IDR: A new generation of Krylov subspace methods?

Jens-Peter M. Zemke

zemke@tu-harburg.de
Institut für Numerische Simulation
Technische Universität Hamburg-Harburg
joint work with:
Martin Gutknecht (ETH Zürich), Olaf Rendel (TU Hamburg-Harburg), Anisa Rizvanolli (TU Hamburg-Harburg), Gerard L.G. Sleijpen (Universiteit Utrecht), Martin B. van Gijzen (TU Delft)

August 23rd, 2011

Outline

Krylov subspace methods

Hessenberg decompositions
Polynomial representations
Perturbations

IDR
IDR and $\operatorname{IDR}(s)$
IDREIG
$\operatorname{IDR}(s) \operatorname{Stab}(\ell)$ and IDRStabEIG
(Flexible and multi-shift) QMRIDR
Perturbations

Outline

Krylov subspace methods

Hessenberg decompositions
Polynomial representations
Perturbations

IDR and $\operatorname{IDR}(s)=$
IDREIG
IDR(s)STAB (ℓ) and IDRStabEIG
(Flexible and multi-shift) QMRIDR
Perturbations

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \mathbf{y}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\},
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\},
$$

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \underline{\mathbf{y}}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\}
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\}
$$

to solutions of linear systems

$$
\mathbf{A x}=\mathbf{r}_{0}\left(=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}\right), \quad \mathbf{A} \in \mathbb{C}^{n \times n}, \quad \mathbf{b}, \mathbf{x}_{0} \in \mathbb{C}^{n}
$$

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \underline{\mathbf{y}}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\}
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\}
$$

to solutions of linear systems

$$
\mathbf{A x}=\mathbf{r}_{0}\left(=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}\right), \quad \mathbf{A} \in \mathbb{C}^{n \times n}, \quad \mathbf{b}, \mathbf{x}_{0} \in \mathbb{C}^{n}
$$

and (partial) eigenproblems

$$
\mathbf{A v}=\mathbf{v} \lambda, \quad \mathbf{A} \in \mathbb{C}^{n \times n} .
$$

Hessenberg decompositions

Construction of basis vectors resembled in structure of arising Hessenberg decomposition

$$
\mathbf{A} \mathbf{Q}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

where

- $\mathbf{Q}_{k+1}=\left(\mathbf{Q}_{k}, \mathbf{q}_{k+1}\right) \in \mathbb{C}^{n \times(k+1)}$ collects basis vectors,
- $\underline{\mathbf{H}}_{k} \in \mathbb{C}^{(k+1) \times k}$ is unreduced extended Hessenberg.

Hessenberg decompositions

Construction of basis vectors resembled in structure of arising Hessenberg decomposition

$$
\mathbf{A} \mathbf{Q}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

where

- $\mathbf{Q}_{k+1}=\left(\mathbf{Q}_{k}, \mathbf{q}_{k+1}\right) \in \mathbb{C}^{n \times(k+1)}$ collects basis vectors,
- $\underline{H}_{k} \in \mathbb{C}^{(k+1) \times k}$ is unreduced extended Hessenberg.

Aspects of perturbed Krylov subspace methods: captured with perturbed Hessenberg decompositions

$$
\mathbf{A} \mathbf{Q}_{k}+\mathbf{F}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

$\mathbf{F}_{k} \in \mathbb{C}^{n \times k}$ accounts for perturbations (finite precision \& inexact methods).

