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Krylov subspace methods Hessenberg decompositions

Introduction

Krylov subspace methods: approximations

xk, xk,
yk, yk

}
∈ Kk(A,q) := span {q,Aq, . . . ,Ak−1q} = {p(A)q | p ∈ Pk−1},

where

Pk−1 :=
{k−1∑

j=0

αjz j | αj ∈ C, 0 6 j < k
}
,

to solutions of linear systems

Ax = r0 (= b− Ax0), A ∈ Cn×n, b, x0 ∈ Cn,

and (partial) eigenproblems

Av = vλ, A ∈ Cn×n.
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Krylov subspace methods Hessenberg decompositions

Hessenberg decompositions

Construction of basis vectors resembled in structure of arising Hessenberg
decomposition

AQk = Qk+1Hk,

where

I Qk+1 =
(
Qk,qk+1

)
∈ Cn×(k+1) collects basis vectors,

I Hk ∈ C(k+1)×k is unreduced extended Hessenberg.

Aspects of perturbed Krylov subspace methods: captured with perturbed
Hessenberg decompositions

AQk + Fk = Qk+1Hk,

Fk ∈ Cn×k accounts for perturbations (finite precision & inexact methods).
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Krylov subspace methods Hessenberg decompositions

Karl Hessenberg & “his” matrix + decomposition

"‘Behandlung linearer Eigenwertaufgaben mit Hilfe
der Hamilton-Cayleyschen Gleichung"’, Karl
Hessenberg, 1. Bericht der Reihe "‘Numerische
Verfahren"’, July, 23rd 1940, page 23:

I Hessenberg decomposition, Eqn. (57),
I Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, † February 22nd, 1959)
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Krylov subspace methods Polynomial representations

Important Polynomials

Residuals of OR and MR approximation

xk := Qkzk and xk := Qkzk

with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0.

Residual polynomials Rk, Rk given by

Rk(z) := det (Ik − zH−1
k ) and Rk(z) := det (Ik − zH†kIk).

Convergence of OR and MR depends on (harmonic) Ritz values.
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Krylov subspace methods Polynomial representations

Perturbed OR methods

Setting changes when perturbations enter the stage, here, OR method.

In perturbed case
AQk + Fk = Qk+1Hk

polynomial representation

rk = Rk(A)r0 −
k∑
`=1

z`kR`+1:k(A)f` + Fkzk

(all trailing square Hessenberg matrices are assumed to be regular).

Here,
R`+1:k(z) := det (Ik−` − zH−1

`+1:k).

Convergence: Fkzk bounded (inexact methods) & R`+1:k(A) “small”.
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IDR IDR and IDREIG

IDR: History repeating

IDR
1976 Idea by Sonneveld
1979 First talk on IDR
1980 Proceedings
1989 CGS
1992 IDR BICGSTAB
1993 BICGSTAB2, BICGSTAB(`)
later “acronym explosion” . . .

IDR(s)
2006 Sonneveld & van Gijzen
2007 First presentation & report
2008 SIAM paper (SISC)
2008 IDR(s)BIO
2010 IDR(s)STAB(`), IDREIG
2011 flexible & multi-shift QMRIDR
later “acronym explosion”?

I IDR and IDR based methods are old ( my generation),
I IDR(s) is 5 years “old” ( my son’s generation).

IDR is based on Lanczos’s method; IDR(s) is based on Lanczos(s, 1).

IDR(s) is a Krylov subspace method all techniques from 90’s applicable!
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IDR IDR and IDREIG

IDR(s)

IDR spaces:

G0 := K(A,q), (full Krylov subspace)
Gj := (αjA + βjI)(Gj−1 ∩ S), j > 1, αj, βj ∈ C, αj 6= 0,

where
codim(S) = s, e.g., S = span {R̃0}⊥, R̃0 ∈ Cn×s.

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

Gj = Sj(Pj,A, R̃0) :=
{

Pj(A)v | v ⊥ Kj(AH, R̃0)
}
,

Pj(z) :=
j∏

i=1

(αiz + βi).

