IDR versus other Krylov subspace solvers

Jens-Peter M. Zemke

zemke@tu-harburg.de
joint work with Olaf Rendel \& Anisa Rizvanolli
Institut für Numerische Simulation Technische Universität Hamburg-Harburg

October 25th, 13:30-14:00

Outline

Krylov subspace methods

Hessenberg decompositions
Polynomial representations

IDR
IDR, IDR (s), and IDREIG

IDR vs. other Krylov subspace methods
IDRSTAB and QMRIDR
Transferring techniques
Stay close to Arnoldi/Lanczos

Outline

Krylov subspace methods

Hessenberg decompositions
Polynomial representations

IDR, IDR (s), and IDREIG

IDRSTAB and QMRIDR
Transferring techniques
Stay close to Arnoldi/Lanczos

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \mathbf{y}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\}
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\}
$$

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \underline{\mathbf{y}}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\}
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\}
$$

to solutions of linear systems

$$
\mathbf{A x}=\mathbf{r}_{0}\left(=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}\right), \quad \mathbf{A} \in \mathbb{C}^{n \times n}, \quad \mathbf{b}, \mathbf{x}_{0} \in \mathbb{C}^{n}
$$

Introduction

Krylov subspace methods: approximations

$$
\left.\begin{array}{l}
\mathbf{x}_{k}, \underline{\mathbf{x}}_{k}, \\
\mathbf{y}_{k}, \underline{\mathbf{y}}_{k}
\end{array}\right\} \in \mathcal{K}_{k}(\mathbf{A}, \mathbf{q}):=\operatorname{span}\left\{\mathbf{q}, \mathbf{A} \mathbf{q}, \ldots, \mathbf{A}^{k-1} \mathbf{q}\right\}=\left\{p(\mathbf{A}) \mathbf{q} \mid p \in \mathbb{P}_{k-1}\right\},
$$

where

$$
\mathbb{P}_{k-1}:=\left\{\sum_{j=0}^{k-1} \alpha_{j} z^{j} \mid \alpha_{j} \in \mathbb{C}, 0 \leqslant j<k\right\}
$$

to solutions of linear systems

$$
\mathbf{A x}=\mathbf{r}_{0}\left(=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}\right), \quad \mathbf{A} \in \mathbb{C}^{n \times n}, \quad \mathbf{b}, \mathbf{x}_{0} \in \mathbb{C}^{n}
$$

and (partial) eigenproblems

$$
\mathbf{A v}=\mathbf{v} \lambda, \quad \mathbf{A} \in \mathbb{C}^{n \times n} .
$$

Hessenberg decompositions

Construction of basis vectors resembled in structure of arising Hessenberg decomposition

$$
\mathbf{A} \mathbf{Q}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

where

- $\mathbf{Q}_{k+1}=\left(\mathbf{Q}_{k}, \mathbf{q}_{k+1}\right) \in \mathbb{C}^{n \times(k+1)}$ collects basis vectors,
- $\underline{\mathbf{H}}_{k} \in \mathbb{C}^{(k+1) \times k}$ is unreduced extended Hessenberg.

Hessenberg decompositions

Construction of basis vectors resembled in structure of arising Hessenberg decomposition

$$
\mathbf{A} \mathbf{Q}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

where

- $\mathbf{Q}_{k+1}=\left(\mathbf{Q}_{k}, \mathbf{q}_{k+1}\right) \in \mathbb{C}^{n \times(k+1)}$ collects basis vectors,
- $\underline{H}_{k} \in \mathbb{C}^{(k+1) \times k}$ is unreduced extended Hessenberg.

Aspects of perturbed Krylov subspace methods: captured with perturbed Hessenberg decompositions

$$
\mathbf{A} \mathbf{Q}_{k}+\mathbf{F}_{k}=\mathbf{Q}_{k+1} \underline{\mathbf{H}}_{k},
$$

$\mathbf{F}_{k} \in \mathbb{C}^{n \times k}$ accounts for perturbations (finite precision \& inexact methods).

Karl Hessenberg \& "his" matrix + decomposition

"'Behandlung linearer Eigenwertaufgaben mit Hilfe der Hamilton-Cayleyschen Gleichung"', Karl Hessenberg, 1. Bericht der Reihe "'Numerische Verfahren"', July, 23rd 1940, page 23:

```
Men kann nun die Vektoren }\mp@subsup{z}{\nu}{(\nu-n)}(\nu=1,2,\ldots,n) ebenfalls in einer
Matrix zusammenfassen, und zwar ist nach Gleichung (55) und (56)
```



```
worin die Matrix p zur Abkirzung gesetzt ist flir
(58) \(R=\left(\begin{array}{lllll}\alpha_{10} & \alpha_{20} & \cdots & \alpha_{n-1,0} & \alpha_{n 0} \\ 1 & \alpha_{21} & \cdots & \alpha_{n-1,1} & \alpha_{n 1} \\ 0 & 1 & \cdots & \alpha_{n-1,2} & \alpha_{n 2} \\ 0 & 0 & \cdots & 1 & 1\end{array}\right)\)
```

- Hessenberg decomposition, Eqn. (57),
- Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, \dagger February 22nd, 1959)

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Residual polynomials $\mathcal{R}_{k}, \underline{\mathcal{R}}_{k}$ given by

$$
\mathcal{R}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \mathbf{H}_{k}^{-1}\right) \quad \text { and } \quad \underline{\mathcal{R}}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{I}}_{k}\right) .
$$

Important Polynomials

Residuals of OR and MR approximation

$$
\mathbf{x}_{k}:=\mathbf{Q}_{k} \mathbf{z}_{k} \quad \text { and } \quad \underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}
$$

with coefficient vectors

$$
\mathbf{z}_{k}:=\mathbf{H}_{k}^{-1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\| \quad \text { and } \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|
$$

satisfy

$$
\mathbf{r}_{k}:=\mathbf{r}_{0}-\mathbf{A} \mathbf{x}_{k}=\mathcal{R}_{k}(\mathbf{A}) \mathbf{r}_{0} \quad \text { and } \quad \underline{\mathbf{r}}_{k}:=\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}=\underline{\mathcal{R}}_{k}(\mathbf{A}) \mathbf{r}_{0} .
$$

Residual polynomials $\mathcal{R}_{k}, \underline{\mathcal{R}}_{k}$ given by

$$
\mathcal{R}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \mathbf{H}_{k}^{-1}\right) \quad \text { and } \quad \underline{\mathcal{R}}_{k}(z):=\operatorname{det}\left(\mathbf{I}_{k}-z \underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{I}}_{k}\right) .
$$

Convergence of OR and MR depends on (harmonic) Ritz values.