Karl Hessenberg \& "his" matrix + decomposition

„Behandlung linearer Eigenwertaufgaben mit Hilfe der Hamilton-Cayleyschen Gleichung", Karl Hessenberg, 1. Bericht der Reihe „Numerische Verfahren", July, 23rd 1940, page 23:

```
Men kann nun die Vektoren }\mp@subsup{z}{\nu}{(\nu-n)}(\nu=1,2,\ldots,n) ebenfalls in einer
Matrix zusammenfassen, und zwar ist nach Gleichung (55) und (56)
```



```
worin die Matrix p zur Abkirzung gesetzt ist flir
(58) \(R=\left(\begin{array}{lllll}\alpha_{10} & \alpha_{20} & \cdots & \alpha_{n-1,0} & \alpha_{n 0} \\ 1 & \alpha_{21} & \cdots & \alpha_{n-1,1} & \alpha_{n-1} \\ 0 & 1 & \cdots & \alpha_{n-1,2} & \alpha_{n 2} \\ 0 & 0 & \cdots & \cdots & i\end{array}\right)\)
```

- Hessenberg decomposition, Eqn. (57),
- Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, \dagger February 22nd, 1959)

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{Z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Residual polynomials $\mathcal{R}_{k}, \underline{\mathcal{R}}_{k}$ given by

$$
\mathcal{R}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \mathbf{H}_{k}^{-1}\right) \quad \text { and } \quad \underline{\mathcal{R}}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{I}}_{k}\right) .
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{Z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Residual polynomials $\mathcal{R}_{k}, \underline{\mathcal{R}}_{k}$ given by

$$
\mathcal{R}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \mathbf{H}_{k}^{-1}\right) \quad \text { and } \quad \underline{\mathcal{R}}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{I}}_{k}\right) .
$$

Convergence of OR and MR depends on (harmonic) Ritz values.

Perturbed OR methods

Setting changes when perturbations enter the stage, here, OR method.

Perturbed OR methods

Setting changes when perturbations enter the stage, here, OR method.

In perturbed case

$$
\mathbf{A} \mathbf{Q}_{k}+\mathbf{F}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k}
$$

polynomial representation

$$
\mathbf{r}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0}-\sum_{\ell=1}^{k} z_{\ell k} \mathcal{R}_{\ell+1: k}(\mathbf{A}) \mathbf{f}_{\ell}+\mathbf{F}_{k} \mathbf{z}_{k}
$$

(all trailing square Hessenberg matrices are assumed to be regular).

Perturbed OR methods

Setting changes when perturbations enter the stage, here, OR method.
In perturbed case

$$
\mathbf{A} \mathbf{Q}_{k}+\mathbf{F}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k}
$$

polynomial representation

$$
\mathbf{r}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0}-\sum_{\ell=1}^{k} z_{\ell k} \mathcal{R}_{\ell+1: k}(\mathbf{A}) \mathbf{f}_{\ell}+\mathbf{F}_{k} \mathbf{z}_{k}
$$

(all trailing square Hessenberg matrices are assumed to be regular).

Here,

$$
\mathcal{R}_{\ell+1: k}(z):=\operatorname{det}\left(\mathbf{I}_{k-\ell}-z \mathbf{H}_{\ell+1: k}^{-1}\right) .
$$

Perturbed OR methods

Setting changes when perturbations enter the stage, here, OR method.

In perturbed case

$$
\mathbf{A} \mathbf{Q}_{k}+\mathbf{F}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k}
$$

polynomial representation

$$
\mathbf{r}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0}-\sum_{\ell=1}^{k} z_{\ell k} \mathcal{R}_{\ell+1: k}(\mathbf{A}) \mathbf{f}_{\ell}+\mathbf{F}_{k} \mathbf{z}_{k}
$$

(all trailing square Hessenberg matrices are assumed to be regular).

Here,

$$
\mathcal{R}_{\ell+1: k}(z):=\operatorname{det}\left(\mathbf{I}_{k-\ell}-z \mathbf{H}_{\ell+1: k}^{-1}\right) .
$$

Convergence: $\mathbf{F}_{k} \mathbf{z}_{k}$ bounded (inexact methods) \& $\mathcal{R}_{\ell+1: k}(\mathbf{A})$ "small".

