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Basics Internal guidelines

What is the problem you’re considering?

I am trying to motivate why the method of Induced Dimension Reduction (IDR)
and its generalization IDR(s) are worth considering when looking for iterative
solvers for your type of problem, e.g.,

I (large sparse) linear systems: Ax = r0, A ∈ Cn×n, r0 ∈ Cn, or
I (large sparse) eigenvalue problems: Av = vλ.

I have a general interest in Krylov subspace methods, for me IDR(s) is just a
new Krylov subspace method that offers interesting new possibilities.

My personal interest lies in the error analysis of perturbed Krylov subspace
methods and their convergence properties. These perturbations are

I always caused by finite precision,
I sometimes caused deliberately, e.g., in inexact methods.
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Basics Internal guidelines

Why do you find this interesting?

The error analysis of Krylov subspace methods is by no means simple:

I Krylov subspace methods are highly sophisticated tools,
I most analysis is based on the fact that, in theory, Krylov subspace

methods are direct methods, which no longer remains true,
I the error propagation is highly non-linear,
I the short-term methods tend to deviate very soon but still converge, but

now at another “rate” of convergence.

The known analysis of short term recurrence Krylov subspace methods is

I mostly restricted to the simplest method, the symmetric Lanczos method,
I based on tools from a variety of areas that do not seem to be related to

Krylov subspace methods at all,
I either for very specific implementations or does offer very little insight.
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Basics Internal guidelines

What is the background?

Krylov subspace methods are based on very basic ideas from Linear Algebra,
namely, linear combinations, subspaces, and projections. Yet, the analysis of
these methods relates them to various other interesting areas.

The tools of trade include:

I Matrix Analysis (Matrix Functions),
I Potential Theory (Green’s Functions, Capacity),
I Holomorphic Functions (Residue Theorem),
I Laurent Expansions,
I (Padé) Approximation,
I (Lagrange/Hermite) Interpolation,
I (Formal) Orthogonal Polynomials,
I Riemann-Stieltjes Integrals,
I and many, many more . . .
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Basics Internal guidelines

What are you going to talk about?

I will

I give a brief introduction to Krylov subspace methods,
I present a sketch of IDR/IDR(s),
I explain, why it is different,
I report on the observed behavior,
I sketch possible generalizations.

If I succeed, you will have a feeling for some of the important aspects of
IDR/IDR(s) and can read the papers on the subject for more details of
particular methods.

In passing, I will note some aspects not to be found in the literature and
outline some paths of possible generalizations.
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Basics Krylov subspace methods

Background
Large linear systems are solved by projection onto smaller subspaces,

Ax = r0, xk := Qkzk, Q̂H
k Ax = (Q̂H

k AQk)zk = Q̂H
k r0.

Galërkin method:

I Bubnov-Galërkin: Q̂k = Qk, QH
k Qk = Ik (orthonormal basis),

I Petrov-Galërkin: Q̂H
k Qk = Ik (bi-orthonormal bases),

Subspaces of increasing dimension. As starting vector use r0, e.g.,

Q1 := q1 := r0/‖r0‖, H1 := QH
1 AQ1, z1 := H−1

1 e1‖r0‖, x1 := Q1z1.

Compute residual: r1 := r0 −Ax1 = Q1e1‖r0‖ −AQ1z1. Both steps involve Aq1.
Expand space:

K2 := span {r0,Ar0} = span {q1,q2}.

TUHH Jens-Peter M. Zemke IDR @ Bath 2011-05-27 8 / 42



Basics Krylov subspace methods

Krylov subspaces
Natural generalization of this simple idea: Krylov subspaces. Obtained by
multiplication of last basis vector by A,

Kk := span {r0,Ar0, . . . ,Ak−1r0} = span {q1,q2, . . . ,qk}.

Krylov subspaces isomorphic (up to a certain degree) to polynomial spaces,

x ∈ Kk ⇔ x =

k−1∑
j=0

Ajr0cj+1 = pk−1(A)r0, pk−1(z) =

k−1∑
j=0

cj+1 z j.