Outline

Hessenberg decompositions
Polynomial representations

IDR, IDR(s), and IDREIG

IDRSTAB and QMRIDR
Transferring techniques
Stay close to Arnoldi/Lanczos

IDR: History repeating

IDR
1976 Idea by Sonneveld
1979 First talk on IDR
1980 Proceedings
1989 CGS
1992 IDR BICGSTAB
1993 BICGSTAB2, BICGStab (ℓ)
later "acronym explosion"...

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son's generation).

IDR: History repeating

	IDR	IDR (s)	
1976	Idea by Sonneveld	2006	Sonneveld \& van Gijzen
1979	First talk on IDR	2007	First presentation \& report
1980	Proceedings	2008	SIAM paper (SISC)
1989	CGS	2008	IDR (s) BIO
1992	IDR \rightsquigarrow BICGSTAB	2010	IDR (s) STAB (ℓ), IDREIG
1993	BICGSTAB2, BICGSTAB (ℓ)	2011	flexible \& multi-shift QMRIDR
later	"acronym explosion"...	later	"acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son's generation).

IDR is based on Lanczos's method; $\operatorname{IDR}(s)$ is based on $\operatorname{Lanczos}(s, 1)$.

IDR: History repeating

IDR

1976 Idea by Sonneveld
1979 First talk on IDR
1980 Proceedings
1989 CGS
1992 IDR \rightsquigarrow BICGStab
1993 BICGStab2, BICGStab (ℓ) later "acronym explosion"...

IDR (s)
2006 Sonneveld \& van Giizen 2007 First presentation \& report 2008 SIAM paper (SISC)
2008 IDR(s)BIO
$2010 \operatorname{IDR}(s) \operatorname{Stab}(\ell)$, IDREIG
2011 flexible \& multi-shift QMRIDR later "acronym explosion"?

- IDR and IDR based methods are old (\rightsquigarrow my generation),
- $\operatorname{IDR}(s)$ is 5 years "old" (\rightsquigarrow my son's generation).

IDR is based on Lanczos's method; $\operatorname{IDR}(s)$ is based on $\operatorname{Lanczos}(s, 1)$.
$\operatorname{IDR}(s)$ is a Krylov subspace method \rightsquigarrow all techniques from 90's applicable!

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s} .
$$

IDR (s)

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s}
$$

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

$$
\begin{aligned}
\mathcal{G}_{j}=\mathcal{S}_{j}\left(P_{j}, \mathbf{A}, \widetilde{\mathbf{R}}_{0}\right) & :=\left\{P_{j}(\mathbf{A}) \mathbf{v} \mid \mathbf{v} \perp \mathcal{K}_{j}\left(\mathbf{A}^{H}, \widetilde{\mathbf{R}}_{0}\right)\right\}, \\
P_{j}(z) & :=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right)
\end{aligned}
$$

IDR (s)

IDR spaces:

$$
\begin{aligned}
& \mathcal{G}_{0}:=\mathcal{K}(\mathbf{A}, \mathbf{q}), \quad \text { (full Krylov subspace) } \\
& \mathcal{G}_{j}:=\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right), \quad j \geqslant 1, \quad \alpha_{j}, \beta_{j} \in \mathbb{C}, \quad \alpha_{j} \neq 0,
\end{aligned}
$$

where

$$
\operatorname{codim}(\mathcal{S})=s, \quad \text { e.g., } \quad \mathcal{S}=\operatorname{span}\left\{\widetilde{\mathbf{R}}_{0}\right\}^{\perp}, \quad \widetilde{\mathbf{R}}_{0} \in \mathbb{C}^{n \times s}
$$

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

$$
\begin{aligned}
\mathcal{G}_{j}=\mathcal{S}_{j}\left(P_{j}, \mathbf{A}, \widetilde{\mathbf{R}}_{0}\right) & :=\left\{P_{j}(\mathbf{A}) \mathbf{v} \mid \mathbf{v} \perp \mathcal{K}_{j}\left(\mathbf{A}^{\mathrm{H}}, \widetilde{\mathbf{R}}_{0}\right)\right\}, \\
P_{j}(z) & :=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right)
\end{aligned}
$$

Image of shrinking space: Induced Dimension Reduction.

IDR(s)
IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{j \max } \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.
Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis \mathbf{G}_{s+1} of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A V}_{s}=\mathbf{A} \mathbf{G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s}, \quad \mathbf{V}_{s}:=\mathbf{G}_{s} .
$$

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis \mathbf{G}_{s+1} of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A V}_{s}=\mathbf{A} \mathbf{G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s}, \quad \mathbf{V}_{s}:=\mathbf{G}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\mathbf{v}_{k}=\sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{H} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1,
$$

IDR(s)

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis \mathbf{G}_{s+1} of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A V}_{s}=\mathbf{A} \mathbf{G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s}, \quad \mathbf{V}_{s}:=\mathbf{G}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\begin{aligned}
\mathbf{v}_{k}= & \sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1, \\
& \left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \quad, \quad j=\left\lfloor\frac{k-1}{s+1}\right\rfloor .
\end{aligned}
$$

IDR(s)

IDR spaces nested:

$$
\{\mathbf{0}\}=\mathcal{G}_{\text {jmax }} \subsetneq \cdots \subsetneq \mathcal{G}_{j+1} \subsetneq \mathcal{G}_{j} \subsetneq \mathcal{G}_{j-1} \subsetneq \cdots \subsetneq \mathcal{G}_{2} \subsetneq \mathcal{G}_{1} \subsetneq \mathcal{G}_{0} .
$$

How many vectors in $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$? In generic case, $s+1$.