Outline

Hessenberg decompositions
Polynomial renresentations

Perturbations

IDR
IDR and IDR(s) \qquad
IDREIG
IDR (s)STAB (ℓ) and IDPSTADEIG
(Flexible and multi-shift) QMRIDR
Perturbations

IDR: History repeating

IDR
1976 Idea by Sonneveld
1979 First talk on IDR
1980 Proceedings
1989 CGS
1992 IDR \rightsquigarrow BICGSTAB
1993 BICGSTAB2, BICGStab (ℓ)
later "acronym explosion"...

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

IDR: History repeating

	IDR		$\operatorname{IDR}(s)$
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son’s generation).

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son’s generation).

IDR is based on Lanczos's method; $\operatorname{IDR}(s)$ is based on $\operatorname{Lanczos}(s, 1)$.

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son’s generation).

IDR is based on Lanczos's method; $\operatorname{IDR}(s)$ is based on $\operatorname{Lanczos}(s, 1)$.
$\operatorname{IDR}(s)$ is a Krylov subspace method \rightsquigarrow all techniques from 90's applicable!

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s} .
$$

IDR (s)

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s}
$$

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

$$
\begin{aligned}
\mathcal{G}_{j}=\mathcal{S}_{j}\left(P_{j}, \mathbf{A}, \widetilde{\mathbf{R}}_{0}\right) & :=\left\{P_{j}(\mathbf{A}) v \mid v \perp \mathcal{K}_{j}\left(\mathbf{A}^{H}, \widetilde{\mathbf{R}}_{0}\right)\right\}, \\
P_{j}(z) & :=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right) .
\end{aligned}
$$

IDR (s)

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s}
$$

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

$$
\begin{aligned}
\mathcal{G}_{j}=\mathcal{S}_{j}\left(P_{j}, \mathbf{A}, \widetilde{\mathbf{R}}_{0}\right) & :=\left\{P_{j}(\mathbf{A}) v \mid v \perp \mathcal{K}_{j}\left(\mathbf{A}^{\mathrm{H}}, \widetilde{\mathbf{R}}_{0}\right)\right\}, \\
P_{j}(z) & :=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right) .
\end{aligned}
$$

Image of shrinking space: Induced Dimension Reduction.

IDR(s)
IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{j \max } \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.
Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s} .
$$

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\mathbf{v}_{k}=\sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{H} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1,
$$

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A G}_{s}=\mathbf{G}_{s+1} \underline{H}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\begin{aligned}
\mathbf{v}_{k}= & \sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1 \\
& \left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \quad, \quad j=\left\lfloor\frac{k-1}{s+1}\right\rfloor .
\end{aligned}
$$

IDR(s)

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\begin{aligned}
\mathbf{v}_{k} & =\sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1 \\
\mathbf{g}_{k+1} \nu_{k+1} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}-\sum_{i=k-j(s+1)-1}^{k} \mathbf{g}_{i} \nu_{i}, \quad j=\left\lfloor\frac{k-1}{s+1}\right\rfloor .
\end{aligned}
$$

Generalized Hessenberg decomposition:

$$
\mathbf{A V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k},
$$

where $\mathbf{U}_{k} \in \mathbb{C}^{k \times k}$ upper triangular.

IDR(s)

Generalized Hessenberg decomposition:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}
$$

where $\mathbf{U}_{k} \in \mathbb{C}^{k \times k}$ upper triangular.
Structure of Sonneveld pencils:

IDREig

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$ converge to eigenvalues of \mathbf{A}.

IDREig

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \tag{1}\\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\mathbf{I}_{k}^{\top} \underline{H}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right),
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{\mathrm{H}}:=\mathbf{I}_{k}^{\top} \mathbf{G}_{k+1}^{\dagger}$.

IDREig

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A G} \mathbf{G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \tag{1}\\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\underline{\mathbf{I}}_{k}^{\top} \underline{\mathbf{H}}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right),
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{\mathrm{H}}:=\mathbf{I}_{k}^{\top} \mathbf{G}_{k+1}^{\dagger}$.
Use deflated pencil for Lanczos Ritz values (Gutknecht, Z. (2010): IDREIG).