Residual polynomials are polynomials that

I satisfy rk = ρk(A)r0 and
I are normalized by the condition ρk(0) = 1.

Residual polynomials arise because

rk := r0 − Axk = (I− Apk−1(A))r0 =: ρk(A)r0.
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Basics Krylov subspace methods

Krylov subspace methods

There are mainly two classes of Krylov subspace methods:

I long-term (Hessenberg, Arnoldi),
I short-term (Lanczos).

Arnoldi: Example of a long-term method building an orthonormal basis.

r = r0, q = r/‖r‖
Q = q, H =

()
for k = 1, . . .

r = Aq
c = QHr
r = r−Qc
H =

(
H, c; oT, ‖r‖

)
q = r/‖r‖
Q =

(
Q,q

)
end
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Basics Hessenberg decompositions

Hessenberg decompositions

The construction of basis vectors is resembled in the structure of the arising
Hessenberg decomposition

AQk = Qk+1Hk,

where

I Qk+1 =
(
Qk,qk+1

)
∈ Cn×(k+1) collects the basis vectors,

I Hk ∈ C(k+1)×k is an unreduced extended Hessenberg matrix.

Aspects of perturbed Krylov subspace methods can be captured with
perturbed Hessenberg decompositions

AQk + Fk = Qk+1Hk,

where Fk ∈ Cn×k accounts for the perturbations.
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Basics Hessenberg decompositions

Karl Hessenberg & “his” matrix + decomposition

Behandlung linearer Eigenwertaufgaben mit Hilfe
der Hamilton-Cayleyschen Gleichung, Karl
Hessenberg, 1. Bericht der Reihe „Numerische
Verfahren“, July, 23rd 1940, page 23:

I Hessenberg decomposition, Eqn. (57),
I Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, † February 22nd, 1959)
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Basics Polynomial representations

Important Polynomials

The vectors from Krylov subspaces can be described in terms of polynomials.
This representation carries over to the perturbed case with minor changes.

The residuals of the OR approximation xk := Qkzk and the MR approximation
xk := Qkzk with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0

with residual polynomials Rk and Rk given by

Rk(z) := det (Ik − zH−1
k ) and Rk(z) := det (Ik − zH†kIk).

The convergence of OR and MR depends on the Ritz and harmonic Ritz
values, respectively.
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Basics Perturbations

Perturbed OR methods

We sketch briefly how the setting changes when perturbations enter the stage
in the special case of an OR method.

In the perturbed case
AQk + Fk = Qk+1Hk

under the assumption that all trailing square Hessenberg matrices are regular,
the polynomial representation for the OR residuals changes to

rk = Rk(A)r0 −
k∑

`=1

z`kR`+1:k(A)f` + Fkzk,

where
R`+1:k(z) := det (Ik−` − zH−1

`+1:k).

We can expect convergence when Fkzk remains bounded (inexact methods)
and all R`+1:k(A) are “small”.
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IDR(s) IDR

Birth of a method
In 1976, Peter Sonneveld of TU Delft “stumbled upon” the three-term
recurrence

rk+1 = (I− A)(rk + γk(rk − rk−1)), where γk :=
pH rk

pH(rk−1 − rk)
.

This recurrence (almost) always results in the zero vector after 2n steps,
where A ∈ Cn×n and r0 ∈ Cn, r1 = Ar0, and p ∈ Cn are arbitrarily chosen.

He realized that the recurrence constructs vectors in spaces Gj of shrinking
dimensions:

G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}
Gj := (I− A)(Gj−1 ∩ S), S = span {p}⊥, j = 1, . . .