Stable basis: Partially orthonormalize basis vectors $\mathbf{g}_{k}, 1 \leqslant k \leqslant n$:

Arnoldi: compute orthonormal basis \mathbf{G}_{s+1} of $\mathcal{K}_{s+1} \subset \mathcal{G}_{0}$,

$$
\mathbf{A V}_{s}=\mathbf{A G}_{s}=\mathbf{G}_{s+1} \underline{\mathbf{H}}_{s}, \quad \mathbf{V}_{s}:=\mathbf{G}_{s} .
$$

"Lanczos": perform intersection $\mathcal{G}_{j} \cap \mathcal{S}$, map, and orthonormalize,

$$
\begin{aligned}
\mathbf{v}_{k} & =\sum_{i=k-s}^{k} \mathbf{g}_{i} \gamma_{i}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{v}_{k}=\mathbf{o}_{s}, \quad k \geqslant s+1, \\
\mathbf{g}_{k+1} \nu_{k+1} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}-\sum_{i=k-j(s+1)-1}^{k} \mathbf{g}_{i} \nu_{i}, \quad j=\left\lfloor\frac{k-1}{s+1}\right\rfloor .
\end{aligned}
$$

Generalized Hessenberg decomposition:

$$
\mathbf{A V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k},
$$

where $\mathbf{U}_{k} \in \mathbb{C}^{k \times k}$ upper triangular.

IDR(s)

Generalized Hessenberg decomposition:

$$
\mathbf{A} \mathbf{V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}
$$

where $\mathbf{U}_{k} \in \mathbb{C}^{k \times k}$ upper triangular.
Structure of Sonneveld pencils:

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.

IDREIG

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A G} \mathbf{G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\underline{\mathbf{I}}_{k}^{\top} \underline{\mathbf{H}}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right), \tag{1}
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{\mathrm{H}}:=\mathbf{I}_{k}^{\boldsymbol{\top}} \mathbf{G}_{k+1}^{\dagger}$.

IDREIG

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A G} \mathbf{G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\underline{I}_{k}^{\top} \underline{H}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right), \tag{1}
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{H}:=\underline{\mathbf{I}}_{k}^{\top} \mathbf{G}_{k+1}^{\dagger}$.
Use deflated pencil for Lanczos Ritz values (Gutknecht, Z. (2010): IDREIG).

Eigenvalues of Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ are roots of residual polynomials. Those distinct from roots of

$$
P_{j}(z)=\prod_{i=1}^{j}\left(\alpha_{i} z+\beta_{i}\right), \quad \text { i.e., } \quad z_{i}=-\frac{\beta_{i}}{\alpha_{i}}, \quad 1 \leqslant i \leqslant j
$$

converge to eigenvalues of \mathbf{A}.
Suppose \mathbf{G}_{k+1} of full rank. Sonneveld pencil $\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right)$ as oblique projection:

$$
\begin{align*}
\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A}, \mathbf{I}_{n}\right) \mathbf{G}_{k} \mathbf{U}_{k} & =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right) \\
& =\widehat{\mathbf{G}}_{k}^{\mathrm{H}}\left(\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}, \mathbf{G}_{k} \mathbf{U}_{k}\right)=\left(\underline{I}_{k}^{\top} \underline{H}_{k}, \mathbf{U}_{k}\right)=\left(\mathbf{H}_{k}, \mathbf{U}_{k}\right), \tag{1}
\end{align*}
$$

here, $\widehat{\mathbf{G}}_{k}^{\mathrm{H}}:=\underline{\mathbf{I}}_{k}^{\top} \mathbf{G}_{k+1}^{\dagger}$.
Use deflated pencil for Lanczos Ritz values (Gutknecht, Z. (2010): IDREIG). First: IDR (s) ORes, Olaf Rendel: IDR $(s) \mathrm{BIO}$, Anisa Rizvanolli: IDR $(s) \operatorname{STAB}(\ell)$.

Outline

Hessenberg decompositions
Polynomial representations

IDR, IDR (s), and IDREIG

IDR vs. other Krylov subspace methods
IDRSTAB and QMRIDR
Transferring techniques
Stay close to Arnoldi/Lanczos

IDRSTAB

$\operatorname{IDR}(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Gijzen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStab}(\ell)$.

IDRStAB

IDR $(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Giizen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStab}(\ell)$.

IDRSTAB (Sleijpen's implementation) recursively computes "(extended)
Hessenberg matrices of basis matrices and residuals" $(k \geqslant 1)$:

$$
\begin{array}{c|cccc}
\mathbf{G}_{11}^{(k)}, \mathbf{r}_{11}^{(k)} & \mathbf{G}_{12}^{(k)}, \mathbf{r}_{12}^{(k)} & \ldots & \mathbf{G}_{1, \ell+1}^{(k)}, & \mathbf{r}_{1, \ell+1}^{(k)} \\
\mathbf{G}_{21}^{(k)}, \mathbf{r}_{21}^{(k)} & \mathbf{G}_{22}^{(k)}, \mathbf{r}_{22}^{(k)} & \ldots & \mathbf{G}_{2, \ell+1}^{(k)}, & \mathbf{r}_{2, \ell+1}^{(k)} \\
& \mathbf{G}_{32}^{(k)}, \mathbf{r}_{32}^{(k)} & \ddots & & \vdots \\
& & \ddots & \mathbf{G}_{\ell+1, \ell+1}^{(k)}, \mathbf{r}_{\ell+1, \ell+1}^{(k)} \\
& & & \mathbf{G}_{\ell+2, \ell+1}^{(k)}
\end{array}
$$

$$
\begin{array}{cl}
\mathbf{G}_{i, j}^{(k)} \in \mathbb{C}^{n \times s}, & \mathbf{r}_{i, j}^{(k)} \in \mathbb{C}^{n}, \\
\mathbf{G}_{i+1, j}^{(k)}=\mathbf{A G}_{i, j}^{(k)}, & \mathbf{r}_{i+1, j}^{(k)}=\mathbf{A r}_{i, j}^{(k)}, \\
\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{O}_{s}, & \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{i i}^{(k)}=\mathbf{o}_{s},
\end{array}
$$

$$
\left(\mathbf{G}_{i i}^{(k)}\right)^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{I}_{s}
$$

