quite easily get rid of the synchronization points caused by the
computation of the non-zero scalars ωj. One idea is to precompute a certain
amount of Ritz values like in (Simoncini and Szyld, 2009) or to use the CPU
(or some nodes of the GPU) to compute rough approximations to eigenvalues
based on the Sonneveld pencil.

If we use a method like IDR(s)-Jacobi, we typically have a lower convergence
rate, but have removed all synchronization points due to (bi)-orthogonalization
of the basis vectors in the Sonneveld spaces or their pre-images. This may
give a speedup that covers the price paid due to a slower convergence.

But: We can never get rid of the orthogonalization against P. This has to be
carried out in every IDR(s) method. This should be optimized using code
adopted to the architecture we are working on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 50 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

We can quite easily get rid of the synchronization points caused by the
computation of the non-zero scalars ωj. One idea is to precompute a certain
amount of Ritz values like in (Simoncini and Szyld, 2009) or to use the CPU
(or some nodes of the GPU) to compute rough approximations to eigenvalues
based on the Sonneveld pencil.

If we use a method like IDR(s)-Jacobi, we typically have a lower convergence
rate, but have removed all synchronization points due to (bi)-orthogonalization
of the basis vectors in the Sonneveld spaces or their pre-images. This may
give a speedup that covers the price paid due to a slower convergence.

But: We can never get rid of the orthogonalization against P. This has to be
carried out in every IDR(s) method. This should be optimized using code
adopted to the architecture we are working on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 50 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)

We can quite easily get rid of the synchronization points caused by the
computation of the non-zero scalars ωj. One idea is to precompute a certain
amount of Ritz values like in (Simoncini and Szyld, 2009) or to use the CPU
(or some nodes of the GPU) to compute rough approximations to eigenvalues
based on the Sonneveld pencil.

If we use a method like IDR(s)-Jacobi, we typically have a lower convergence
rate, but have removed all synchronization points due to (bi)-orthogonalization
of the basis vectors in the Sonneveld spaces or their pre-images. This may
give a speedup that covers the price paid due to a slower convergence.

But: We can never get rid of the orthogonalization against P. This has to be
carried out in every IDR(s) method. This should be optimized using code
adopted to the architecture we are working on.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 50 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of P and cost of orthogonalization

We could adopt the generic choice for P, namely, using randomly generated
orthonormal columns to the type of problem.

If the problem is the discrete version of a 2D or 3D physical problem, we could
use as test vectors pj discretizations of test functions with compact support,
e.g., we could use some (non-)overlapping Schwarz-like vectors. These
vectors can be stored more compactly and could be distributed to all nodes in
a distributed memory architecture.

To save memory, we could use randomly generated vectors with only ±1 and
0. The orthogonalization against P is in this case based on the computation of
two sums of subsets of the vectors and finally one subtraction. Additional
structure gives additional gain in efficiency.

Both ideas can be combined. One has to careful balance the benefits and the
risks of resulting instabilities.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 51 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of P and cost of orthogonalization

We could adopt the generic choice for P, namely, using randomly generated
orthonormal columns to the type of problem.

If the problem is the discrete version of a 2D or 3D physical problem, we could
use as test vectors pj discretizations of test functions with compact support,
e.g., we could use some (non-)overlapping Schwarz-like vectors. These
vectors can be stored more compactly and could be distributed to all nodes in
a distributed memory architecture.

To save memory, we could use randomly generated vectors with only ±1 and
0. The orthogonalization against P is in this case based on the computation of
two sums of subsets of the vectors and finally one subtraction. Additional
structure gives additional gain in efficiency.

Both ideas can be combined. One has to careful balance the benefits and the
risks of resulting instabilities.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 51 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of P and cost of orthogonalization

We could adopt the generic choice for P, namely, using randomly generated
orthonormal columns to the type of problem.

If the problem is the discrete version of a 2D or 3D physical problem, we could
use as test vectors pj discretizations of test functions with compact support,
e.g., we could use some (non-)overlapping Schwarz-like vectors. These
vectors can be stored more compactly and could be distributed to all nodes in
a distributed memory architecture.

To save memory, we could use randomly generated vectors with only ±1 and
0. The orthogonalization against P is in this case based on the computation of
two sums of subsets of the vectors and finally one subtraction. Additional
structure gives additional gain in efficiency.

Both ideas can be combined. One has to careful balance the benefits and the
risks of resulting instabilities.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 51 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of P and cost of orthogonalization

We could adopt the generic choice for P, namely, using randomly generated
orthonormal columns to the type of problem.

If the problem is the discrete version of a 2D or 3D physical problem, we could
use as test vectors pj discretizations of test functions with compact support,
e.g., we could use some (non-)overlapping Schwarz-like vectors. These
vectors can be stored more compactly and could be distributed to all nodes in
a distributed memory architecture.

To save memory, we could use randomly generated vectors with only ±1 and
0. The orthogonalization against P is in this case based on the computation of
two sums of subsets of the vectors and finally one subtraction. Additional
structure gives additional gain in efficiency.