More precisely,
r2j, r2j+1 ∈ Gj, j = 0, 1, . . .
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IDR(s) IDR

The origin of IDR: primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1))− rk

= (I− A)(rk − γkA(xk − xk−1))− rk

= −A(rk + γk(I− A)(xk − xk−1))

⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).
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IDR(s) IDR

The origin of IDR: primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).
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IDR(s) IDR

The origin of IDR: primitive IDR

Impressions of “finite termination” and acceleration in finite precision:
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IDR(s) IDR

The origin of IDR: primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.
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IDR(s) IDR

The origin of IDR: classical IDR

A numerical comparison of Richardson iteration, original IDR, and PIA.
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IDR(s) IDR

IDR: BiCGStab

Later, Peter Sonneveld developed CGS based on the ideas behind IDR and,
together with Henk van der Vorst, rewrote the IDR variant to one that
explicitely constructs the coefficients of the underlying Lanczos recurrence.

This rewritten variant was published by Henk van der Vorst under the name
BiCGStab.

In short: BiCGStab is (almost mathematically equivalent to) IDR.
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IDR(s) IDR(s)

IDR(s)

IDR can be generalized: instead of using one hyperplane (span {p})⊥, one
uses the intersection of s hyperplanes. This makes the dimension reduction
step less frequent but the reduction a larger one.

This generalized IDR, termed IDR(s), was developed in 2006 by Peter
Sonneveld and Martin van Gijzen.

In the context of Krylov subspace methods, IDR(s) can be thought of as a
two-sided Lanczos method. There is a predecessor to such a method,
namely, ML(k)BiCGStab by Man-Chung Yeung and Tony Chan.
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IDR(s) IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

I Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(`): higher degree)

I Oblique projection perpendicular to P ∈ Cn×s.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces Gj as follows:

I Define G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}.
I Iterate Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , C 3 ωj 6= 0

Only sufficiently many vectors in each space are constructed.
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IDR(s) IDR(s)

IDR is Lanczos times something

It turns out that:

I IDR(s) is a transpose-free variant of a Lanczos process with one
right-hand side and s left-hand sides.

I IDR(s) is a Lanczos-type product method, i.e., most residuals can be
written as

rIDR
j(s+1)+k = Ωj(A)ρjs+k(A)r0, 1 6 k 6 s

where ρjs+k are residual polynomials of the Lanczos process.

Reminder: Residual polynomials are polynomials that

I satisfy rk = ρk(A)r0 and
I are normalized by the condition ρk(0) = 1.
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IDR(s) IDR(s)

Generalized Hessenberg decomposition

IDR(s) can be captured using a generalized Hessenberg decomposition

AQkUk = Qk+1Hk.

IDR based methods include BiCGStab (rewritten version of IDR), and CGS.

OR based IDR methods use

xk := QkUkzk, zk := H−1
k e1‖r0‖,

the residual is described by

rk := r0 − Axk = r0 − AQkUkzk = r0 −Qk+1Hkzk

= Qk(e1‖r0‖ −Hkzk)− qk+1hk+1,keT
k zk

= Rk(A)r0, Rk(z) := det (Ik − zUkH−1
k ).

Tacitly assuming ‖qk+1‖ = 1, we have ‖rk‖ = |hk+1,kzk|.
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IDR(s) IDR(s)

IDR: Sonneveld pencil and Sonneveld matrix

We consider the prototype IDR(s) by Sonneveld/van Gijzen (IDR(s)ORes).

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦n ,YnD(n)
ω ), can be

depicted by 

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.
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IDR(s) IDR(s)

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω ), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).
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IDR(s) IDR(s)

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦n Gn,UnD(n)

ω ), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦n Gn we can get rid

of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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IDR(s) IDR(s)

Understanding IDR: Deflation

Let D denote an deflation operator that removes every (s + 1)th column and
row from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω )), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω ) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.
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IDR(s) IDR(s)

IDR: a Lanczos process with multiple left-hand sides
Inverting the block-diagonal matrix D(UnD(n)

ω )) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω ))−1 =


××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

This matrix (in the extended version) satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., are given by

Ωj(A)q js+k = rj(s+1)+k.
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IDR(s) IDREig

IDREig

The eigenvalues of the pencil (Hk,Uk) are the roots of the residual
polynomials and some of these converge to eigenvalues of A.