IDREig

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \tag{1}\\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\underline{\mathbf{I}}_{k}^{\top} \underline{\mathbf{H}}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right),
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{\mathrm{H}}:=\underline{\mathbf{I}}_{k}^{\top} \mathbf{G}_{k+1}^{\dagger}$.
Use deflated pencil for Lanczos Ritz values (Gutknecht, Z. (2010): IDREIG). First: IDR (s) ORes, Olaf Rendel: IDR $(s) \mathrm{BIO}$, Anisa Rizvanolli: IDR $(s) \operatorname{StaB}(\ell)$.
$\operatorname{IDR}(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Giizen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStab}(\ell)$.

IDRSTAB

IDR $(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Giizen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStAB}(\ell)$.

IDRSTAB (Sleijpen's implementation) recursively computes "(extended)
Hessenberg matrices of basis matrices and residuals" $(k \geqslant 1)$:

$$
\begin{array}{c|c|ccc}
\mathbf{G}_{11}^{(k)}, \mathbf{r}_{11}^{(k)} & \mathbf{G}_{12}^{(k)}, \mathbf{r}_{12}^{(k)} & \ldots & \mathbf{G}_{1, \ell+1}^{(k)}, & \mathbf{r}_{1, \ell+1}^{(k)} \\
\mathbf{G}_{21}^{(k)}, \mathbf{r}_{21}^{(k)} & \mathbf{G}_{22}^{(k)}, \mathbf{r}_{22}^{(k)} & \ldots & \mathbf{G}_{2, \ell+1}^{(k)}, & \mathbf{r}_{2, \ell+1}^{(k)} \\
& \mathbf{G}_{32}^{(k)}, \mathbf{r}_{32}^{(k)} & \ddots & \vdots & \vdots \\
& & \ddots & \mathbf{G}_{\ell+1, \ell+1}^{(k)}, \mathbf{r}_{\ell+1, \ell+1}^{(k)} \\
& & & \mathbf{G}_{\ell+2, \ell+1}^{(k)}
\end{array}
$$

$$
\begin{array}{cl}
\mathbf{G}_{i, j}^{(k)} \in \mathbb{C}^{n \times s}, & \mathbf{r}_{i, j}^{(k)} \in \mathbb{C}^{n}, \\
\mathbf{G}_{i+1, j}^{(k)}=\mathbf{A G}_{i, j}^{(k)}, & \mathbf{r}_{i+1, j}^{(k)}=\mathbf{A r}_{i, j}^{(k)}, \\
\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{O}_{s}, & \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{i i}^{(k)}=\mathbf{o}_{s},
\end{array}
$$

$$
\left(\mathbf{G}_{i i}^{(k)}\right)^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{I}_{s} .
$$

IDRSTAB

IDR $(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Gijzen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStab}(\ell)$.

IDRSTAB (Sleijpen's implementation) recursively computes "(extended)
Hessenberg matrices of basis matrices and residuals" $(k \geqslant 1)$:
$\mathbf{G}_{11}^{(k)}, \mathbf{r}_{11}^{(k)}$

$$
\mathbf{G}_{12}^{(k)}, \mathbf{r}_{12}^{(k)}
$$

$$
\ldots
$$

$$
\mathbf{G}_{1, \ell+1}^{(k)}, \quad \mathbf{r}_{1, \ell+1}^{(k)}
$$

$$
\mathbf{G}_{21}^{(k)}, \mathbf{r}_{21}^{(k)}
$$

$$
\begin{array}{cc}
\mathbf{G}_{22}^{(k)}, \mathbf{r}_{22}^{(k)} & \ldots \\
\mathbf{G}_{32}^{(k)}, \mathbf{r}_{32}^{(k)} & \ddots
\end{array}
$$

$$
\mathbf{G}_{2, \ell+1}^{(k)}, \quad \mathbf{r}_{2, \ell+1}^{(k)}
$$

$$
\mathbf{G}_{i, j}^{(k)} \in \mathbb{C}^{n \times s}, \quad \mathbf{r}_{i, j}^{(k)} \in \mathbb{C}^{n}
$$