Image of shrinking space: Induced Dimension Reduction.
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IDR IDR and IDREIG

IDR(s)

IDR spaces nested:

{o} = Gjmax ( · · · ( Gj+1 ( Gj ( Gj−1 ( · · · ( G2 ( G1 ( G0.

How many vectors in Gj \ Gj+1? In generic case, s + 1.

Stable basis: Partially orthonormalize basis vectors gk, 1 6 k 6 n:

Arnoldi: compute orthonormal basis Gs+1 of Ks+1 ⊂ G0,

AVs = AGs = Gs+1Hs, Vs := Gs.

“Lanczos”: perform intersection Gj ∩ S, map, and orthonormalize,

vk =

k∑
i=k−s

giγi, R̃H
0 vk = os, k > s + 1,

gk+1νk+1 = (αjA + βjI)vk −
k∑

i=k−j(s+1)−1

giνi, j =
⌊

k − 1
s + 1

⌋
.
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IDR IDR and IDREIG

IDR(s)

Generalized Hessenberg decomposition:

AVk = AGkUk = Gk+1Hk,

where Uk ∈ Ck×k upper triangular.

Structure of Sonneveld pencils:

Hk =



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
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IDR IDR and IDREIG

IDR(s)
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IDR IDR and IDREIG

IDREIG

Eigenvalues of Sonneveld pencil (Hk,Uk) are roots of residual polynomials.
Those distinct from roots of

Pj(z) =
j∏

i=1

(αiz + βi), i.e., zi = −
βi

αi
, 1 6 i 6 j

converge to eigenvalues of A.

Suppose Gk+1 of full rank. Sonneveld pencil (Hk,Uk) as oblique projection:

ĜH
k (A, In)GkUk = ĜH

k (AGkUk,GkUk)

= ĜH
k (Gk+1Hk,GkUk) = (IT

k Hk,Uk) = (Hk,Uk),
(1)

here, ĜH
k := IT

k G†k+1.

Use deflated pencil for Lanczos Ritz values (Gutknecht, Z. (2010): IDREIG).
First: IDR(s)ORES, Olaf Rendel: IDR(s)BIO, Anisa Rizvanolli: IDR(s)STAB(`).
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k (AGkUk,GkUk)

= ĜH
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IDR IDRSTAB and QMRIDR

IDRSTAB

IDR(s)STAB(`) (Tanio & Sugihara; Sleijpen & van Gijzen): combine ideas of
IDR(s) and BICGSTAB(`).

IDRSTAB (Sleijpen’s implementation) recursively computes “(extended)
Hessenberg matrices of basis matrices and residuals” (k > 1):

G(k)
11 , r

(k)
11 G(k)

12 , r
(k)
12 . . . G(k)

1,`+1, r(k)
1,`+1

G(k)
21 , r

(k)
21 G(k)

22 , r
(k)
22 . . . G(k)

2,`+1, r(k)
2,`+1

G(k)
32 , r

(k)
32

. . .
...

. . . G(k)
`+1,`+1, r

(k)
`+1,`+1

G(k)
`+2,`+1

G(k)
i, j ∈ Cn×s, r(k)

i, j ∈ Cn,

G(k)
i+1, j = AG(k)

i, j , r(k)
i+1, j = Ar(k)

i, j ,

R̃H
0 G(k)

ii = Os, R̃H
0 r(k)

ii = os,

(G(k)
ii )HG(k)

ii = Is.

Initialization using Arnoldi’s method:

G(1)
21 = AG(1)

11 = (G(1)
11 , gtmp)H(0)

s ,

r(1)
11 = r0 −G(1)

21 α(1) = (I−G(1)
21 (R̃H

0 G(1)
21 )−1R̃H

0 )r0, r(1)
21 = Ar(1)

11 .
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IDR IDRSTAB and QMRIDR

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

I form basis of Gj \ Gj+1 with expansion Gj = A(Gj−1 ∩ S) β( j) ∈ Cs×s,

I are orthonormalized H( j)
s−1 ∈ Cs×(s−1)

In particular, with ṽi ∈ Gj−1 ∩ S,

β
( j)
i = (R̃H

0 Gj, j−1)
−1R̃H

0 (Aṽi)

⇒ (Aṽi)−Gj, j−1β
( j)
i = A(ṽi −Gj−1, j−1β

( j)
i ) ∈ Gj ∩ S

Every new vector in Gj ∩ S is orthonormalized with respect to the others.