IDRSTAB

$\operatorname{IDR}(s) \operatorname{STAB}(\ell)$ (Tanio \& Sugihara; Sleijpen \& van Giizen): combine ideas of $\operatorname{IDR}(s)$ and $\operatorname{BICGStab}(\ell)$.

IDRSTAB (Sleijpen's implementation) recursively computes "(extended)
Hessenberg matrices of basis matrices and residuals" $(k \geqslant 1)$:
$\mathbf{G}_{11}^{(k)}, \mathbf{r}_{11}^{(k)}$

$$
\mathbf{G}_{21}^{(k)}, \mathbf{r}_{21}^{(k)}
$$

$$
\begin{array}{lcll}
\mathbf{G}_{12}^{(k)}, \mathbf{r}_{12}^{(k)} & \ldots & \mathbf{G}_{1, \ell+1}^{(k)}, & \mathbf{r}_{1, \ell+1}^{(k)} \\
\mathbf{G}_{22}^{(k)}, \mathbf{r}_{22}^{(k)} & \ldots & \mathbf{G}_{2, \ell+1}^{(k)}, & \mathbf{r}_{2, \ell+1}^{(k)} \\
\mathbf{G}_{32}^{(k)}, \mathbf{r}_{32}^{(k)} & \ddots & \vdots \\
& \ddots & \mathbf{G}_{\ell+1, \ell+1}^{(k)}, \mathbf{r}_{\ell+1, \ell+1}^{(k)} \\
& & \mathbf{G}_{\ell+2, \ell+1}^{(k)}
\end{array}
$$

$$
\mathbf{G}_{i, j}^{(k)} \in \mathbb{C}^{n \times s}, \quad \mathbf{r}_{i, j}^{(k)} \in \mathbb{C}^{n}
$$

$$
\begin{array}{cl}
\mathbf{G}_{i+1, j}^{(k)}=\mathbf{A} \mathbf{G}_{i, j}^{(k)}, & \mathbf{r}_{i+1, j}^{(k)}=\mathbf{A} \mathbf{r}_{i, j}^{(k)} \\
\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{O}_{s}, \quad \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{i i}^{(k)}=\mathbf{o}_{s}
\end{array}
$$

$$
\left(\mathbf{G}_{i i}^{(k)}\right)^{\mathrm{H}} \mathbf{G}_{i i}^{(k)}=\mathbf{I}_{s}
$$

Initialization using Arnoldi's method:

$$
\begin{aligned}
\mathbf{G}_{21}^{(1)}=\mathbf{A} \mathbf{G}_{11}^{(1)} & =\left(\mathbf{G}_{11}^{(1)}, \mathbf{g}_{\mathrm{tmp}}\right) \underline{\mathbf{H}}_{s}^{(0)} \\
\mathbf{r}_{11}^{(1)} & =\mathbf{r}_{0}-\mathbf{G}_{21}^{(1)} \boldsymbol{\alpha}^{(1)}=\left(\mathbf{I}-\mathbf{G}_{21}^{(1)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{21}^{(1)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{0}, \quad \mathbf{r}_{21}^{(1)}=\mathbf{A} \mathbf{r}_{11}^{(1)}
\end{aligned}
$$

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$

In particular, with $\widetilde{\mathbf{v}}_{i} \in \mathcal{G}_{j-1} \cap \mathcal{S}$,

$$
\begin{aligned}
\boldsymbol{\beta}_{i}^{(j)} & =\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j, j-1}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right) \\
\Rightarrow \quad\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right)-\mathbf{G}_{j, j-1} \boldsymbol{\beta}_{i}^{(j)} & =\mathbf{A}\left(\widetilde{\mathbf{v}}_{i}-\mathbf{G}_{j-1, j-1} \boldsymbol{\beta}_{i}^{(j)}\right) \in \mathcal{G}_{j} \cap \mathcal{S}
\end{aligned}
$$

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$

In particular, with $\widetilde{\mathbf{v}}_{i} \in \mathcal{G}_{j-1} \cap \mathcal{S}$,

$$
\begin{aligned}
\boldsymbol{\beta}_{i}^{(j)} & =\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j, j-1}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right) \\
\Rightarrow \quad\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right)-\mathbf{G}_{j, j-1} \boldsymbol{\beta}_{i}^{(j)} & =\mathbf{A}\left(\widetilde{\mathbf{v}}_{i}-\mathbf{G}_{j-1, j-1} \boldsymbol{\beta}_{i}^{(j)}\right) \in \mathcal{G}_{j} \cap \mathcal{S}
\end{aligned}
$$

Every new vector in $\mathcal{G}_{j} \cap \mathcal{S}$ is orthonormalized with respect to the others.