Suppose that Qk+1 has full rank. The pencil (Hk,Uk) arises as a oblique
projection of (A, In), as

Q̂H
k (A, In)QkUk = Q̂H

k (AQkUk,QkUk)

= Q̂H
k (Qk+1Hk,QkUk) = (IT

k Hk,Uk) = (Hk,Uk),
(1)

where Q̂H
k := IT

k Q†k+1.

One uses a deflated pencil that only gives the Ritz values. The theory was
developed by Martin Gutknecht and Z. (2010), currently we investigate how to
select parameters (s, ωj, P) to obtain good eigenpair approximations (this is
ongoing joint work with Olaf Rendel and Anisa Rizvanolli).
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IDR(s) IDR(s)Stab(`)

IDRStab

Recently, IDR(s) was generalized by combining ideas from IDR(s) with the
higher dimensional minimization underlying BiCGStab(`).

The first paper was a japanese two-sided sketch of a method named
GIDR(s,L) by Masaaki Tanio and Masaaki Sugihara, followed independently
by a joint paper by Gerard Sleijpen and Martin van Gijzen.

IDRStab is based on the computation of a Hessenberg matrix of basis
matrices and a linear combination of the last column with polynomial
coefficients to circumvent the need for the roots ωj.

IDRStab and the eigenvalue approximations of the resulting Sonneveld
pencils are currently analyzed („Studienarbeit“ of Anisa Rizvanolli).
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IDR(s) QMRIDR

QMRIDR

MR methods use the extended Hessenberg matrix to compute the coefficients
of the vector in the Krylov subspace, i.e.,

xk := Qkzk, zk := H†ke1‖r0‖.

In IDR based methods we have to extend the MR framework to generalized
Hessenberg decompositions:

xk := QkUkzk, zk := H†ke1‖r0‖.

The implementation has many parameters that we should select “optimal”.
Extensive numerical tests are currently done by Olaf Rendel. As an example
we show the convergence curves (the true residuals) for the matrix add20
from Matrix Market.

Ongoing joint work with Olaf Rendel, Gerard Sleijpen, and Martin van Gijzen.
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IDR(s) QMRIDR

QMRIDR: add20
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s = 8; ωj local minimization; next by maximal last; various orthogonalizations
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IDR(s) QMRIDR

QMRIDR: add20
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s = 8; ωj local minimization; various expansions; MGS orthogonalization
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IDR(s) QMRIDR

QMRIDR: add20
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s = 8; ωj various strategies; GS expansion; stable basis vectors
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IDR(s) QMRIDR

QMRIDR: add20

0 100 200 300 400 500 600 700 800 900 1000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Residuals of add20

MVs

||r
||/

||b
||

 

 
s= 4
s= 8
s=16
s=32

various s; ωj inverse Rayleigh; stable expansion; GS expansion
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IDR(s) QMRIDR

QMRIDR: add20
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various s; ωj local minimization; stable expansion; MGS expansion
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IDR(s) QMRIDR

QMRIDR: add20
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various s; ωj local minimization; stable expansion; GS expansion
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Conclusion

Conclusion and Outview

I We sketched some basic facts about Krylov subspace methods and
Hessenberg decompositions.

I We related convergence to Ritz values.
I We sketched IDR and IDR(s).
I We introduced the framework of generalized Hessenberg

decompositions.
I We briefly touched generalizations of IDR(s), namely, IDREig, IDRStab,

and QMRIDR.
I We hopefully conviced you that IDR is an interesting Krylov subspace

method and offers lots of even more interesting problems in the design
and analysis of new IDR based methods.

I What about inexact IDR/IDREig/IDRStab/QMRIDR?
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Thank you for your attention!
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