Thus, for the IDR-IDRSTAB pencil relating (STAB-purified) diagonal blocks,

I β( j) ∈ Cs×s couples Gjj and Gj, j−1 = AGj−1, j−1  Uk,

I H( j)
s−1 ∈ Cs×(s−1) couples result with others in same block Hk.

All other blocks in column treated in same manner.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 16 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

I form basis of Gj \ Gj+1 with expansion Gj = A(Gj−1 ∩ S) β( j) ∈ Cs×s,

I are orthonormalized H( j)
s−1 ∈ Cs×(s−1)

In particular, with ṽi ∈ Gj−1 ∩ S,
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i = A(ṽi −Gj−1, j−1β

( j)
i ) ∈ Gj ∩ S

Every new vector in Gj ∩ S is orthonormalized with respect to the others.

Thus, for the IDR-IDRSTAB pencil relating (STAB-purified) diagonal blocks,

I β( j) ∈ Cs×s couples Gjj and Gj, j−1 = AGj−1, j−1  Uk,

I H( j)
s−1 ∈ Cs×(s−1) couples result with others in same block Hk.

All other blocks in column treated in same manner.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 16 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Residual updates en détail (i 6 j, r(k)
j+1, j = Ar(k)

j, j ):

r(k)
i, j = r(k)

i, j−1 −G(k)
i+1, jα

( j), r(k)
j, j = (I−G(k)

j+1, j(R̃
H
0 G(k)

j+1, j)
−1R̃H

0 )r
(k)
j, j−1.

Here,
α( j) := (R̃H

0 G(k)
j+1, j)

−1R̃H
0 r(k)

j, j−1,

α( j) relating r(k)
j, j−1 = Ar(k)

j−1, j−1 (old) and r(k)
j, j (new) via G(k)

j+1, j = AG(k)
j, j  Uk.

New cycle (STAB part, r(k+1)
21 = Ar(k+1)

11 , γ(`) ∈ Cs such that ‖r(k+1)
11 ‖ = min):

r(k+1)
11 = r(k)

1,`+1 −
∑̀
i=1

r(k)
i+1,`+1γ

(`)
i ,

 G(k+1)
11 = G(k)

1,`+1 −
∑`

i=1 G(k)
i+1,`+1γ

(`)
i ,

G(k+1)
21 = G(k)

2,`+1 −
∑`

i=1 G(k)
i+2,`+1γ

(`)
i .

Anisa Rizvanolli:  Lanczos-IDRSTAB pencil for eigenvalues, IDRSTABEIG.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 17 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Residual updates en détail (i 6 j, r(k)
j+1, j = Ar(k)

j, j ):

r(k)
i, j = r(k)

i, j−1 −G(k)
i+1, jα

( j), r(k)
j, j = (I−G(k)

j+1, j(R̃
H
0 G(k)

j+1, j)
−1R̃H

0 )r
(k)
j, j−1.

Here,
α( j) := (R̃H

0 G(k)
j+1, j)

−1R̃H
0 r(k)

j, j−1,

α( j) relating r(k)
j, j−1 = Ar(k)

j−1, j−1 (old) and r(k)
j, j (new) via G(k)

j+1, j = AG(k)
j, j  Uk.

New cycle (STAB part, r(k+1)
21 = Ar(k+1)

11 , γ(`) ∈ Cs such that ‖r(k+1)
11 ‖ = min):

r(k+1)
11 = r(k)

1,`+1 −
∑̀
i=1

r(k)
i+1,`+1γ

(`)
i ,

 G(k+1)
11 = G(k)

1,`+1 −
∑`

i=1 G(k)
i+1,`+1γ

(`)
i ,

G(k+1)
21 = G(k)

2,`+1 −
∑`

i=1 G(k)
i+2,`+1γ

(`)
i .