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$

In particular, with $\widetilde{\mathbf{v}}_{i} \in \mathcal{G}_{j-1} \cap \mathcal{S}$,

$$
\begin{aligned}
\boldsymbol{\beta}_{i}^{(j)} & =\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j, j-1}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right) \\
\Rightarrow \quad\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right)-\mathbf{G}_{j, j-1} \boldsymbol{\beta}_{i}^{(j)} & =\mathbf{A}\left(\widetilde{\mathbf{v}}_{i}-\mathbf{G}_{j-1, j-1} \boldsymbol{\beta}_{i}^{(j)}\right) \in \mathcal{G}_{j} \cap \mathcal{S}
\end{aligned}
$$

Every new vector in $\mathcal{G}_{j} \cap \mathcal{S}$ is orthonormalized with respect to the others.
Thus, for the IDR-IDRSTAB pencil relating (Stab-purified) diagonal blocks,
$\checkmark \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$ couples $\mathbf{G}_{j j}$ and $\mathbf{G}_{j, j-1}=\mathbf{A G}_{j-1, j-1} \rightsquigarrow \mathbf{U}_{k}$,

- $\underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$ couples result with others in same block $\rightsquigarrow \underline{\mathbf{H}}_{k}$.

IDRSTAB

Columnwise update (IDR part) such that diagonal blocks

- form basis of $\mathcal{G}_{j} \backslash \mathcal{G}_{j+1}$ with expansion $\mathcal{G}_{j}=\mathbf{A}\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right) \rightsquigarrow \boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$,
- are orthonormalized $\rightsquigarrow \underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$

In particular, with $\widetilde{\mathbf{v}}_{i} \in \mathcal{G}_{j-1} \cap \mathcal{S}$,

$$
\begin{aligned}
\boldsymbol{\beta}_{i}^{(j)} & =\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j, j-1}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right) \\
\Rightarrow \quad\left(\mathbf{A} \widetilde{\mathbf{v}}_{i}\right)-\mathbf{G}_{j, j-1} \boldsymbol{\beta}_{i}^{(j)} & =\mathbf{A}\left(\widetilde{\mathbf{v}}_{i}-\mathbf{G}_{j-1, j-1} \boldsymbol{\beta}_{i}^{(j)}\right) \in \mathcal{G}_{j} \cap \mathcal{S}
\end{aligned}
$$

Every new vector in $\mathcal{G}_{j} \cap \mathcal{S}$ is orthonormalized with respect to the others.
Thus, for the IDR-IDRSTAB pencil relating (Stab-purified) diagonal blocks,

- $\boldsymbol{\beta}^{(j)} \in \mathbb{C}^{s \times s}$ couples $\mathbf{G}_{j j}$ and $\mathbf{G}_{j, j-1}=\mathbf{A} \mathbf{G}_{j-1, j-1} \rightsquigarrow \mathbf{U}_{k}$,
- $\underline{\mathbf{H}}_{s-1}^{(j)} \in \mathbb{C}^{s \times(s-1)}$ couples result with others in same block $\rightsquigarrow \underline{\mathbf{H}}_{k}$.

All other blocks in column treated in same manner.

IDRSTAB

Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

IDRSTAB

Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

Here,

$$
\boldsymbol{\alpha}^{(j)}:=\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{j, j-1}^{(k)},
$$

IDRSTAB

Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

Here,

$$
\boldsymbol{\alpha}^{(j)}:=\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{j, j-1}^{(k)},
$$

$\boldsymbol{\alpha}^{(j)}$ relating $\mathbf{r}_{j, j-1}^{(k)}=\mathbf{A r}_{j-1, j-1}^{(k)}$ (old) and $\mathbf{r}_{j, j}^{(k)}$ (new) via $\mathbf{G}_{j+1, j}^{(k)}=\mathbf{A G}_{j, j}^{(k)} \rightsquigarrow \mathbf{U}_{k}$.

IDRStAB

Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

Here,

$$
\boldsymbol{\alpha}^{(j)}:=\left(\widetilde{\mathbf{R}}_{0}^{H} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{H} \mathbf{r}_{j, j-1}^{(k)},
$$

$\boldsymbol{\alpha}^{(j)}$ relating $\mathbf{r}_{j, j-1}^{(k)}=\mathbf{A r}_{j-1, j-1}^{(k)}$ (old) and $\mathbf{r}_{j, j}^{(k)}$ (new) via $\mathbf{G}_{j+1, j}^{(k)}=\mathbf{A G}_{j, j}^{(k)} \rightsquigarrow \mathbf{U}_{k}$.
New cycle (STAB part, $\mathbf{r}_{21}^{(k+1)}=\mathbf{A r}_{11}^{(k+1)}, \gamma^{(\ell)} \in \mathbb{C}^{s}$ such that $\left\|\mathbf{r}_{11}^{(k+1)}\right\|=$ min):

$$
\mathbf{r}_{11}^{(k+1)}=\mathbf{r}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{r}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \quad\left\{\begin{array}{l}
\mathbf{G}_{11}^{(k+1)}=\mathbf{G}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \\
\mathbf{G}_{21}^{(k+1)}=\mathbf{G}_{2, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+2, \ell+1}^{(k)} \gamma_{i}^{(\ell)} .
\end{array}\right.
$$

IDRStAB

Residual updates en détail $\left(i \leqslant j, \mathbf{r}_{j+1, j}^{(k)}=\mathbf{A r}_{j, j}^{(k)}\right)$:

$$
\mathbf{r}_{i, j}^{(k)}=\mathbf{r}_{i, j-1}^{(k)}-\mathbf{G}_{i+1, j}^{(k)} \boldsymbol{\alpha}^{(j)}, \quad \mathbf{r}_{j, j}^{(k)}=\left(\mathbf{I}-\mathbf{G}_{j+1, j}^{(k)}\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}}\right) \mathbf{r}_{j, j-1}^{(k)} .
$$

Here,

$$
\boldsymbol{\alpha}^{(j)}:=\left(\widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{G}_{j+1, j}^{(k)}\right)^{-1} \widetilde{\mathbf{R}}_{0}^{\mathrm{H}} \mathbf{r}_{j, j-1}^{(k)},
$$