$$
\begin{array}{ccc}
\mathbf{G}_{32}^{(k)}, \mathbf{r}_{32}^{(k)} & \ddots & \vdots \\
& \ddots & \mathbf{G}_{\ell+1, \ell+1}^{(k)}, \mathbf{r}_{\ell+1, \ell+1}^{(k)} \\
& & \mathbf{G}_{\ell+2, \ell+1}^{(k)}
\end{array}
$$

$$
\mathbf{G}_{i+1, j}^{(k)}=\mathbf{A G}_{i, j}^{(k)}, \quad \mathbf{r}_{i+1, j}^{(k)}=\mathbf{A} \mathbf{r}_{i, j}^{(k)}
$$

$$
\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{O}_{s}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{i i}^{(k)}=\mathbf{o}_{s}
$$

$$
\left(\mathbf{G}_{i i}^{(k)}\right)^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{I}_{s}
$$

Initialization using Arnoldi's method:

$$
\begin{aligned}
\mathbf{G}_{21}^{(1)}=\mathbf{A} \mathbf{G}_{11}^{(1)} & =\left(\mathbf{G}_{11}^{(1)}, \mathbf{g}_{\mathrm{tmp}}\right) \underline{\mathbf{H}}_{s}^{(0)} \\
\mathbf{r}_{11}^{(1)} & =\mathbf{r}_{0}-\mathbf{G}_{21}^{(1)} \boldsymbol{\alpha}^{(1)}=\left(\mathbf{I}-\mathbf{G}_{21}^{(1)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{21}^{(1)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{0}, \quad \mathbf{r}_{21}^{(1)}=\mathbf{A} \mathbf{r}_{11}^{(1)}
\end{aligned}
$$

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times s-1}$

All other blocks in column treated in same manner.

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times s-1}$

All other blocks in column treated in same manner.
Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{H} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times s-1}$

All other blocks in column treated in same manner.
Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

New cycle (STAB part, $\mathbf{r}_{21}^{(k+1)}=\mathbf{A r}_{11}^{(k+1)}, \gamma^{(\ell)} \in \mathbb{C}^{s}$ such that $\left\|\mathbf{r}_{11}^{(k+1)}\right\|=$ min):

$$
\mathbf{r}_{11}^{(k+1)}=\mathbf{r}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{r}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \quad\left\{\begin{array}{l}
\mathbf{G}_{11}^{(k+1)}=\mathbf{G}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \\
\mathbf{G}_{21}^{(k+1)}=\mathbf{G}_{2, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+2, \ell+1}^{(k)} \gamma_{i}^{(\ell)} .
\end{array}\right.
$$

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times s-1}$

All other blocks in column treated in same manner.
Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

New cycle (STAB part, $\mathbf{r}_{21}^{(k+1)}=\mathbf{A r}_{11}^{(k+1)}, \gamma^{(\ell)} \in \mathbb{C}^{s}$ such that $\left\|\mathbf{r}_{11}^{(k+1)}\right\|=$ min):

$$
\mathbf{r}_{11}^{(k+1)}=\mathbf{r}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{r}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \quad\left\{\begin{array}{l}
\mathbf{G}_{11}^{(k+1)}=\mathbf{G}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \\
\mathbf{G}_{21}^{(k+1)}=\mathbf{G}_{2, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+2, \ell+1}^{(k)} \gamma_{i}^{(\ell)} .
\end{array}\right.
$$

Anisa Rizvanolli: \rightsquigarrow Lanczos-IDRStab pencil for eigenvalues, IDRStabEIg.