Anisa Rizvanolli:  Lanczos-IDRSTAB pencil for eigenvalues, IDRSTABEIG.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 17 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Residual updates en détail (i 6 j, r(k)
j+1, j = Ar(k)

j, j ):

r(k)
i, j = r(k)

i, j−1 −G(k)
i+1, jα

( j), r(k)
j, j = (I−G(k)

j+1, j(R̃
H
0 G(k)

j+1, j)
−1R̃H

0 )r
(k)
j, j−1.

Here,
α( j) := (R̃H

0 G(k)
j+1, j)

−1R̃H
0 r(k)

j, j−1,

α( j) relating r(k)
j, j−1 = Ar(k)

j−1, j−1 (old) and r(k)
j, j (new) via G(k)

j+1, j = AG(k)
j, j  Uk.

New cycle (STAB part, r(k+1)
21 = Ar(k+1)

11 , γ(`) ∈ Cs such that ‖r(k+1)
11 ‖ = min):

r(k+1)
11 = r(k)

1,`+1 −
∑̀
i=1

r(k)
i+1,`+1γ

(`)
i ,

 G(k+1)
11 = G(k)

1,`+1 −
∑`

i=1 G(k)
i+1,`+1γ

(`)
i ,

G(k+1)
21 = G(k)

2,`+1 −
∑`

i=1 G(k)
i+2,`+1γ

(`)
i .

Anisa Rizvanolli:  Lanczos-IDRSTAB pencil for eigenvalues, IDRSTABEIG.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 17 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Residual updates en détail (i 6 j, r(k)
j+1, j = Ar(k)

j, j ):

r(k)
i, j = r(k)

i, j−1 −G(k)
i+1, jα

( j), r(k)
j, j = (I−G(k)

j+1, j(R̃
H
0 G(k)

j+1, j)
−1R̃H

0 )r
(k)
j, j−1.

Here,
α( j) := (R̃H

0 G(k)
j+1, j)

−1R̃H
0 r(k)

j, j−1,

α( j) relating r(k)
j, j−1 = Ar(k)

j−1, j−1 (old) and r(k)
j, j (new) via G(k)

j+1, j = AG(k)
j, j  Uk.

New cycle (STAB part, r(k+1)
21 = Ar(k+1)

11 , γ(`) ∈ Cs such that ‖r(k+1)
11 ‖ = min):

r(k+1)
11 = r(k)

1,`+1 −
∑̀
i=1

r(k)
i+1,`+1γ

(`)
i ,

 G(k+1)
11 = G(k)

1,`+1 −
∑`

i=1 G(k)
i+1,`+1γ

(`)
i ,

G(k+1)
21 = G(k)

2,`+1 −
∑`

i=1 G(k)
i+2,`+1γ

(`)
i .

Anisa Rizvanolli:  Lanczos-IDRSTAB pencil for eigenvalues, IDRSTABEIG.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 17 / 52



IDR IDRSTAB and QMRIDR

IDRSTAB

Residual updates en détail (i 6 j, r(k)
j+1, j = Ar(k)

j, j ):

r(k)
i, j = r(k)

i, j−1 −G(k)
i+1, jα

( j), r(k)
j, j = (I−G(k)

j+1, j(R̃
H
0 G(k)

j+1, j)
−1R̃H

0 )r
(k)
j, j−1.

Here,
α( j) := (R̃H

0 G(k)
j+1, j)

−1R̃H
0 r(k)

j, j−1,

α( j) relating r(k)
j, j−1 = Ar(k)

j−1, j−1 (old) and r(k)
j, j (new) via G(k)

j+1, j = AG(k)
j, j  Uk.

New cycle (STAB part, r(k+1)
21 = Ar(k+1)

11 , γ(`) ∈ Cs such that ‖r(k+1)
11 ‖ = min):

r(k+1)
11 = r(k)

1,`+1 −
∑̀
i=1

r(k)
i+1,`+1γ

(`)
i ,

 G(k+1)
11 = G(k)

1,`+1 −
∑`

i=1 G(k)
i+1,`+1γ

(`)
i ,

G(k+1)
21 = G(k)

2,`+1 −
∑`

i=1 G(k)
i+2,`+1γ

(`)
i .