$\boldsymbol{\alpha}^{(j)}$ relating $\mathbf{r}_{j, j-1}^{(k)}=\mathbf{A r}_{j-1, j-1}^{(k)}$ (old) and $\mathbf{r}_{j, j}^{(k)}$ (new) via $\mathbf{G}_{j+1, j}^{(k)}=\mathbf{A G}_{j, j}^{(k)} \rightsquigarrow \mathbf{U}_{k}$.
New cycle (STAB part, $\mathbf{r}_{21}^{(k+1)}=$ Ar $_{11}^{(k+1)}, \gamma^{(\ell)} \in \mathbb{C}^{s}$ such that $\left\|\mathbf{r}_{11}^{(k+1)}\right\|=\mathrm{min}$):

$$
\mathbf{r}_{11}^{(k+1)}=\mathbf{r}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{r}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \quad\left\{\begin{array}{l}
\mathbf{G}_{11}^{(k+1)}=\mathbf{G}_{1, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+1, \ell+1}^{(k)} \gamma_{i}^{(\ell)}, \\
\mathbf{G}_{21}^{(k+1)}=\mathbf{G}_{2, \ell+1}^{(k)}-\sum_{i=1}^{\ell} \mathbf{G}_{i+2, \ell+1}^{(k)} \gamma_{i}^{(\ell)} .
\end{array}\right.
$$

Anisa Rizvanolli: \rightsquigarrow Lanczos-IDRStab pencil for eigenvalues, IDRStabEIg.

Structure of (STAB-purified) IDR-IDRSTAB pencil

Structure of (undeflated) Lanczos-IDRSTAB pencil

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

Simplified residual bound (block-wise orthonormalization):

$$
\begin{aligned}
\left\|\underline{\mathbf{r}}_{k}\right\|=\left\|\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}\right\| & \leqslant\left\|\mathbf{G}_{k+1}\right\| \cdot\left\|\underline{\mathbf{e}}_{1}\right\| \mathbf{r}_{0}\left\|-\underline{\mathbf{H}}_{k} \underline{\mathbf{z}}_{k}\right\| \\
& \leqslant \sqrt{\left[\frac{k+1}{s+1}\right\rceil} \cdot\left\|\mathbf{e}_{1}\right\| \mathbf{r}_{0}\left\|-\underline{\mathbf{H}}_{k} \mathbf{z}_{k}\right\| .
\end{aligned}
$$

QMRIDR

MR methods: use extended Hessenberg matrix

$$
\underline{\mathbf{x}}_{k}:=\mathbf{Q}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

IDR based: generalized Hessenberg decomposition,

$$
\mathbf{A V}_{k}=\mathbf{A} \mathbf{G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
$$

Thus,

$$
\underline{\mathbf{x}}_{k}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}=\mathbf{G}_{k} \mathbf{U}_{k} \underline{\mathbf{z}}_{k}, \quad \underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

Simplified residual bound (block-wise orthonormalization):

$$
\begin{aligned}
\left\|\underline{\mathbf{r}}_{k}\right\|=\left\|\mathbf{r}_{0}-\mathbf{A} \underline{\mathbf{x}}_{k}\right\| & \leqslant\left\|\mathbf{G}_{k+1}\right\| \cdot\left\|\mathbf{e}_{1}\right\| \mathbf{r}_{0}\left\|-\underline{\mathbf{H}}_{k} \underline{\mathbf{z}}_{k}\right\| \\
& \leqslant \sqrt{\left[\frac{k+1}{s+1}\right\rceil} \cdot\left\|\underline{\mathbf{e}}_{1}\right\| \mathbf{r}_{0}\left\|-\underline{\mathbf{H}}_{k} \mathbf{z}_{k}\right\| .
\end{aligned}
$$

Implementation based on short recurrences possible.

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{k}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k} \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{k}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad \mathbf{A} \widetilde{\mathbf{V}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}
\end{aligned}
$$

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{k}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k} \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{k}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad \mathbf{A} \widetilde{\mathbf{V}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
\end{aligned}
$$

Generalized Hessenberg relation, generically no longer generalized Hessenberg decomposition, as generically

$$
\mathbf{A} \widetilde{\mathbf{V}}_{k} \neq \mathbf{A} \mathbf{G}_{k} \widetilde{\mathbf{U}}_{k}
$$

for every (upper triangular) $\widetilde{\mathbf{U}}_{k}$.

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{k}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k} \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{k}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad \mathbf{A} \widetilde{\mathbf{V}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
\end{aligned}
$$

Generalized Hessenberg relation, generically no longer generalized Hessenberg decomposition, as generically

$$
\mathbf{A} \widetilde{\mathbf{V}}_{k} \neq \mathbf{A G}_{k} \widetilde{\mathbf{U}}_{k}
$$

for every (upper triangular) $\widetilde{\mathbf{U}}_{k}$.
Computation of flexible MR iterate and flexible MR approximation:

$$
\underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|, \quad \underline{\mathbf{x}}_{k}:=\widetilde{\mathbf{V}}_{k} \underline{\mathbf{z}}_{k} .
$$

QMRIDR

Other Krylov-paradigms possible, e.g., flexible QMRIDR:

$$
\begin{aligned}
P_{j}(\mathbf{A}) \mathbf{v}_{k} & =\left(\alpha_{j} \mathbf{A}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k} \rightsquigarrow\left(\alpha_{j} \mathbf{A} \mathbf{P}_{k}^{-1}+\beta_{j} \mathbf{I}\right) \mathbf{v}_{k}=\mathbf{A} \widetilde{\mathbf{v}}_{k}+\beta_{j} \mathbf{v}_{k}, \\
\widetilde{\mathbf{v}}_{k} & :=\mathbf{P}_{k}^{-1} \mathbf{v}_{k} \alpha_{j}, \quad \mathbf{A} \widetilde{\mathbf{V}}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k} .
\end{aligned}
$$

Generalized Hessenberg relation, generically no longer generalized Hessenberg decomposition, as generically

$$
\mathbf{A} \widetilde{\mathbf{V}}_{k} \neq \mathbf{A} \mathbf{G}_{k} \widetilde{\mathbf{U}}_{k}
$$

for every (upper triangular) $\widetilde{\mathbf{U}}_{k}$.
Computation of flexible MR iterate and flexible MR approximation:

$$
\underline{\mathbf{z}}_{k}:=\underline{\mathbf{H}}_{k}^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|, \quad \underline{\mathbf{x}}_{k}:=\widetilde{\mathbf{V}}_{k} \underline{\mathbf{z}}_{k} .
$$

Flexible IDR variants algorithmically very easy to implement.