Structure of (undeflated) Lanczos-IDRSTAB pencil

A comparison: IDR based eigenvalue solvers

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

Other Krylov-paradigms possible, e.g., flexible (\& multi-shift) QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{j}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k} \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{j}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad \mathbf{A} \widetilde{\mathbf{v}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} \quad \text { (gen. Hessenberg relation). }
\end{aligned}
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

Other Krylov-paradigms possible, e.g., flexible (\& multi-shift) QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{j}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k} \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{j}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad A \widetilde{\mathbf{v}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} \quad \text { (gen. Hessenberg relation). }
\end{aligned}
$$

Olaf Rendel, Gerard Sleijpen, Martin van Gijzen: \rightsquigarrow QMRIDRStab.

Flexible QMRIDR (s)

Perturbations

IDR based on short recurrences, i.e., Lanczos based.

Perturbations

IDR based on short recurrences, i.e., Lanczos based.
\rightsquigarrow Behaviour in finite precision? Inexact methods? General perturbations?

Perturbations

IDR based on short recurrences, i.e., Lanczos based.
\rightsquigarrow Behaviour in finite precision? Inexact methods? General perturbations?

Lanczos	IDR
deviation	deviation
multiple Ritz values	ghost polynomial roots
delay of convergence	
delay of convergence	attainable accuracy: condition
analysis by Chris Paige	thus far no error analysis available

Perturbations

IDR based on short recurrences, i.e., Lanczos based.
\rightsquigarrow Behaviour in finite precision? Inexact methods? General perturbations?

Lanczos	IDR
deviation	deviation
multiple Ritz values	ghost polynomial roots
delay of convergence	
delay of convergence	attainable accuracy: condition
analysis by Chris Paige accuracy: worse than Lanczos	
thus far no error analysis available	

But:

- IDR transpose-free,
- easy to implement,
- more stable (for large values of s),
- often close to "optimal" methods (for large values of s).

IDR(3)STAB(3): "Ghost polynomial roots"

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGStab, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots)$ and new (IDR (s), IDRStab, QMRIDR, ...).

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGStab, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots)$ and new (IDR(s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGStab, BICGStab2, $\operatorname{BICGStab}(\ell), \ldots$) and new (IDR(s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.
- New developments double old developments at increased speed.

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGStab, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots)$ and new (IDR(s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.
- New developments double old developments at increased speed.
- IDR based methods bridge the gap between short- and long-term recurrences.

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGStab, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots$) and new (IDR(s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.
- New developments double old developments at increased speed.
- IDR based methods bridge the gap between short- and long-term recurrences.
- IDR based methods offer more freedom in parameters (e.g., the choice of the additional polynomials).

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGSTAB, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots)$ and new (IDR (s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.
- New developments double old developments at increased speed.
- IDR based methods bridge the gap between short- and long-term recurrences.
- IDR based methods offer more freedom in parameters (e.g., the choice of the additional polynomials).

ILAS related:

- The analysis \& development of IDR based methods is a new branch of Krylov subspace methods.

Conclusion and Outview

- IDR is both old (original IDR, CGS, BICGSTAB, BICGStab2, $\operatorname{BICGSTAB}(\ell), \ldots$) and new (IDR(s), IDRStab, QMRIDR, ...).
- IDR can be included in the framework of Krylov subspace methods using generalized Hessenberg decompositions.
- New developments double old developments at increased speed.
- IDR based methods bridge the gap between short- and long-term recurrences.
- IDR based methods offer more freedom in parameters (e.g., the choice of the additional polynomials).

ILAS related:

- The analysis \& development of IDR based methods is a new branch of Krylov subspace methods.
- The pencils of IDR based methods are specially structured pencils (adapted backward stable algorithms; perturbation theory, ...).

Thank you for your attention!

In case of questions feel free to ask Anisa, Olaf \& myself at any time.

This talk is partially based on the following technical reports:
Eigenvalue computations based on IDR, Martin H. Gutknecht and Z., Bericht 145, Institut für Numerische Simulation, TUHH, 2010,
Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems, Martin B. van Gijzen, Gerard L.G. Sleijpen, and Z., Bericht 156, Institut für Numerische Simulation, TUHH, 2011.