Anisa Rizvanolli:  Lanczos-IDRSTAB pencil for eigenvalues, IDRSTABEIG.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 17 / 52



IDR IDRSTAB and QMRIDR

Structure of (STAB-purified) IDR-IDRSTAB pencil
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IDR IDRSTAB and QMRIDR

Structure of (undeflated) Lanczos-IDRSTAB pencil
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IDR IDRSTAB and QMRIDR

QMRIDR

MR methods: use extended Hessenberg matrix

xk := Qkzk, zk := H†ke1‖r0‖.

IDR based: generalized Hessenberg decomposition,

AVk = AGkUk = Gk+1Hk.

Thus,
xk := Vkzk = GkUkzk, zk := H†ke1‖r0‖.

Simplified residual bound (block-wise orthonormalization):

‖rk‖ = ‖r0 − Axk‖ 6 ‖Gk+1‖ ·
∥∥e1‖r0‖ −Hkzk

∥∥
6

√⌈
k + 1
s + 1

⌉
·
∥∥e1‖r0‖ −Hkzk

∥∥.
Implementation based on short recurrences possible.
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IDR IDRSTAB and QMRIDR

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

Pj(A)vk = (αjA + βjI)vk  (αjAP−1
k + βjI)vk = Aṽk + βjvk,

ṽk := P−1
k vkαj, AṼk = Gk+1Hk.

Generalized Hessenberg relation, generically no longer generalized
Hessenberg decomposition, as generically

AṼk 6= AGkŨk

for every (upper triangular) Ũk.

Computation of flexible MR iterate and flexible MR approximation:

zk := H†ke1‖r0‖, xk := Ṽkzk.

Flexible IDR variants algorithmically very easy to implement.
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Computation of flexible MR iterate and flexible MR approximation:

zk := H†ke1‖r0‖, xk := Ṽkzk.
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IDR IDRSTAB and QMRIDR

QMRIDR

Multi-shift is a technique developed for shifted systems

(A− σI)x(σ) = r0, σ ∈ C.

We look for quasi-optimal approximations of the form

x(σ) ≈ x(σ)k := Vkz(σ)k .

Since AVk = AGkUk = Gk+1Hk, and since we use Gk+1e1‖r0‖ = r0,

r(σ)k = r0 − (A− σI)x(σ)
k = Gk+1

(
e1‖r0‖ − (Hk − σUk)z

(σ)
k

)
.

Thus, z(σ)k quasi-optimal:

z(σ)k := (Hk − σUk)
†e1‖r0‖.

Various extensions for IDRSTAB: Olaf Rendel, Z. QMRIDRSTAB.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 22 / 52



IDR IDRSTAB and QMRIDR

QMRIDR

Multi-shift is a technique developed for shifted systems

(A− σI)x(σ) = r0, σ ∈ C.

We look for quasi-optimal approximations of the form

x(σ) ≈ x(σ)k := Vkz(σ)k .

Since AVk = AGkUk = Gk+1Hk, and since we use Gk+1e1‖r0‖ = r0,

r(σ)k = r0 − (A− σI)x(σ)
k = Gk+1

(
e1‖r0‖ − (Hk − σUk)z

(σ)
k

)
.

Thus, z(σ)k quasi-optimal:

z(σ)k := (Hk − σUk)
†e1‖r0‖.

Various extensions for IDRSTAB: Olaf Rendel, Z. QMRIDRSTAB.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 22 / 52



IDR IDRSTAB and QMRIDR

QMRIDR

Multi-shift is a technique developed for shifted systems

(A− σI)x(σ) = r0, σ ∈ C.

We look for quasi-optimal approximations of the form

x(σ) ≈ x(σ)k := Vkz(σ)k .