QMRIDR

Multi-shift is a technique developed for shifted systems

$$
(\mathbf{A}-\sigma \mathbf{I}) \mathbf{x}^{(\sigma)}=\mathbf{r}_{0}, \quad \sigma \in \mathbb{C} .
$$

QMRIDR

Multi-shift is a technique developed for shifted systems

$$
(\mathbf{A}-\sigma \mathbf{I}) \mathbf{x}^{(\sigma)}=\mathbf{r}_{0}, \quad \sigma \in \mathbb{C}
$$

We look for quasi-optimal approximations of the form

$$
\mathbf{x}^{(\sigma)} \approx \underline{\mathbf{x}}_{k}^{(\sigma)}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}^{(\sigma)}
$$

QMRIDR

Multi-shift is a technique developed for shifted systems

$$
(\mathbf{A}-\sigma \mathbf{I}) \mathbf{x}^{(\sigma)}=\mathbf{r}_{0}, \quad \sigma \in \mathbb{C}
$$

We look for quasi-optimal approximations of the form

$$
\mathbf{x}^{(\sigma)} \approx \underline{\mathbf{x}}_{k}^{(\sigma)}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}^{(\sigma)}
$$

Since $\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}$, and since we use $\mathbf{G}_{k+1} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|=\mathbf{r}_{0}$,

$$
\underline{\mathbf{r}}_{k}^{(\sigma)}=\mathbf{r}_{0}-(\mathbf{A}-\sigma \mathbf{I}) \underline{\mathbf{x}}_{k}^{(\sigma)}=\mathbf{G}_{k+1}\left(\underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|-\left(\underline{\mathbf{H}}_{k}-\sigma \underline{\mathbf{U}}_{k}\right) \mathbf{z}_{k}^{(\sigma)}\right) .
$$

QMRIDR

Multi-shift is a technique developed for shifted systems

$$
(\mathbf{A}-\sigma \mathbf{I}) \mathbf{x}^{(\sigma)}=\mathbf{r}_{0}, \quad \sigma \in \mathbb{C}
$$

We look for quasi-optimal approximations of the form

$$
\mathbf{x}^{(\sigma)} \approx \underline{\mathbf{x}}_{k}^{(\sigma)}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}^{(\sigma)}
$$

Since $\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}$, and since we use $\mathbf{G}_{k+1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|=\mathbf{r}_{0}$,

$$
\underline{\mathbf{r}}_{k}^{(\sigma)}=\mathbf{r}_{0}-(\mathbf{A}-\sigma \mathbf{I}) \underline{\mathbf{x}}_{k}^{(\sigma)}=\mathbf{G}_{k+1}\left(\underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|-\left(\underline{\mathbf{H}}_{k}-\sigma \underline{\mathbf{U}}_{k}\right) \underline{\mathbf{z}}_{k}^{(\sigma)}\right) .
$$

Thus, $\underline{\mathbf{z}}_{k}^{(\sigma)}$ quasi-optimal:

$$
\underline{\mathbf{z}}_{k}^{(\sigma)}:=\left(\underline{\mathbf{H}}_{k}-\sigma \underline{\mathbf{U}}_{k}\right)^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

QMRIDR

Multi-shift is a technique developed for shifted systems

$$
(\mathbf{A}-\sigma \mathbf{I}) \mathbf{x}^{(\sigma)}=\mathbf{r}_{0}, \quad \sigma \in \mathbb{C}
$$

We look for quasi-optimal approximations of the form

$$
\mathbf{x}^{(\sigma)} \approx \underline{\mathbf{x}}_{k}^{(\sigma)}:=\mathbf{V}_{k} \underline{\mathbf{z}}_{k}^{(\sigma)}
$$

Since $\mathbf{A V}_{k}=\mathbf{A G}_{k} \mathbf{U}_{k}=\mathbf{G}_{k+1} \underline{\mathbf{H}}_{k}$, and since we use $\mathbf{G}_{k+1} \mathbf{e}_{1}\left\|\mathbf{r}_{0}\right\|=\mathbf{r}_{0}$,

$$
\underline{\mathbf{r}}_{k}^{(\sigma)}=\mathbf{r}_{0}-(\mathbf{A}-\sigma \mathbf{I}) \underline{\mathbf{x}}_{k}^{(\sigma)}=\mathbf{G}_{k+1}\left(\underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\|-\left(\underline{\mathbf{H}}_{k}-\sigma \underline{\mathbf{U}}_{k}\right) \underline{\mathbf{z}}_{k}^{(\sigma)}\right) .
$$

Thus, $\underline{\mathbf{z}}_{k}^{(\sigma)}$ quasi-optimal:

$$
\underline{\mathbf{z}}_{k}^{(\sigma)}:=\left(\mathbf{H}_{k}-\sigma \underline{\mathbf{U}}_{k}\right)^{\dagger} \underline{\mathbf{e}}_{1}\left\|\mathbf{r}_{0}\right\| .
$$

Various extensions for IDRStab: Olaf Rendel, Z. \rightsquigarrow QMRIDRStab.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Neglecting the influence of the Stab-part, i.e., focusing on $\operatorname{Lanczos}(s, 1)$, the deviation of IDR from GMRES is described using stochastic arguments.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Neglecting the influence of the Stab-part, i.e., focusing on $\operatorname{Lanczos}(s, 1)$, the deviation of IDR from GMRES is described using stochastic arguments. As a rule of thumb:

As s tends to infinity, the convergence curves of Lanczos($s, 1$) tend to the convergence curve of full GMRES.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Neglecting the influence of the Stab-part, i.e., focusing on Lanczos $(s, 1)$, the deviation of IDR from GMRES is described using stochastic arguments. As a rule of thumb:

As s tends to infinity, the convergence curves of Lanczos(s,1) tend to the convergence curve of full GMRES.