Both ideas can be combined. One has to careful balance the benefits and the
risks of resulting instabilities.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 51 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)Eig

As IDR(s)Eig is based on (a given variant) of IDR(s), the same comments
apply. We only have to store the vectors defining the orthogonalization against
P (in every step one vector of length s), any triangular basis transformations
(in every sweep of s + 1 steps a few s× s triangular matrices) and the ωj used
for s + 1 consecutive steps.

The computation of the eigenvalues should be performed on some of the
pencils using an adopted QZ algorithm working near the original band of the
banded pencil, the shift strategy should be chosen as to minimize
communication between diagonal blocks while retaining favorable
convergence properties.

It is not known by now, which IDR(s)Eig algorithm is the one most stable.
Thus, up to now, nobody did consider to come up with a stable eigenvalue
solver designed for the special structure of pencils stemming from IDR(s)
algorithms. Once a good candidate for an IDR(s) algorithm suitable for stable
eigenvalue computations is known, one can come up with a parallel variant.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 52 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)Eig

As IDR(s)Eig is based on (a given variant) of IDR(s), the same comments
apply. We only have to store the vectors defining the orthogonalization against
P (in every step one vector of length s), any triangular basis transformations
(in every sweep of s + 1 steps a few s× s triangular matrices) and the ωj used
for s + 1 consecutive steps.

The computation of the eigenvalues should be performed on some of the
pencils using an adopted QZ algorithm working near the original band of the
banded pencil, the shift strategy should be chosen as to minimize
communication between diagonal blocks while retaining favorable
convergence properties.

It is not known by now, which IDR(s)Eig algorithm is the one most stable.
Thus, up to now, nobody did consider to come up with a stable eigenvalue
solver designed for the special structure of pencils stemming from IDR(s)
algorithms. Once a good candidate for an IDR(s) algorithm suitable for stable
eigenvalue computations is known, one can come up with a parallel variant.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 52 / 54

Parallelization of IDR(s) and IDR(s)Eig . . . an introduction to IDR(s) parallelization

Structure of IDR(s)Eig

As IDR(s)Eig is based on (a given variant) of IDR(s), the same comments
apply. We only have to store the vectors defining the orthogonalization against
P (in every step one vector of length s), any triangular basis transformations
(in every sweep of s + 1 steps a few s× s triangular matrices) and the ωj used
for s + 1 consecutive steps.

The computation of the eigenvalues should be performed on some of the
pencils using an adopted QZ algorithm working near the original band of the
banded pencil, the shift strategy should be chosen as to minimize
communication between diagonal blocks while retaining favorable
convergence properties.

It is not known by now, which IDR(s)Eig algorithm is the one most stable.
Thus, up to now, nobody did consider to come up with a stable eigenvalue
solver designed for the special structure of pencils stemming from IDR(s)
algorithms. Once a good candidate for an IDR(s) algorithm suitable for stable
eigenvalue computations is known, one can come up with a parallel variant.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 52 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.

I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.
I We sketched the relation between IDR(s)ORes, the eigenvalue routine

IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).
I We briefly indicated how to parallelize one member of the IDR(s) family,

namely the more recent variant IDR(s)BiO.
I We gave only a rather philosophical treatment of a parallel

implementation of IDR(s)Eig.
I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.

I We indicated how to compute eigenvalues using one particular instance
of IDR(s), namely, IDR(s)ORes.

I We sketched the relation between IDR(s)ORes, the eigenvalue routine
IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).

I We briefly indicated how to parallelize one member of the IDR(s) family,
namely the more recent variant IDR(s)BiO.

I We gave only a rather philosophical treatment of a parallel
implementation of IDR(s)Eig.

I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.

I We sketched the relation between IDR(s)ORes, the eigenvalue routine
IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).

I We briefly indicated how to parallelize one member of the IDR(s) family,
namely the more recent variant IDR(s)BiO.

I We gave only a rather philosophical treatment of a parallel
implementation of IDR(s)Eig.

I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.
I We sketched the relation between IDR(s)ORes, the eigenvalue routine

IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).

I We briefly indicated how to parallelize one member of the IDR(s) family,
namely the more recent variant IDR(s)BiO.

I We gave only a rather philosophical treatment of a parallel
implementation of IDR(s)Eig.

I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.
I We sketched the relation between IDR(s)ORes, the eigenvalue routine

IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).
I We briefly indicated how to parallelize one member of the IDR(s) family,

namely the more recent variant IDR(s)BiO.

I We gave only a rather philosophical treatment of a parallel
implementation of IDR(s)Eig.

I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.
I We sketched the relation between IDR(s)ORes, the eigenvalue routine

IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).
I We briefly indicated how to parallelize one member of the IDR(s) family,

namely the more recent variant IDR(s)BiO.
I We gave only a rather philosophical treatment of a parallel

implementation of IDR(s)Eig.