Since AVk = AGkUk = Gk+1Hk, and since we use Gk+1e1‖r0‖ = r0,

r(σ)k = r0 − (A− σI)x(σ)
k = Gk+1

(
e1‖r0‖ − (Hk − σUk)z

(σ)
k

)
.

Thus, z(σ)k quasi-optimal:

z(σ)k := (Hk − σUk)
†e1‖r0‖.

Various extensions for IDRSTAB: Olaf Rendel, Z. QMRIDRSTAB.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 22 / 52



IDR IDRSTAB and QMRIDR

QMRIDR

Multi-shift is a technique developed for shifted systems

(A− σI)x(σ) = r0, σ ∈ C.

We look for quasi-optimal approximations of the form

x(σ) ≈ x(σ)k := Vkz(σ)k .

Since AVk = AGkUk = Gk+1Hk, and since we use Gk+1e1‖r0‖ = r0,

r(σ)k = r0 − (A− σI)x(σ)
k = Gk+1

(
e1‖r0‖ − (Hk − σUk)z

(σ)
k

)
.

Thus, z(σ)k quasi-optimal:

z(σ)k := (Hk − σUk)
†e1‖r0‖.

Various extensions for IDRSTAB: Olaf Rendel, Z. QMRIDRSTAB.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 22 / 52



IDR IDRSTAB and QMRIDR

QMRIDR

Multi-shift is a technique developed for shifted systems

(A− σI)x(σ) = r0, σ ∈ C.

We look for quasi-optimal approximations of the form

x(σ) ≈ x(σ)k := Vkz(σ)k .

Since AVk = AGkUk = Gk+1Hk, and since we use Gk+1e1‖r0‖ = r0,

r(σ)k = r0 − (A− σI)x(σ)
k = Gk+1

(
e1‖r0‖ − (Hk − σUk)z

(σ)
k

)
.

Thus, z(σ)k quasi-optimal:

z(σ)k := (Hk − σUk)
†e1‖r0‖.

Various extensions for IDRSTAB: Olaf Rendel, Z. QMRIDRSTAB.

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 22 / 52



Tuning IDR

Outline

Krylov subspace methods

Hessenberg decompositions

Polynomial representations

IDR

IDR and IDREIG

IDRSTAB and QMRIDR

Tuning IDR

General comments

Shadow vectors

Stabilizing polynomials

Choosing s
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Tuning IDR General comments

Lanczos(s, 1) the idea behind IDR(s)

Excerpt from (Sleijpen and van der Vorst, 1995, p. 204):

“[..], we expect to recover the convergence behavior of the
incorporated Bi-CG process (in the BiCGstab methods) if we
compute the iteration coefficients as accurately as possible.
Therefore, we want to avoid all additional perturbations that might be
introduced by an unfortunate choice of the polynomial process that is
carried out on top of the Bi-CG process.”

IDR based on Lanczos(s, 1). Properties of IDR inherited from Lanczos(s, 1).

Noted in (van Gijzen et al., 2011):

“[..] numerical experiments indicate that the “local closeness” of this
Lanczos process to an unperturbed one is the driving force behind
IDR based methods.”
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Tuning IDR Shadow vectors

Natural & good choices

Variety of approaches to chose the shadow vectors R̃0:

I problem dependent,

I computer dependent,
I independent.

I Recycle old information, e.g., use space spanned by previous
solutions to similar problems (Newton’s method; Optimization;
Design Processes),

I Use (previously computed) (left) eigenvector information in IDR
eigenvalue solvers,

I In PDE problems adapt shadow space to match geometrical
structure (Substructuring; (Non-)Overlapping Schwarz).
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Tuning IDR Shadow vectors

Natural & good choices

Variety of approaches to chose the shadow vectors R̃0:

I problem dependent,
I computer dependent,

I independent.

I In general use orthonormalized basis vectors; this ensures
enhanced numerical stability,

I In parallel implementations use shadow vectors adapted to the
topology, i.e., non-overlapping shadow vectors,

I For better Lanczos(s, 1) coefficients use higher precision,
I For faster evaluation use sparse and/or integer (e.g., with

elements 0,±1) shadow vectors.
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Tuning IDR Shadow vectors

Natural & good choices

Variety of approaches to chose the shadow vectors R̃0:

I problem dependent,
I computer dependent,
I independent.