In practice, the first steps of IDR/QMRIDR and Arnoldi/GMRES coincide, as we ideally start IDR with these methods.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Neglecting the influence of the Stab-part, i.e., focusing on Lanczos $(s, 1)$, the deviation of IDR from GMRES is described using stochastic arguments. As a rule of thumb:

As s tends to infinity, the convergence curves of Lanczos(s,1) tend to the convergence curve of full GMRES.

In practice, the first steps of IDR/QMRIDR and Arnoldi/GMRES coincide, as we ideally start IDR with these methods.

We present some examples that depict the relations in (Sonneveld, 2010), show additionally the effects of finite precision, and relate GMRES to $\operatorname{QMR}(s, 1)$ and to $\operatorname{QMRIDR}(s)$.

Optimality, cost, and stability

In (Sonneveld, 2010) a relation between IDR and GMREs for the case of random shadow vectors was pointed out.

Neglecting the influence of the Stab-part, i.e., focusing on Lanczos $(s, 1)$, the deviation of IDR from GMRES is described using stochastic arguments. As a rule of thumb:

As s tends to infinity, the convergence curves of Lanczos(s,1) tend to the convergence curve of full GMRES.

In practice, the first steps of IDR/QMRIDR and Arnoldi/GMRES coincide, as we ideally start IDR with these methods.

We present some examples that depict the relations in (Sonneveld, 2010), show additionally the effects of finite precision, and relate GMRES to $\operatorname{QMR}(s, 1)$ and to $\operatorname{QMRIDR}(s)$.
We remark that the prototype IDR algorithm suffered from instability for large values of s. We only consider new, stable implementations.

"Exact" Lanczos($s, 1$) versus full GMRES

Lanczos(s, 1) vs. full GMRes, $s=1, \ldots, 40$, full reorthogonalization

"Finite precision" Lanczos $(s, 1)$ versus full GMRES

Lanczos(s, 1) vs. full GMRes, $s=1, \ldots, 40$, finite precision

"Exact" QMR($s, 1$) versus full GMREs

QMR(s, 1) vs. full GMRes, $s=1, \ldots, 40$, full reorthogonalization

"Finite precision" QMR $(s, 1)$ versus full GMRES

QMR($s, 1$) vs. full GMRes, $s=1, \ldots, 40$, finite precision

Finite precision QMRIDR(s) versus full GMRES

QMRIDR(s) vs. full GMRes, $s=1, \ldots, 40$, finite precision

A comparison: IDR based eigenvalue solvers

comparison of different Krylov eigenvalue approximations

Flexible QMRIDR(s)

Conclusion and Outlook

- The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its combinations, and the eigensolver counterparts, are very promising.

Conclusion and Outlook

- The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its combinations, and the eigensolver counterparts, are very promising.
- The new IDR implementations provide a "smooth" transition between Arnoldi/GMREs $(s \rightarrow \infty)$ and Lanczos/QMR $(s \rightarrow 1)$.

Conclusion and Outlook

- The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its combinations, and the eigensolver counterparts, are very promising.
- The new IDR implementations provide a "smooth" transition between Arnoldi/GMREs $(s \rightarrow \infty)$ and Lanczos/QMR $(s \rightarrow 1)$.
- The matrix generalization of Hessenberg decompositions to generalized Hessenberg decompositions and generalized Hessenberg relations allows for a simple application of standard Krylov subspace techniques.

Conclusion and Outlook

- The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its combinations, and the eigensolver counterparts, are very promising.
- The new IDR implementations provide a "smooth" transition between Arnoldi/GMREs $(s \rightarrow \infty)$ and Lanczos/QMR $(s \rightarrow 1)$.
- The matrix generalization of Hessenberg decompositions to generalized Hessenberg decompositions and generalized Hessenberg relations allows for a simple application of standard Krylov subspace techniques.
- The dependence on the parameters ($s, \widetilde{\mathbf{R}}_{0}$, the STAB-part, \ldots) has to be analyzed carefully.

Conclusion and Outlook

- The new implementations of IDR, i.e., IDRSTAB, QMRIDR, its combinations, and the eigensolver counterparts, are very promising.
- The new IDR implementations provide a "smooth" transition between Arnoldi/GMREs $(s \rightarrow \infty)$ and Lanczos/QMR $(s \rightarrow 1)$.
- The matrix generalization of Hessenberg decompositions to generalized Hessenberg decompositions and generalized Hessenberg relations allows for a simple application of standard Krylov subspace techniques.
- The dependence on the parameters ($s, \widetilde{\mathbf{R}}_{0}$, the STAB-part, \ldots) has to be analyzed carefully.
- An error analysis and a description of the finite precision behavior is desperately needed.

どうもありがとうございました。

Thank you very much for inviting me to 京都大学．

This talk is partially based on the following technical reports：
Eigenvalue computations based on IDR，Martin H．Gutknecht and Z．，Bericht 145， Institut für Numerische Simulation，TUHH，2010，
Flexible and multi－shift induced dimension reduction algorithms for solving large sparse linear systems，Martin B．van Giizen，Gerard L．G．Sleijpen，and Z．，Bericht 156， Institut für Numerische Simulation，TUHH， 2011.
An extended abstract can be found in the proceedings：
IDR versus other Krylov subspace solvers，Z．， 2011.

Sonneveld, P. (2010).
On the convergence behaviour of IDR (s).
Technical Report 10-08, Department of Applied Mathematical Analysis, Delft University of Technology, Delft.