I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Conclusions and Outlook

I We gave a short introduction to Krylov subspace methods.
I We sketched the IDR and IDR(s) families.
I We indicated how to compute eigenvalues using one particular instance

of IDR(s), namely, IDR(s)ORes.
I We sketched the relation between IDR(s)ORes, the eigenvalue routine

IDR(s)Eig based on it, and a two-sided Lanczos process BiORes(s,1).
I We briefly indicated how to parallelize one member of the IDR(s) family,

namely the more recent variant IDR(s)BiO.
I We gave only a rather philosophical treatment of a parallel

implementation of IDR(s)Eig.
I Much remains to be done . . .

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 53 / 54

Conclusion

Thank you very much for your attention!

どうも有難う御座いました。

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

References

D’Azevedo, E. F., Eijkhout, V., and Romine, C. H. (1993).
A matrix framework for conjugate gradient methods and some variants of
cg with less synchronization overhead.
In PPSC, pages 644–646.

Gutknecht, M. H. (1993).
Variants of BICGSTAB for matrices with complex spectrum.
SIAM J. Sci. Comput., 14(5):1020–1033.

Gutknecht, M. H. and Zemke, J.-P. M. (2010).
Eigenvalue computations based on IDR.
Technical Report (to appear 2010).

Hernández, V., Román, J. E., and Tomás, A. (2006).
A parallel variant of the Gram-Schmidt process with reorthogonalization.
In Joubert, G. R., Nagel, W. E., Peters, F. J., Plata, O. G., Tirado, P., and
Zapata, E. L., editors, Proceedings of the International Conference on
Parallel Computing (ParCo 2005), volume 33, pages 221–228. Central
Institute for Applied Mathematics, Jülich, Germany.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

References

Meurant, G. (1987).
Multitasking the conjugate gradient method on the CRAY X-MP/48.
Parallel Comput., 5(3):267–280.

Simoncini, V. and Szyld, D. (2009).
Interpreting IDR as a Petrov-Galerkin method.
Report 09-10-22, Dipartimento di Matematica, Università di Bologna and
Department of Mathematics, Temple University, Philadelphia.

Sleijpen, G. L. G. and Abe, K. (2010).
Publication in preparation (January 2010).

Sleijpen, G. L. G., Sonneveld, P., and van Gijzen, M. B. (2008).
Bi-CGSTAB as an induced dimension reduction method.
Reports of the Department of Applied Mathematical Analysis Report
08-07, Delft University of Technology.
ISSN 1389-6520.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

References

Sleijpen, G. L. G. and van Gijzen, M. B. (2009).
Exploiting BiCGstab(`) strategies to induce dimension reduction.
Reports of the Department of Applied Mathematical Analysis Report
09-02, Delft University of Technology.
ISSN 1389-6520.

Sonneveld, P. (2006).
History of IDR: an example of serendipity.
PDF file sent by Peter Sonneveld on Monday, 24th of July 2006.
8 pages; evolved into (Sonneveld, 2008).

Sonneveld, P. (2008).
AGS-IDR-CGS-BiCGSTAB-IDR(s): The circle closed. A case of
serendipity.
In Proceedings of the International Kyoto Forum 2008 on Krylov
subspace methods, pages 1–14.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

References

Sonneveld, P. and van Gijzen, M. B. (2008).
IDR(s): A family of simple and fast algorithms for solving large
nonsymmetric systems of linear equations.
SIAM Journal on Scientific Computing, 31(2):1035–1062.
Received Mar. 20, 2007.

Tanio, M. and Sugihara, M. (2008).
GIDR(s,l): generalized IDR(s).
In The 2008 annual conference of the Japan Society for Industrial and
Applied Mathematic, pages 411–412, Chiba, Japan.
(In Japanese).

Tanio, M. and Sugihara, M. (2009).
GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials.
Technical Report METR 2009-16, Department of Mathematical
Informatics, Graduate School of information Science and Technology,
University of Tokio.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

van Gijzen, M. B. and Sonneveld, P. (2008).
An elegant IDR(s) variant that efficiently exploits bi-orthogonality
properties.
Reports of the Department of Applied Mathematical Analysis Report
08-21, Delft University of Technology.
ISSN 1389-6520.

Wesseling, P. and Sonneveld, P. (1980).
Numerical experiments with a multiple grid and a preconditioned Lanczos
type method.
In Approximation Methods for Navier-Stokes Problems, volume 771 of
Lecture Notes in Mathematics, pages 543–562. Springer.

Zhang, S.-L. (1997).
GPBi-CG: generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems.
SIAM Journal on Scientific Computing, 18(2):537–551.

TUHH Jens-Peter M. Zemke IDR(s) and IDR(s)Eig in Parallel Computing Tokyo, 2010/02/12 54 / 54

	IDR and IDR(s)
	Krylov subspace methods
	1976--1980: IDR
	2006--2010: IDR(s)

	IDR(s)Eig
	Sonneveld pencil
	Purified pencil
	Deflated pencil
	BiORes(s,1)
	Generalizations of IDR(s)

	Parallelization of IDR(s) and IDR(s)Eig
	…an introduction to IDR(s) parallelization

	Conclusion
	Appendix
	References