If nothing is known about the matrix A and the computer
architecture, in some sense the best choice seems to be an
orthonormalized set of random vectors, cf. (Sonneveld, 2010).

This is the choice we used in our experiments.
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Tuning IDR Stabilizing polynomials

Thinking locally or acting globally

Questions concerning the STAB-part:

I How do we choose the degrees of the polynomials?
I How do we choose the coefficients of the polynomials?

Increasing the degree of the STAB-polynomials enlarges the space in which
we can look for solutions.

To avoid complex arithmetic for real nonsymmetric problems, e.g., stiff
problems with large imaginary eigenvalues, and still ensure convergence, the
degree should allow for complex roots, i.e., ` > 2.

Numerical experiments indicate: increasing degree better approximations
to solutions of linear systems.

Unfortunately, higher degrees result in worse approximations of eigenvalues.

We advocate to use a moderate degree (` ∈ {1, 2, 3, 4}) for eigenvalues.
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Tuning IDR Stabilizing polynomials

Dependence of the Ritz value convergence on `
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Tuning IDR Stabilizing polynomials

Thinking locally or acting globally

Questions concerning the STAB-part:

I How do we choose the degrees of the polynomials? .

I How do we choose the coefficients of the polynomials?

In IDR linear system solvers we can minimize the norm of the residual vector
over the space.

This may slow down convergence, a cure is to ensure that the coefficients of
the Lanczos(s, 1) process are computed more accurately, allowing an
increase in norm “vanilla variant” (Sleijpen and van der Vorst, 1995).

Convergence depends on the interpolation of the function z 7→ z−1 on the
spectrum using the Ritz values. We investigate various choices for the
polynomial roots based on inclusion/exclusion regions for the spectrum and
placement of poles.
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Tuning IDR Stabilizing polynomials

Thinking locally or acting globally

On the next slides we use for simplicity QMRIDR(s), e.g., ` = 1 and compare
the following (mostly theoretical) choices:

I use some inner eigenvalues as roots, either close to the mean of the
eigenvalues or to the harmonic mean,

I use the first approximations computed by (an exact) Arnoldi process,
I use the last approximations computed by (an exact) Arnoldi process.

For comparison, we include the convergence curves using the residual
minimization and its “vanilla variant”.

In the experiments we always used matrices A ∈ R100×100:

I a shifted random matrix,
I a Grcar matrix,
I a Frank matrix,
I a randomly perturbed Poisson matrix, τ = eps = 2−52 ≈ 2.2204 · 10−16,
I a randomly perturbed Poisson matrix, τ = 4

√
eps ≈ 1.2207 · 10−4.
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Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 1
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Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 2
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Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 3
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Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 4
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Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 5

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3
x 10

−4

real part

im
a
g
in

a
ry

 p
a
rt

eigenvalues and stabilizing roots

 

 

eigenvalues

inner eigenvalues

harmonic inner eigenvalues

last approximates

first approximates

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 38 / 52



Tuning IDR Stabilizing polynomials

Various choices for stabilizer roots: Example 5
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Tuning IDR Choosing s

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMRES for the case of
random shadow vectors was pointed out.

Neglecting the influence of the STAB-part, i.e., focusing on Lanczos(s, 1), the
deviation of IDR from GMRES is described using stochastic arguments.

As a rule of thumb:

As s tends to infinity, the convergence curves of Lanczos(s, 1) tend to
the convergence curve of full GMRES.

In practice, the first steps of IDR/QMRIDR and Arnoldi/GMRES coincide, as
we ideally start IDR with these methods.

We present some examples that depict the relations in (Sonneveld, 2010),
show additionally the effects of finite precision, and relate GMRES to
QMR(s, 1) and to QMRIDR(s).

We remark that the prototype IDR algorithm suffered from instability for large
values of s. We only consider new, stable implementations.
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Tuning IDR Choosing s

“Exact” Lanczos(s, 1) versus full GMRES

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

10
10

matrix−vector−multiplications

re
s
id

u
a
ls

 i
n
 l
o
g
−

s
c
a
le

Lanczos(s,1) vs. full GMRes, s=1,...,40, full reorthogonalization

 

 

full GMRes

Lanczos(s,1), s=1..40

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 41 / 52



Tuning IDR Choosing s

“Finite precision” Lanczos(s, 1) versus full GMRES
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Tuning IDR Choosing s

“Exact” QMR(s, 1) versus full GMRES
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Tuning IDR Choosing s

“Finite precision” QMR(s, 1) versus full GMRES
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Tuning IDR Choosing s

Finite precision QMRIDR(s) versus full GMRES

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

10
10

matrix−vector−multiplications

re
s
id

u
a
ls

 i
n
 l
o
g
−

s
c
a
le

QMRIDR(s) vs. full GMRes, s=1,...,40, finite precision

 

 

full GMRes

QMRIDR(s), s=1..40

TUHH Jens-Peter M. Zemke IDR @ Doshisha 2011 2011-10-23 45 / 52



Tuning IDR Choosing s

A comparison: IDR based eigenvalue solvers
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Tuning IDR Choosing s

Flexible QMRIDR(s)
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Tuning IDR Choosing s

Perturbations

IDR based on short recurrences, i.e., Lanczos based.

 Behavior in finite precision? Inexact methods? General perturbations?

Lanczos IDR
deviation deviation
multiple Ritz values ghost polynomial roots
delay of convergence delay of convergence
attainable accuracy: condition attainable accuracy: worse than Lanczos
analysis by Chris Paige thus far no error analysis available

But:

I IDR transpose-free,
I easy to implement,
I more stable (for large values of s),
I often close to “optimal” methods (for large values of s).
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Tuning IDR Choosing s

BICGSTAB vs. BICG
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Tuning IDR Choosing s

IDR(3)STAB(3): “Ghost polynomial roots”
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Conclusion

Conclusion and Outview

I The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its
combinations, and the eigensolver counterparts, are very promising.

I IDR based methods offer a variety of parameters. We presented some
ideas and experiments to sketch recent progress.

I As a rule of thumb: If nothing about the problem is known in advance,

I chose s as large as possible,
I chose a polynomial with moderate degree,
I chose the coefficients using the “vanilla” strategy,
I use random starting vectors,
I use some QMR variant.

I Knowledge should be used carefully in the parameter selection process,
but accelerating the convergence should definitely be tried.

I An error analysis and a description of the finite precision behavior is
desperately needed.

I The next logical step, the development of IDR algorithms that allow to
change the old stabilizing polynomials on the fly, cures some of the
peculiarities current implementations suffer from.
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どうも有難う御座いました。

Thank you very much for inviting me to同志社大学.

This talk is partially based on the following technical reports:

Eigenvalue computations based on IDR, Martin H. Gutknecht and Z., Bericht 145,
Institut für Numerische Simulation, TUHH, 2010,

Flexible and multi-shift induced dimension reduction algorithms for solving large
sparse linear systems, Martin B. van Gijzen, Gerard L.G. Sleijpen, and Z., Bericht 156,
Institut für Numerische Simulation, TUHH, 2011.

Additional material can be found in the proceedings:

Tuning IDR to fit your applications, Olaf Rendel and Z., 2011.
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Sleijpen, G. L. and van der Vorst, H. A. (1995).
Maintaining convergence properties of BiCGstab methods in finite
precision arithmetic.
Numer. Algorithms, 10(3-4):203–223.

Sonneveld, P. (2010).
On the convergence behaviour of IDR(s).
Technical Report 10-08, Department of Applied Mathematical Analysis,
Delft University of Technology, Delft.

van Gijzen, M. B., Sleijpen, G. L., and Zemke, J.-P. M. (2011).
Flexible and multi-shift induced dimension reduction algorithms for
solving large sparse linear systems.
Bericht 156, TUHH, Institute of Numerical Simulation.
Online available at
http://doku.b.tu-harburg.de/volltexte/2011/1114/.
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